

Performance Tuning Guide
Version: 01.00

Document No: 43/DBM43-T01222006-01-PERT
Author: DBMaker Production Team Aug 11, 2005
LingAn Computer Engineering CO.

Print Date: Aug 05, 2005

 Performance Tuning Guide

1

Table of Content

1. Introduction... 4

2. Database Performance Tuning 6

2.1 The Tuning Process ...6

2.2 Monitoring a Database...7

2.2.1 THE MONITOR TABLES...7
2.2.2 KILLING CONNECTIONS ..8

2.3 Tuning I/O ...8

2.3.1 DETERMINING DATA PARTITIONS ..8
2.3.2 DETERMINING JOURNAL FILE PARTITIONS9
2.3.3 SEPARATING JOURNAL FILES AND DATA FILES......................9
2.3.4 USING RAW DEVICES...9
2.3.5 PRE-ALLOCATING AUTOEXTEND TABLESPACES...................10

2.4 Tuning Memory Allocation10

2.4.1 TUNING AN OPERATING SYSTEM ...10
2.4.2 TUNING DCCA MEMORY..11

2.4.2.1 CONFIGURING THE DCCA.. 11
2.4.2.2 ALLOCATING SUFFICIENT DCCA PHYSICAL MEMORY....................................... 11

2.4.3 TUNING PAGE BUFFER CACHE ...12
2.4.3.1 MONITORING PAGE BUFFER CACHE PERFORMANCE... 12
2.4.3.2 STATISTICS VALUES ARE OUTDATED... 13
2.4.3.3 SWAP OUT CACHE .. 14
2.4.3.4 POOR CLUSTERING OF RECORDS.. 15
2.4.3.5 LOW DATA PAGE BUFFERS .. 16
2.4.3.6 CHECKPOINTS OCCURRING TOO OFTEN .. 16
2.4.3.7 RE-MONITOR THE CACHE BUFFER PERFORMANCE.. 17

2.4.4 TUNING JOURNAL BUFFERS ...17
2.4.5 TUNING THE SYSTEM CONTROL AREA (SCA)18

2.4.5.1 AVOID LONG TRANSACTIONS.. 18
2.4.5.2 AVOID EXCESSIVE LOCKS ON LARGE TABLES.. 18
2.4.5.3 INCREASE THE SCA SIZE ... 18

2.4.6 TUNING THE CATALOG CACHE..18

2.5 Tuning Concurrent Processing18

2.5.1 REDUCING LOCK CONTENTION ...18
2.5.2 LIMITING THE NUMBER OF PROCESSES................................19

3. Database Model Design 21

Performance Tuning Guide

 Performance Tuning Guide

2

3.1 Tablespace...21

3.2 Table...21

3.3 Index...21

3.4 Constraint...21

3.5 Trigger ..21

3.6 Stored command ..21

3.7 Stored procedure ...22

4. Setting DBMaker Daemon................................... 23

4.1 I/O and Checkpoint...23

4.1.1 I/O DAEMON ...23
4.1.2 CHECKPOINT DAEMON ...23

4.2 Update Statistics ...24

4.3 Backup Server..24

4.4 Replication Server..25

4.5 Auto-Commit mode...25

5. Query Optimization ... 27

5.1 Indexes...27

5.2 Statistics Values are Outdated................................28

5.3 What is query optimization?28

5.4 Query Execution Plan (QEP)29

5.5 How Does the Optimizer Operate29

5.5.1 INPUT OF OPTIMIZER ..30
5.5.2 FACTORS ..30
5.5.3 JOIN SEQUENCE ..31
5.5.4 NESTED JOIN AND MERGE JOIN..31
5.5.5 TABLE SCAN AND INDEX SCAN..32
5.5.6 SORT..32

5.6 Time Cost of a Query ...32

5.6.1 OPERATION COST IN MEMORY (CPU COST)33
5.6.2 PROCESSION COST IN DISK ACCESS (I/O COST)33
5.6.3 COST OF TABLE SCAN ...34
5.6.4 COST OF INDEX SCAN ..34
5.6.5 COST OF SORT..34
5.6.6 COST OF NESTED JOIN ..34
5.6.7 COST OF MERGE JOIN ...35

5.7 Statistics ..35

5.7.1 TYPES OF STATISTICS ..35

Performance Tuning Guide

 Performance Tuning Guide

3

5.7.1.1 FOR A TABLE... 35
5.7.1.2 FOR A COLUMN.. 35
5.7.1.3 FOR AN INDEX ... 35

5.7.2 SYNTAX OF UPDATE STATISTICS36
5.7.3 LOAD AND UNLOAD STATISTICS..36

5.8 Accelerate the Execution of Query37

5.8.1 DATA MODEL ..37
5.8.2 QUERY PLAN...38
5.8.3 CHECK THE INDEX ...38
5.8.4 ADJUST FILTER COLUMNS..38

5.8.4.1 AVOIDING CORRELATED SUB-QUERIES.. 38
5.8.4.2 AVOIDING DIFFICULT REGULAR EXPRESSIONS ... 38

5.8.5 RE-CONSIDER THE QUERY..38
5.8.6 USE TEMPORARY TABLE TO ACCELERATE QUERY39

5.9 Syntax-Based Query Optimizer39

5.9.1 FORCE INDEX SCAN..39
5.9.2 FORCE INDEX SCAN WITH ALIAS ..39
5.9.3 FORCE INDEX SCAN WITH SYNONYM...................................39
5.9.4 FORCE INDEX SCAN WITH VIEW..40
5.9.5 FORCE TEXT INDEX SCAN ..40

5.10 Rewrite Query ..40

5.10.1 AVOID SUBQUERIES : REWRITE AS JOIN IF POSSIBLE..............40
5.10.2 AVOID EXPRESSION AND BUILD-IN FUNCTION IN PREDICATE....40
5.10.3 AVOID ‘OR’: REWRITE AS ‘IN’ IF POSSIBLE.............................40
5.10.4 AVOID ‘BETWEEN’ : REWRITE AS ‘AND’ IF POSSIBLE...............40
5.10.5 AVOID TABLE SCAN : REWRITE AS UNIONS IF POSSIBLE.........40
5.10.6 USE TEMPORARY TABLE WHEN NEED...................................41
5.10.7 LARGE DATA UPDATE..41

5.11 How to Read a Dump Plan41

5.11.1 EXAMPLE OF TABLE SCAN ...41
5.11.2 EXAMPLE OF INDEX SCAN ..42
5.11.3 EXAMPLE OF JOIN ...43

6. Redesigning Application 46

6.1 Redesigning the architecture of application...........46

6.2 Reducing lock contention ..46

6.3 Limiting the number of connections........................47

6.4 Avoiding duplicate connections47

6.5 Avoid Long Transactions ...47

Performance Tuning Guide

 Performance Tuning Guide

4

1. Introduction

When you use any Database to develop a Database application system, one of things you most
concerned about is the system performance.

Generally speaking, there are many factors affect the performance of DBMaster. We can see them
from the following figure.

Query Optimization

Concurrent Process

Application System Architecture

Application

System

Database Model Design

(Tablespace、Table、Index、stored
command、Stored procedure、Trigger)

Daemon

(Auto-commit、Checkpoint、Update
statistic、Backup server、Replication)

Memory Allocation

Database
System

Disk I/O

(Database Data partition)

OS (File system, Raid)

Network

I/O

Memory

Hardware

CPU

Figure 2.1

(1) Application

It comprises writing queries that limit the use of stored commands or searches for procedures.
Designing good schema or developing an application with better utilities can both significantly
increase application performance.

Performance Tuning Guide

 Performance Tuning Guide

5

About how to use index to increase the performance of DBMaster, We will discuss it at chapter 5.

Another part of Application is Concurrent Process. Obviously, minimizing lock contention and
avoiding deadlocks can increase throughput. Shorter transactions can promote concurrency, but it
may be degrade database performance. It will be expounded in chapter 6.

But in this article we only expound the key factors in the right of the Figure 1.1 that affect the
performance of DBMaster.

(2) Database System

This is the most important thing that we will discuss in this article. It includes Disk I/O, Memory
Allocation and Daemon. Make sure there are enough physical memory for DCCA and few I/O
access times. We will discuss the details in the Database Tuning chapter.

(3) OS

Chose a suitable OS can improve the performance of whole system, please select the OS that
special designed for the support of application disposal and database as possible as you can, for
example the series of Linux D-Class 4 made by xTeam Corp. In addition, about hard disk which
support the technical Raid, please select different Raid Level for different data type in DBMaker,
you can put data file into Raid 1,3,5, and put journal file into Raid 0,that can guarantee safeness
and a high efficiency.

(4) Hardware

It is the basic factor not only affects the performance of DBMaster, but also affects the whole PC’s.

 CPU: A faster CPU or more CPUs will help executing performance.

 Memory: More memory will hold more cached data, so that it will reduce I/O access times.

 I/O: Faster hard disks will improve the I/O throughput and more hard disks will promote the
I/O concurrency.

 Network: Speeding up network transmission will reduce the response time for users. Using
only network protocols required will reduce load balancing of the operating system.

Obviously, enhancing the hardware can greatly improve the overall database system
performance.

Performance Tuning Guide

 Performance Tuning Guide

6

2. Database Performance Tuning

DBMaster Database Performance Tuning chapter is an aid for people responsible for the operation,
maintenance, and performance of DBMaster. This chapter describes detailed ways to enhance
DBMaster performance. DBMaster is a highly tunable database system. Tuning DBMaster will
increase its performance level to satisfy individual needs. This chapter presents the goals and
methods used in the tuning process, and demonstrate how to diagnose a system's performance.

2.1 The Tuning Process
This section provides information on tuning a DBMaster Database system for performance. When
considering instance tuning, care must be taken in the initial design of the database system to
avoid bottlenecks that could lead to performance problems. Before tuning DBMaster, you must
define your goals for improving performance. Keep in mind that some of your goals may conflict.
You must decide which of the conflicting goals are most important to you. The list below shows
some of the possible goals when tuning DBMaster.

When initial design a Database, you need to consider:

 Allocating memory to database structures

 Determining I/O requirements of different parts of the database

 Tuning the operating system for optimal performance of the database

After the database instance has been installed and configured, you need to monitor the database
as it is running to check for performance-related problems.

Before tuning DBMaster, you need to define the following important goals:

 Improving the performance of SQL statements.

 Improving the performance of database applications.

 Improving the performance of concurrent processing.

 Optimizing resource utilization.

After determining the goals, you are ready to begin tuning DBMaster.

Start by performing the following steps:

 Monitor database performance

 Tuning I/O.

 Tuning memory allocation.

 Tuning concurrent processing.

 Monitor database performance and compare with previous statistics.

Performance Tuning Guide

 Performance Tuning Guide

7

The methods used to perform tuning in each of these steps may have a negative influence on other
steps. Following the order shown above can reduce this influence. After performing all of the tuning
steps, monitor the performance of DBMaster to see whether the best overall performance has
been achieved.

Before tuning DBMaster, make certain that the SQL statements are written efficiently and the
database applications employ good design. Inefficient SQL statements or badly designed
applications can have a negative influence on database performance that tuning cannot improve.
To write efficient statements and applications, refer to the SQL Command and Function Reference
and the ODBC Programmer's Guide.

2.2 Monitoring a Database
This section shows how to monitor information about the status of a database, including resource
status, operation status, connection status, and concurrency status. This section also shows how
to kill a connection.

2.2.1 THE MONITOR TABLES

DBMaster stores the database status in four system catalog tables: SYSINFO, SYSUSER,
SYSLOCK, and SYSWAIT.

The SYSINFO table contains database system values including total DCCA size, available DCCA
size, number of maximum transactions, and the number of page buffers. It also includes statistics
on system actions such as the number of active transactions, the number of started transactions,
the number of lock and semaphore requests, the number of physical disk I/O, the number of
journal record I/O, and more. Use this table to monitor the database system status, and use the
information to tune the database.

The SYSUSER table contains connection information, including connection ID, user name, login
name, login IP address, and the number of DML operations that have been executed. Use this
table to monitor which users are using a database.

The SYSLOCK table contains information about locked objects, such as the ID of the locked object,
lock status, lock granularity, ID of the connection locking this object, and more. Use this table to
monitor which objects are being locked by which connection, and which users are locking which
objects.

The SYSWAIT table contains information on the wait status of connections, including the ID of the
connection that is waiting and the ID of the connection it is waiting for. Use this table to monitor the
concurrency status of connections. Once a connection is waiting for those resources locked by an
idle or dead connection, you can determine which connection is locking those objects from this
table. Then you can kill the idle or dead connection to release the resources.

Browse these four system catalog tables in the same way ordinary tables are browsed.

Example

SQL SELECT command used to browse the SYSUSER table:
dmSQL> SELECT * FROM SYSUSER;

 Refer to DBA manual for more information on these four system catalog tables.

Performance Tuning Guide

 Performance Tuning Guide

8

2.2.2 KILLING CONNECTIONS

A connection should be killed when the connection is holding resources and is idle for a long time,
or when the resources are urgently required. In addition, all active connections should be killed
before shutting down a database. Before killing a connection, browse the SYSUSER table to
determine its connection ID.

Example 1:

To kill the connection for Eddie, retrieve the connection ID first:
dmSQL> SELECT CONNECTION_ID FROM SYSUSER WHERE USER_NAME = 'Eddie';

CONNECTION_ID

=============

352501

Example 2:

Then to kill the connection for Eddie use:
dmSQL> KILL 352501;

2.3 Tuning I/O
Disk I/O requires the most time in DBMaster.

To avoid disk I/O bottlenecks, perform the following:

 Determine data partitions.

 Determine journal file partitions.

 Separate journal files and data files onto different disks.

 Use raw devices.

 Pre-allocate space in an auto-extend Tablespace.

 Turn I/O and checkpoint daemon on.

2.3.1 DETERMINING DATA PARTITIONS

You can use Tablespace to partition data instead of storing all of the data together. If Tablespace
are used properly, DBMaster will have greater performance when performing space management
functions or full table scans. Small tables that contain data of a similar nature can be grouped in a
single Tablespace, but very large tables should be placed in their own Tablespace.

You can achieve speed improvement in disk I/O by using disk striping. Striping is the practice of
separating consecutive disk sectors so they span several disks. This can be used to divide the
data in a large table over several disks. This helps to avoid disk contention that may occur when
many processes try to access the same files concurrently.

Example:

Performance Tuning Guide

 Performance Tuning Guide

9

 Figure2.1 Figure 2.2

We can see from the figure 2.1, if the table1 is too large while the table 2 is small. In fact, in the
hard disk table1 might be stored into f1.db and f2.bb. In that case, when you want to select
something from table2, you must scan the f1.db, f2.bb first. It is unnecessary to scan too many files.

But in the figure 2.2, that case can’t meet, it only needs to scan f3.db, because the Tablespace
partitioned reasonably. You can see great improvement on performance obviously.

2.3.2 DETERMINING JOURNAL FILE PARTITIONS

DBMaster gives the flexibility to use one or more journal files. A single journal file is easier to
manage, but using multiple journal files has some advantages as well. If you run DBMaster in
backup mode and use the backup server to perform incremental backups, using multiple journal
files can improve the performance of incremental backups. Only full journal files will be backed up.
In addition, spreading multiple journal files across different disks can increase disk I/O performance.

The size of the journal fill will affect the interval of the backups. You may determine the size of
journal files by examining the needs of transactions. However, if you run DBMaster in backup
mode and perform backups according to the journal full status, the journal size will also affect the
backup time interval. A larger journal file increases the interval between backups.

2.3.3 SEPARATING JOURNAL FILES AND DATA FILES

Separating the journal files, data files and the system temp file onto different disks will increase
disk I/O performance, permitting files to be accessed concurrently to some degree. If the disks
have different I/O speeds, consider which files to put on the faster disks. In general, if you run on-
line transaction processing (OLTP) applications often, putting the journal files on the faster disks.
However, if you run applications that perform long queries, such as a decision support system,
putting data files into faster disks.

2.3.4 USING RAW DEVICES

If you run DBMaster on a UNIX system, construct raw device files to store DBMaster data and
journal files. Since DBMaster has a good buffer mechanism, it is much faster to read/write from a
raw device than a UNIX file. For more information on how to create a raw device, refer to the
operating system manual or consult your system administrator. The one disadvantage of using raw

Performance Tuning Guide

 Performance Tuning Guide

10

devices is that DBMaster cannot extend Tablespace on them automatically; so more planning is
required when using raw device files.

But we can’t use a raw device on Windows Platform.

2.3.5 PRE-ALLOCATING AUTOEXTEND TABLESPACES

There are two types of Tablespace, Regular Tablespaces and Autoextend Tablespace. Each one
has its own advantages; you should choose a reasonable one that you need. DBMaster supports
autoextend Tablespaces to simplify Tablespace management. However, if you are able to estimate
the required size of a Tablespace, it is better to fix the size when creating the Tablespace.

We can know that Pre-allocate Space in an Autoextend Tablespace will improve performance, as
extending pages takes a lot of time. You can extend the pages of a file later by using the alter file
command. Pre-allocating the size of a Tablespace can also avoid disk full errors cause by the
available space is not enough when DBMaster attempts to extend a Tablespace.

2.4 Tuning Memory Allocation
DBMaster stores information temporarily in memory buffers and permanently on disk. Since it takes
much less time to retrieve data from memory than disk, performance will increase if data can be
obtained from the memory buffers. The size of each of DBMaster's memory structures will affect
the performance of a database. However, performance becomes an issue only if there is not
enough memory.

This section focuses on tuning the memory usage for a database. It includes information on how to
calculate the required DCCA size, and how to monitor and allocate enough memory for the page
buffers, journal buffers and system control area.

Example:

To achieve the best performance, follow the steps in the order shown:

1. Tune the operating system.

2. Tune the DCCA memory size.

3. Tune the page buffers.

4. Tune the journal buffers.

5. Tune the SCA.

DBMaster's memory requirement varies according to the applications in use; tune memory
allocation after tuning application programs and SQL statements.

2.4.1 TUNING AN OPERATING SYSTEM

The operating system should be tuned to reduce memory swapping and ensure that the system
runs smooth and efficiently.

Memory swapping between physical memory and the virtual memory file on disk takes a significant
amount of time. It is important to have enough physical memory for running processes. Measure
the status of an operating system with the operating system utilities. An extremely high page-
swapping rate indicates that the amount of physical memory in a system is not large enough. If this
is the case, remove any unnecessary processes or add more physical memory to the system.

Performance Tuning Guide

 Performance Tuning Guide

11

2.4.2 TUNING DCCA MEMORY

The Database Communication and Control Area (DCCA) is a group of shared memory allocated by
DBMaster servers. Every time DBMaster is started, it allocates and initializes the DCCA.

The UNIX client/server model of DBMaster allocates the DCCA from the UNIX shared memory
pool. Ensure that the size of the DCCA is not larger than the maximum-shared memory size
permitted by the operating system. If the requested size for the DCCA is larger than the operating
system limit, refer to the operating system administration manual for information on how to
increase the maximum size of shared memory.

2.4.2.1 Configuring the DCCA
The DCCA contains the process communication control blocks, concurrency control blocks, and
the cache buffers for data pages, journal blocks, and catalogs. DBMaster maintains the
concurrency control blocks and communication status of each DBMaster process in the DCCA.
Each DBMaster process accesses the same disk data through the cache buffers in the DCCA.

Setting the appropriate parameters in dmconfig.ini before starting the database configures the
size of each of the DCCA components.

Example 1:

A sample configuration for the DCCA in the dmconfig.ini file:
DB_NBUFS = 200

DB_NJNLB = 50

DB_SCASZ = 50

DB_NBufs specifies the number of data page buffers (4096 bytes per buffer),
DB_NJnlB specifies the number of journal block buffers (4096 bytes per buffer), and
DB_ScaSz specifies the size of the SCA in pages (4096 bytes per page). DBMaster reads these
DCCA parameters only when starting a database. To adjust the parameters, terminate the
database, modify the values in the dmconfig.ini file, and restart the database.

The total memory allocation for the DCCA is the sum of the size of DB_NBufs, DB_NJnlB and
DB_ScaSz.

Example 2:

To calculate the total size of the DCCA:
size of DCCA = (200 + 50 + 50) * 4 KB = 1200 KB

2.4.2.2 Allocating Sufficient DCCA Physical Memory
The DCCA is the resource most frequently accessed by DBMaster processes. It is important to
ensure there is enough physical memory to prevent the operating system from swapping the
DCCA to disk too often or it will seriously degrade the performance of a database. The page-
swapping rate can be measured by using operating system utilities.

Example

To determine the size of memory allocated for the DCCA from the system table SYSINFO:
dmSQL> select INFO, VALUE from SYSINFO where INFO = DCCA_SIZE or INFO = FREE_DCCA_SIZE;

 INFO VALUE

================ =================

DCCA_SIZE 1228800

FREE_DCCA_SIZE 189024

Performance Tuning Guide

 Performance Tuning Guide

12

DCCA_SIZE - the memory size, in bytes, of the DCCA.

FREE_DCCA_SIZE - the size, in bytes, of free memory remaining in the DCCA.

The free memory in the DCCA is reserved for use by dynamic control blocks, such as lock control
blocks.

Usually a larger number of buffers are better for system performance. However, if the DCCA is too
large to fit in physical memory, the system performance will degrade. Therefore, it is important to
allocate enough memory for the DCCA but still fit the DCCA in physical memory.

2.4.3 TUNING PAGE BUFFER CACHE

DBMaster uses the shared memory pool for the data page buffer cache. The buffer cache allows
DBMaster to speed up data access and concurrency control. DBMaster automatically configures
the number of page buffers by default. Setting the dmconfig.ini keyword DB_Nbufs to zero allows
DBMaster to automatically set the number of page buffers. DBMaster can dynamically adjust the
number of page buffers on systems that allow DBMaster to detect physical memory usage. The
number will be no less than 500 pages on Windows 95/98, or no less than 2000 pages for
Windows NT/2000/ or Unix. If DBMaster cannot detect the system's physical memory usage, it will
allocate the minimum amount.

Adjusting the size of the page buffers will have the greatest effect on performance. The next
sections show how to monitor the buffer cache performance and calculate the buffer hit ratios.

To improve buffer cache performance:

1. Update statistics on schema objects.

2. Set NOCACHE on large tables.

3. Reorganize data in poorly clustered indexes.

4. Enlarge cache buffers.

5. Reduce the effect of checkpoints.

2.4.3.1 Monitoring Page Buffer Cache Performance
DBMaster places buffer cache access statistics in the SYSINFO system table.

You can get these values with the following SQL statements:
dmSQL> select NUM_PAGE_BUF from SYSINFO;

NUM_PAGE_BUF

============

 200

dmSQL> select NUM_PHYSICAL_READ, NUM_PHYSICAL_WRITE, NUM_LOGICAL_READ, NUM_LOGICAL_WRITE
from SYSINFO;

NUM_PHYSICAL_READ NUM_LOGICAL_READ NUM_PHYSICAL_WRITE NUM_LOGICAL_WRITE

================= ================ ================== =================

 13207 331595 7361 127423

1 rows selected

NUM_PAGE_BUF — number of pages used for data buffer cache.

Performance Tuning Guide

 Performance Tuning Guide

13

NUM_PHYSICAL_READ — number of pages read from disk.

NUM_LOGICAL_READ — number of pages read from the buffer cache.

NUM_PHYSICAL_WRITE—number of pages written to disk.

NUM_LOGICAL_WRITE—number of pages written to the buffer cache.

You can calculate the page buffer read/write hit ratio with the following formulas:

)(1
L_READNUM_LOGICA

AL_READNUM_PHYSICratiohit read −=

)(1
L_WRITENUM_LOGICA

AL_WRITENUM_PHYSICratiohit write −=

From the example above, you can calculate the read/write hit ratio:

%0.96
960.0

)
331595
13207(1

=
=

−=ratiohit read

%2.94
942.0

)
127423

7361(1

=
=

−=ratiohit write

Based on the read/write the hit ratio, you can determine how to improve the buffer cache
performance. If the hit ratio is too low, you can tune DBMaster with the methods described in the
following subsections.

If the hit ratio is always high, for example higher than 99%, the cache is probably large enough to
hold all of the most frequently used pages. In this case, you may try to reduce the cache size to
reserve memory for your applications. To make sure you still maintain good performance, you
should monitor the cache performance before and after making the modifications.

2.4.3.2 Statistics Values are Outdated

If the read/write hit ratio is too low, it may be that the statistics values of schema objects (tables,
indexes, columns) are out of date. The wrong statistics may cause the DBMaster optimizer to use
an inefficient plan for SQL statement. If users have inserted large amounts of data into the
database after the last time the statistics values were updated, update the values again.

Example 1:

To update the statistics values for all schema objects:
dmSQL> update statistics;

If a database is extremely large, it will take a lot of time to update statistical values for all of the
schema objects. An alternative method is to update statistics on specific schema objects that have
been modified since the last update, and set the sampling rate.

Example 2:

To update specific schema objects:
dmSQL> update statistics tabel1, table2, user1.table3 sample = 30;

After successfully updating the statistical values for schema objects, monitor the performance of
the page buffer cache with the method specified in Monitoring Page Buffer Cache Performance.

Performance Tuning Guide

 Performance Tuning Guide

14

2.4.3.3 Swap Out Cache
DBMaster determines which page buffers to swap with the Least Recently Used (LRU) rule. This
keeps the most frequently accessed pages in the page buffers and swaps pages that are used less
frequently. However, if a large table is browsed all page buffers may be swapped out just to
perform one table scan.

For example, in a database with 200 page buffers, if a table with 250 pages is browsed, DBMaster
might read all 250 pages into the page buffers and discard the 200 most frequently used pages. In
the worst case, DBMaster must read 200 pages from disk when accessing other data after a full
table scan. However, if the table cache mode is set to NOCACHE, DBMaster will place the
retrieved pages at the end of the LRU chain when a full table scan is performed. Therefore, 199 of
the 200 most frequently used pages are still kept in the buffer cache.

Normally the tables with page numbers that exceed the page buffers should be set to NOCACHE.
Tables that are not used frequently or with page numbers close to the number of page buffers
should also be set to NOCACHE.

To determine the number of pages and cache mode for a table:
dmSQL> select TABLE_OWNER, TABLE_NAME, NUM_PAGE, CACHEMODE from SYSTEM.SYSTABLE where
TABLE_OWNER != 'SYSTEM';
 TABLE...OWNER TABLE_NAME NUM_PAGE CACHEMODE

 =========== =========== =========== ===========
 BOSS salary 5 T

 MIS asset 45 T

 MIS department 3 T

 MIS employee 29 T

 MIS worktime 450 T

 TRADE customer 350 T

 TRADE inventory 167 T

 TRADE order 112 T

 TRADE transaction 1345 T

9 rows selected

NUM_PAGE—the number of pages in a table.

CACHEMODE—cache mode of full table scan, 'T' means table scan is cacheable, and 'F' means
table scan is non-cacheable.

In the above sample, the table TRADE.transaction is already set to NOCACHE. The other tables
still are cacheable. If there are 200 page buffers, the MIS.worktime and TRADE.customer tables
should be set to NOCACHE, and the TRADE.order and TRADE.inventory tables should be set to
NOCACHE if they are rarely used.

Example 2:

To set the cache mode for a table to NOCACHE:
dmSQL> alter table MIS.worktime set nocache on;

If there are no valid indexes for a table, or the predicate in a query references non-indexed
columns, DBMaster may also perform a full table scan. To prevent this, try to write SQL statements
as efficiently as possible, and make use of indexed columns when possible.

Performance Tuning Guide

 Performance Tuning Guide

15

2.4.3.4 Poor Clustering of Records
When fetching many records that must be ordered by an index key, or when the predicate
references an indexed column, index clustering becomes an important factor that affects the buffer
cache performance.

For example, if you execute an SQL statement to select all columns from the customer table and
sort it on the primary key custid as shown below:

dmSQL> select * from customer order by custid;

Suppose there are 3500 records in table customer distributed over 350 pages, and there are 200
page buffers in your system. If the records are clustered by custid and the clustering is very good
(arranged sequentially on all pages), DBMaster only needs to read 350 pages from disk. But if the
clustering is bad (no sequential records on the same page), DBMaster may have to read 3500
pages from disk in the worst case (every record needs a disk read)! To determine the state of your
index clustering, you must update statistics on the table first. Suppose you have built an index
called custid_index on the custid column of table customer. Then you can execute the following
statements:

dmSQL> select CLSTR_COUNT from SYSTEM.SYSINDEX
 where TABLE_OWNER = 'TRADE'
 and TABLE_NAME = 'customer'
 and INDEX_NAME = 'custid_index';

CLSTR_COUNT
===========
 385

1 rows selected

CLSTR_COUNT—cluster count, the number of data pages that will be fetched by a fully indexed
scan with few buffers.

In the above example, DBMaster at most performs 385 page reads from disk when you scan the
full customer table and order the results by the custid column.

dmSQL> select NUM_PAGE,NUM_ROW from SYSTEM.SYSTABLE
 where TABLE_OWNER = 'TRADE'
 and TABLE_NAME = 'customer';

NUM_PAGE NUM_ROW
=========== ===========
 350 4375

1 rows selected

NUM_PAGE—the number of pages allocated by a table.

NUM_ROW—the number of records in a table.

With CLSTR_COUNT, NUM_PAGE and NUM_ROW, you can estimate the clustering factor with
the following formula:

NUM_ROW
 NUM_PAGE)- NT(CLSTR_COU factor clustering =

Performance Tuning Guide

 Performance Tuning Guide

16

In the above example, you can see the clustering factor is 1.7%.

%7.1
0017.0
9375

=
=

350)-(385 =factor clustering

The clustering factor will be between 0 and 100%. In cases where CLSTR_COUNT is only a little
less than NUM_PAGE, you can treat it as zero. If the clustering factor is zero, it means your data is
fully clustered on this index. If the clustering factor is too high, for example larger than 20% (what
determines a high rate depends on the table size, average record size, etc.), the index has bad
clustering. When DBMaster finds an index has bad clustering, the DBMaster optimizer may use a
full table scan when you execute an SQL statement even if you think it should be processed by an
index scan.

When you find the clustering of a frequently used index is bad, you perform the following procedure
to improve index clustering:

 unload all data from the table (order by the index).

 rearrange the unloaded data by order.

 drop indexes on the table.

 delete all data in the table.

 reload the data into the table.

 recreate indexes on the table.

After data reloading, the index should be fully clustered. You should note however, a table can only
be clustered on one index. If one table has many indexes, you should maintain index clustering on
the most important index. Usually, the most important index is the primary key. Since unloading
and reloading data takes a great deal of time and storage, you should tune index clustering only on
the tables that are very large and frequently browsed.

2.4.3.5 Low Data Page Buffers
If allocated data page buffers are not enough for your database access, you should add page
buffers to the DCCA. The following steps show how to modify the number of page buffers:

 terminate the database server.

 reset DB_NBUFS in dmconfig.ini to a larger value.

 restart the database.

After successfully enlarging the data buffers, you should run your database for a period of time and
then monitor the buffer cache performance again. If the buffer hit ratio has gone up, adding buffer
pages has resulted in a performance improvement. If not, you must again add more pages to the
buffer cache or check for other reasons your system performance may be reduced.

2.4.3.6 Checkpoints Occurring Too Often
If the write hit ratio is much lower than the read hit ratio, the cause may be that checkpoints are
being processed too often. To determine how many checkpoints have been processed, you can
use the following SQL statement:

dmSQL> select NUM_CHECKPOINT from SYSINFO;

 NUM_CHECKPOINT
 ==============

Performance Tuning Guide

 Performance Tuning Guide

17

 26

 1 rows selected

When a checkpoint is processed, DBMaster will write all dirty page buffers to disk. Since
checkpoints require a lot of CPU time, you can manually perform a checkpoint during periods when
the CPU is idle. For example, if you are using UNIX you can set a cron job to perform a checkpoint
every night. Another advantage of performing checkpoints periodically is to reduce the recovery
time taken by DBMaster to start a database after a system crash.

Except when you make a checkpoint manually, DBMaster makes checkpoints automatically when
DBMaster runs out of free journal space in NON-BACKUP mode or when an incremental backup is
performed in BACKUP mode. To increase the time interval between automatic checkpoints, you
can enlarge your journal size.

2.4.3.7 Re-monitor the Cache Buffer Performance
After tuning your system with the above methods, you should re-monitor the cache buffer
performance using the following procedure:

 run the database for a period of time to ensure the information in the database is in a
stable state.

 reset the statistics values in the SYSINFO system table with the following SQL statement.
dmSQL> set SYSINFO clear;

 run the database for a period time.

 get the read/write counter from the SYSINFO table and check the hit ratio.

2.4.4 TUNING JOURNAL BUFFERS
The journal buffers store the most recently used journal blocks. With enough journal buffers, the
time required to write journal blocks to disk when updating data and reading journal blocks from
disk when rolling back transactions is reduced.

If you seldom run a long transaction that modifies (inserts, deletes, updates) many records, you
may skip this section. Otherwise, should determine whether there are sufficient journal buffers for
the system. The optimum number of journal buffers is the sum of journal blocks needed by the
longest running transactions at the same time.

To estimate the number of journal buffers, perform the following:

1. Make sure there is only one active user in the database.

2. Clear the counters in the SYSINFO table with the following command:
dmSQL> set SYSINFO clear;

3. Run the transaction that will update the most records.

4. Run the following SQL statement to determine the number of used journal blocks:
dmSQL> select INFO, VALUE from SYSINFO where INFO = 'NUM_JNL_BLK_WRITE';
 INFO VALUE
 NUM_JNL_BLK_WRITE 626
 1 rows selected

NOTE: NUM_JNL_BLK_WRITE—the blocks used in this transaction. The journal block size used
in this example is 512 bytes. In the above example, you need approximately 41 journal buffer
pages (1 page=4KB).

Another measurement that can be used to determine the journal buffer utilization is the journal
buffer flush rate. The journal buffer flush rate is the percentage of journal buffers flushed to disk

Performance Tuning Guide

 Performance Tuning Guide

18

when DBMaster writes to the journal. If the journal buffer flush rate is too high (for example, more
than 50%), increase the number of journal buffers.

2.4.5 TUNING THE SYSTEM CONTROL AREA (SCA)
Cache buffers and some control blocks, such as session and transaction information, have a fixed
size, and are pre-allocated from the DCCA when a database is started. However, some
concurrency control blocks are allocated dynamically from the DCCA while the database is running,
their size is specified by DB_ScaSz.

If a database application gets the error message “database request shared memory exceeds
database startup setting”, it means that DBMaster cannot dynamically allocate memory from the
SCA area. Usually, this error is due to a long transaction using too many locks. If this situation
happens often, solve it with the methods illustrated below.

2.4.5.1 Avoid Long Transactions
A long transaction will occupy many lock control blocks and journal blocks. If there is a long
transaction in progress when the above error occurs, analyze whether the transaction can be
divided into multiple small transactions.

2.4.5.2 Avoid Excessive Locks on Large Tables
Selecting many records from a large table using an index scan requires many lock resources. To
decrease the amount of lock resources used by the transaction, escalate the lock mode before
performing the table scan.

For example, if the table's default lock mode is row, escalate the default lock mode to page or table.
Although this will reduce the resources used, it will also sacrifice concurrency to some degree.

2.4.5.3 Increase the SCA Size
If both of the above conditions have not occurred, increase the size of the SCA. Reset the value of
DB_ScaSz in dmconfig.ini to a larger value and then restart the database.

2.4.6 TUNING THE CATALOG CACHE
DBMaster stores the catalog cache in the SCA. If schema objects are seldom modified, turn on the
data dictionary turbo mode by setting DB_Turbo=1 in the dmconfig.ini file. When turbo mode is
on, DBMaster will extend the lifetime of the catalog cache. This can improve the performance of
on-line transaction processing (OLTP) programs.

2.5 Tuning Concurrent Processing
Resource contention occurs in a multi-user database system when more than one process tries to
access the same database resources simultaneously. This can also lead to a situation known as a
deadlock, which occurs when two or more processes wait for each other. Resource contention
causes processes to wait for access to a database resource, reducing system performance.

DBMaster provides the following methods to detect and reduce resource contention:

 Reducing lock contention.

 Limiting the number of processes.

2.5.1 REDUCING LOCK CONTENTION
When accessing data in a database, DBMaster processes will lock the target objects (records,
pages, tables) automatically. When two processes want to lock the same object, one must wait. If

Performance Tuning Guide

 Performance Tuning Guide

19

more than two processes wait for the other processes to release the lock, a deadlock occurs.
When a deadlock occurs, DBMaster will sacrifice the last transaction that helped cause the
deadlock by rolling it back. Deadlock reduces system performance. Monitor lock statistics to avoid
a deadlock in DBMaster.

To view deadlock statistics:
dmSQL> select INFO, VALUE from SYSINFO where INFO = 'NUM_LOCK_REQUEST'
 2> or INFO = 'NUM_DEADLOCK'

 3> or INFO = 'NUM_STARTED_TRANX';

 INFO VALUE
 NUM_STARTED_TRANX 33

 NUM_LOCK_REQUEST 73

 NUM_DEADLOCK 0

 3 rows selected

NUM_LOCK_REQUEST—the number of times a lock was requested.

NUM_DEADLOCK—the number of times deadlock occurred.

NUM_STARTED_TRANX—the number of transactions that have been issued.

In the above example, on average one transaction is in deadlock per 51 (9287/181) transactions
and one transaction requests approximately 83 (772967/9287) locks.

If the deadlock frequency is high, examine the schema design, SQL statements, and applications.
Setting the table default lock mode lower, such as ROW lock, could reduce the lock contention, but
it will require more lock resources.

Another method is to use the browse mode to read a table on a long query if the data does not
need to remain consistent after the point in time that it was retrieved. This is useful when viewing
the data or performing calculations using the data while not performing any updates. It provides a
snapshot of the requested data at a particular point in time, but with the benefit of increased
concurrency and fewer lock resources consumed, because locks are freed as soon as the data is
read.

2.5.2 LIMITING THE NUMBER OF PROCESSES
DBMaster allows up to 1200 simultaneous session connections to a server. If server resources,
(such as memory, CPU power) are not sufficient, limit the maximum number of connections to
avoid resource contention. The configuration parameter DB_MaxCo affects the maximum number
of connections in the database.

When a database is initially created, the journal file is formatted for a specific number of
connections. The journal file needs to be able to preserve a transaction information array for each
connection. The number of connections available according to the journal file is also known as the
hard connection number. This value is determined by the value of DB_MaxCo when the database
is created. The hard connection number has a minimum value of 240, a maximum value of 1200,
and must be a multiple of 40. If DB_MaxCo is set to a value that is not a multiple of 40, then the
hard connection number is rounded up to a value that is a multiple of 40. The hard connection
number is a limitation of the journal file, therefore, to change it the database must be started in new
journal mode.

The hard connection number does not directly affect the size of the DCCA. This is determined by a
value known as the soft connection number. The soft connection number is exactly the value of
DB_MaxCo. The soft connection number determines the number of connections that the DCCA
will support, and consequently the memory usage of the DCCA. The soft connection may be any
value less than or equal to the hard connection value. To change the soft connection number,
restart the database normally after changing DB_MaxCo.

Performance Tuning Guide

 Performance Tuning Guide

20

Example 1:

In the following configuration file, the hard connection number for DB1 is 240. For database DB2, it
is 1120.

[DB1]
DB_MaxCo = 50 ;; the hard connection number = 240
 ;; the soft connection number = 50
[DB2]
DB_MaxCo = 1100 ;; the hard connection number is 1120
 ;; the soft connection number = 1100

Example 2:

After starting the database successfully, the new hard connection number for DB1 becomes 280.
[DB1]
DB_SMode = 2 ;; startup with new journal file
DB_MaxCo = 280 ;; the new hard connection number = 280

Example 3:

Assuming DB2 has already been created as in example 1, the following entry in the dmconfig.ini
file will result in a hard connection number of 1120 and a soft connection number of 20.

[DB2]
DB_SMode = 1 ;; normal start
DB_MaxCo = 20 ;; the new soft connection number = 20

Performance Tuning Guide

 Performance Tuning Guide

21

3. Database Model Design

Users should use advanced functions which provided by database as more as possible, rather
than implement lots of data disposal process function in application program. You can take some
data disposal process out of application program, then use the functions provided by database to
carry out purpose.

3.1 Tablespace
Estimation by the capacity of database, you must assign enough disk capacity in advance, in case
of high frequency increasing capacity automatically when the capacity of database is not enough.

3.2 Table
 According to the data capacity of table, you‘d better put the bigger table independently into a
single Tablespace, rather than put bigger tables and small ones into the same Tablespace.

3.3 Index
When creating index, you should select the column which most frequently used rather than the
least frequently used one, that will improve performance. The reason is that index will improve
efficiency when executing the operation scan whereas it will lower the whole efficiency when
executing the operation delete and update to maintain index page.

3.4 Constraint
About the constrained disposal process when input data and maintain, please use such functions
provided by database as Primary key, Foreign key, default, check etc. That not only enhance the
develop efficiency, but also enhance the performance of whole system.

3.5 Trigger
 About some cascade processing such as maintaining the consistency of the data or others, please
 use the Trigger to realize. That can not only improve the speed of software development, but also
 improve the Performance of the system.

3.6 Stored command
About the SQL command that use frequently in the system, please use Stored Command to
replace. That should improve the Performance.

Performance Tuning Guide

 Performance Tuning Guide

22

3.7 Stored procedure
About the logical processing which is complex, please use the Stored Procedure to realize.That
should improve the Performance of the system.

Performance Tuning Guide

 Performance Tuning Guide

23

4. Setting DBMaker Daemon

4.1 I/O and Checkpoint

4.1.1 I/O DAEMON

DBMaster has an I/O daemon to periodically write dirty pages from the least recently used page
buffers to disk. This helps reduce the overhead incurred when swapping data pages into the page
buffers, and increases performance. One configuration parameter in the dmconfig.ini file is used
to control the I/O daemon.

DB_IOSvr—enables and disables the I/O daemon. Setting this keyword to a value of 1 enables the
I/O daemon, and setting it to a value of 0 disables the I/O daemon.

Example

A typical excerpt from the dmconfig.ini file:
[MYDB]

...

DB_IOSVR = 1

MYDB database has 400 (DB_NBufs) page buffers in DCCA. Every 10 minutes, the I/O daemon
will perform the following steps:

 Scan the least recently used page buffers.

 Collect the dirty pages during scan processing.

 Write these collected dirty pages to disk.

4.1.2 CHECKPOINT DAEMON

DBMaster has a checkpoint daemon (based on the I/O daemon) that periodically takes a
checkpoint. This helps reduce the time spent waiting for a checkpoint that occurs during a
command, when a journal is full, or when starting or shutting down a database. The checkpoint
daemon is actually a sub-function of the I/O daemon, which can perform I/O alone, checkpoints
alone, or both together. There is one keyword for use in the dmconfig.ini file, which is used to
control the checkpoint daemon.

DB_ChTim—specifies the first time a checkpoint daemon should run. The format for this keyword
is yyyy/mm/dd hh:mm:ss.

To turn on the checkpoint daemon, turn on the I/O daemon using the DB_IOSrv keyword. If the
I/O daemon is activated without setting DB_ChTim, it will automatically take a checkpoint every
hour by default after the database starts successfully.

Example:

To start checkpoint daemon and stop the I/O daemon in the dmconfig.ini:

Performance Tuning Guide

 Performance Tuning Guide

24

[MYDB]

...

DB_IOSVR = 1 ; may enable I/O or checkpoint daemon

DB_CHTIM = 2000/1/1 00:00:00 ; the first time the daemon should run

In fact, the I/O and checkpoint daemon will expend some I/O resources. After starting the database
server, any error messages generated by the I/O and checkpoint daemon are written to the file
ERROR.LOG.

DB_ChItv (d-hh:mm:ss) — the time interval of Checkpoint daemon, the default value is 1 hour.

4.2 Update Statistics
User can adjust the execution time of update statistics as need. Statistics are automatically
updated daily at 3:00 AM by default. If DBMaker is handling other busy transactions at same time,
Database will halt the behavior of update statistics, then execute the update statistics again till
03:00 AM tomorrow. If some other busy transactions will hold more resources daily at 03:00 AM.
Then the update statistics behavior will not be executed in the course of nature. In this way,
statistics data will be out of date and can’t reflect the updated status of Database, then can’t
achieve the purpose of according to ‘cost’ to optimize SQL. Therefore, user must adjust the other
task execution time properly to execute the update statistics.

DB_StSvr

This keyword is used to activate the auto update statistics server. A value of 1 indicates that the
server is started. A value of 0 indicates that the server is not running. If the auto update statistics
server is activated, it will recalculate database statistics daily at 3:00 AM.

4.3 Backup Server
User can adjust the execution time of backup as need. Adjust principles is to arrange the backup
process to the time of lower load, not to dispute server resources with other importance
transactions. Thus avoid the opportunity of deadlock reduces system performance.

Backup Schedule
DB_BKSVR—This keyword specifies whether or not a backup server will be started when a
database is started. Setting this value to 1 will start a backup server for that database. The default
value is 0.

DB_BKFUL—This keyword specifies the percentage that all journal files must be filled to before
the backup server is triggered to do an incremental backup. Setting this value to 0 will trigger the
backup server whenever a journal file is full. Setting this value between 50-100 will trigger the
backup server whenever the total space used in all of journal files exceeds the specified
percentage. For example, if there are two journal files of 500 journal blocks each and DB_BKFUL
is set to 80, then after every 500x2x0.8=800 blocks are used, the backup server will automatically
do an incremental backup. The default value is 0.

DB_BKITV— This keyword specifies the backup time interval. Please refer to DB_BkTim
described later, no backup schedule if DB_BkItv is not set.

Performance Tuning Guide

 Performance Tuning Guide

25

DB_BKTIM— This keyword along with DB_BkItv specifies the schedule of the backup server.
DB_BkTim specifies the first time a backup server will perform an incremental backup.
Incremental backup will then be performed after every time interval specified in DB_BkItv, no
backup schedule if DB_BkTim is not set.

4.4 Replication Server
User can adjust the execution time of replication as need, adjust principles is to arrange the
replication to the time of lower load, not to dispute server resources with other importance
transactions, and achieve replication actions using ATR as soon as possible, thus can enhance
system performance efficiency.

RP_Btime : Starting time of replication

RP_Iterv : Schedule for the database replication

4.5 Auto-Commit mode
When auto-commit mode is on, DBMaster will automatically issue a commit transaction after each
SQL command is successfully executed.So it will spend too much time to I/O. The performance will
be poor.

We can understand this factor as following example:

For example, when we insert 10000 ordinary data into table,

(1) Insert into DBMaster and set autocommit on
Private Sub Command1_Click()
 Dim objConn As New ADODB.Connection
 Dim strSQL As String
 Dim time1 As String
 Dim time2 As String
 time1 = Now
 objConn.Open ("DSN=test;UID=sysadm;PWD=;")
 For i = 1 To 10000
 DoEvents
 strSQL = "insert into test_table values(1)"
 objConn.Execute strSQL
 Next
 objConn.Close
 time2 = Now
 MsgBox time1 & "--->" & time2
 Set objConn = Nothing
End Sub

(2) Insert into DBMaster and set autocommit off
Private Sub Command2_Click ()
 Dim objConn As New ADODB.Connection
 Dim strSQL As String
 Dim time1 As String
 Dim time2 As String
 time1 = Now

Performance Tuning Guide

 Performance Tuning Guide

26

 objConn.Open ("DSN=aa;UID=sysadm; PWD=;")
 objConn.BeginTrans
 For i = 1 To 10000
 DoEvents
 strSQL = "insert into test_table values(1)"
 objConn.Execute strSQL
 Next
 objConn.CommitTrans
 objConn.Close
 time2 = Now
 MsgBox time1 & "--->" & time2
 Set objConn = Nothing
End Sub

Following this example, we can see the result in this chart:

 DBMaster4.1 (second)

 Default Set autocommit on 11

 Tune Set autocommit off 6

Auto-commit is the most important factor when you use DBMaster first time. To understand auto-
commit better will make great improve on performance of DBMaster.

Performance Tuning Guide

 Performance Tuning Guide

27

5. Query Optimization

In this chapter, we will introduce the query optimizer of DBMaster. The query optimizer will make a
query of SQL command much faster and efficient by means of choosing the best execution method
internally. The contents in this chapter involve the following topics:

 What is query optimization? Why do we need it? When you understand the goal of query
optimization, you will find the role it plays in a SQL query.

 What is Query Execution Plan (QEP)? How to read a QEP? When you know the QEP, you
will learn how DBMaster executes a SQL query command as well.

 How does the query optimizer operate? When you understand the way the query optimizer
searches for a QEP, you can help it to find a more efficient QEP by rewriting an
equivalent SQL query instead of the original one.

 What is the cost function? When you know how much time it takes for an operation in QEP,
you will learn how the query optimizer chooses a proper operation. Moreover, you can
use some commands provided by DBMaster to help the query optimizer find a better
operation.

 What are the statistics values? Where has these values been used? When you
understand the usage of statistics values of query optimization, you will see the reason
why query optimizer chooses such a execution plan.

 How to accelerate the execution speed of a query? When you know how to write an
efficient query, you can enhance the execution efficiency by rewriting the query command
by yourself.

5.1 Indexes
Build indexes on columns in a table make DBMaster finds all required data conveniently. If you
built the index reasonable, it will improve the performance.

If you haven’t built any index on columns in a table, it will use table scan to acquire rows from a
table row by row.

For instance, if a user wants to find all rows in a table to match the condition age > 50, it will
receive each row from each data page, and then compare each row with the condition to retrieve
the desired one.

Like the figure shows:

Data pages

Performance Tuning Guide

 Performance Tuning Guide

28

But if you build indexes on columns in a table, it will use reference index to scan all required data
and get them. The method used in DBMaster is a B-tree, and the precondition to use an index is to
build an index on the column with predicate.

The last instance, if the user build index on age columns, like that:

.......

root

data pages

Index Non-Leaf Level

Index Leaf Level

5.2 Statistics Values are Outdated
The statistics value is very important if a table is read frequently. It represents the amount and
distribution of data for a table. They provide the information for the cost functions to find the best
access plan.

The wrong statistics may cause DBMaster optimizer to use an inefficient plan for SQL statement. If
other users insert large amounts of data into a database after the last time you have updated the
statistics values, update the values again.

5.3 What is query optimization?

For the commands of Data Manipulation Language (DML) such like SELECT, INSERT, DELETE,
and UPDATE, it is a very important stage of query optimization. The reason is that DBMaster may
have several execution methods for one SQL query. The goal of query optimization of DBMaster, is
to find the most efficient and best execution plan among all of those ones. The main job of the
query optimizer is to decide each operation, and the order it operates. To do this, we need to find
the most efficient operation from the following basic ones:

 Read the data from a table -- it can be read by sequential scan or by index scan.

 Join tables -- tables can be joined by nested loop join or by sort merge join.

 Sort -- when does a sort be needed? Before some operation or after it? Or can we avoid
sorting by some alternative way?

Besides to estimate the number of left rows for a table being operated, the query optimizer needs
to consider more factors, in order to find the best choices among so many execution methods.

Performance Tuning Guide

 Performance Tuning Guide

29

There is one more point we want to mention here, that is, it is usually the case that the database
user gets familiar with the data characteristics rather than query optimizer. In some condition, a
database user can find a more efficient way to execute a query than query optimizer.

5.4 Query Execution Plan (QEP)
Query optimizer of DBMaster will estimate all possible execution plans; for each plan, compute the
number of rows, how many disk page I/O being needed, and CPU time it takes for a single table.
From the above factors mentioned, find a plan with the lowest cost.

On the other hand, query optimizer must decide a query execution plan. A query execution plan is
composed of several operation units, and it will choose the best one among all the possible
combinations of these operations.

When DBMaster seeks for a query execution plan, it will consider some major operation units:

 Table scan -- or called sequential scan, which means receiving each row from data pages
of database by sequential order.

 Index scan -- the order to retrieve data is referenced by the address of data page that is
pointed by the index page.

 Nested join -- compare two or more tables row by row, to achieve the goal of merging
these tables.

 Merge join -- sort two tables respectively, then compare these two ordered tables row by
row, to achieve the goal of merging these tables.

 Sort -- executes sort.

 Temporary table -- in the process of query execution, establish the temporary table.

Let's see the following example
dmSQL> SELECT * FROM t1, t2 WHERE t2.c2=3 AND t1.c1=t2.c1 ORDER BY t1.c2;

Query Execution Plan 1
sort t1.c2

 merge join t1.c1=t2.c1

 index scan t1 on idx1(c1)

 sort t2.c1

 table scan t2, filter t2.c2=3

Query Execution Plan 2
nested join

 index scan t1 on idx2(c2)

 table scan t2, filter t2.c2=3 and t1.c1=t2.c1

5.5 How Does the Optimizer Operate

When the optimizer of DBMaster performs the optimization process to a query, it will follow some
rules of the following input information:

 Analyze the query, then cut the where predicate into several factors.

 Search all possible execution sequence and join sequence.

 Decide whether using the nested join or sort merge join.

Performance Tuning Guide

 Performance Tuning Guide

30

 Decide whether using table scan or index scan.

 Decide how to sort.

5.5.1 INPUT OF OPTIMIZER

The critical factor whether the optimizer will be successful or not is the precision to estimation.
However, there is only finite information for the optimizer. Generally speaking, the estimate time
needed by the optimizer occupies only a small part compared with the real execution time. The
system catalog tables provide all information that used by the optimizer.

All the information needed by the optimizer come from system catalog tables. To make sure that
these information are useful, not out of date, users must use command UPDATE STATISTICS
(Please refer to section 5, Statistics). Here we list all the used data in system catalog tables:

 Number of rows in a table

 Number of data pages used by a table

 Average bytes of a row for a table

 Average bytes that a column uses

 The distinct value of each index column

 The second maximum and minimum value for each column, the reason that we do not
choose the maximum and minimum value is to avoid that some special large and small
value will affect the precision

 Number of index scan pages occupied by the B-tree index

 Number of level (height) of the B-tree index

 Number of leaf pages of the B-tree index

 Cluster count of the B-tree index

The premise that the optimizer uses the information is that we assume that the distribution of data
value is uniform. If the distribution of data is skew, and not uniform, the optimizer will choose a
worse plan.

5.5.2 FACTORS

The first job of the optimizer is to examine all expressions in the where predicate. If we decompose
these expressions into several small expressions independent with each other, then we call these
small expressions to be factors.

Example 1
dmSQL> select * from t1, t2 where t1.c1=t2.c1 and t1.c2=3;

According to the where predicate, the optimizer will decompose the predicate into two factors:
"t1.c1=t2.c1" and "t1.c2=3".

Example 2
dmSQL> select * from t1, t2 where t1.c1=t2.c1 or t1.c1=3;

According to the where predicate, there is only one factor: "t1.c1=t2.c1 or t1.c2=3".

Now let's see the example 3,
dmSQL> select * from t1, t2 where t1.c1=t2.c1 and (t1.c2=3 or t2.c2=5);

According to the where predicate, there are two factors: "t1.c1=t2.c1", and "t1.c2=3 or t2.c2=5".

Performance Tuning Guide

 Performance Tuning Guide

31

Example 4
dmSQL> select * from t1, t2 where t1.c1=t2.c1 and t1.c2=3 or t2.c2=5;

According to the where predicate, there is only one factor: "t1.c1=t2.c1 and t1.c2=3 or t2.c2=5".

From the above example, we can find easily that when the expression contains binary operation
"and", then it can be divided into different factors. But when it contains binary operation "or", the
decomposition is not allowed.

Besides to find the factors, the optimizer needs to estimate the selectivity of each factor. The
selectivity is the ratio of data filtered by each factor, its value is between 0 and 1. For instance,
there are 100 rows in table t1, if there are 5 rows for query

dmSQL> select * from t1 where t1.c1=3;

then the selectivity of factor "t1.c1=3" is 5/100, that is 0.05.

If there are more than one factor in an expression, then the selectivity of this expression is the
product of these factors because they are independent with each other.

5.5.3 JOIN SEQUENCE

The join sequence is the access order of the original table to be merged. Different join sequence
will produce different execution sequence and different execution time. But no matter how we
execute, we will always the correct result after execution.

Example 1
dmSQL> select * from t1, t2 where t1.c1=t2.c1;

Query Execution Plan 1
nested join

 table scan t1

 table scan t2, filter t1.c1=t2.c1

Query Execution Plan 2
nested join

 table scan t2

 index scan t1 on t1(c1), filter t1.c1=t2.c1

Example 2
dmSQL> select * from t1, t2, t3 where t1.c1=t2.c1 and t2.c1=t3.c1;

From this query, we can see that there will be 3! (=6) join sequences. All these possible sequences
are:

(t1, t2), t3

(t1, t3), t2

(t2, t1), t3

(t2, t3), t1

(t3, t1), t2

(t3, t2), t1

DBMaster will search all these join sequences, then compute their cost, and choose the best one.

5.5.4 NESTED JOIN AND MERGE JOIN

There are two join method supported by DBMaster: they are nested join and merge join.

Performance Tuning Guide

 Performance Tuning Guide

32

 Nested join uses nested loop over two layers to accomplish the join purpose. By the
analysis of algorithm, its time complexity is n2.

 Merge join will sort two tables respectively in advance, then merge of these two tables with
the sorted order row by row. The time complexity of sort is n x log(n). For the data that
has already sorted, the time complexity to perform join is n. Sort merge join can only be
used for equal join.

From the view of time complexity, merge join is better than nested join. But there are still
exceptions, for example, the difference of the number of rows of two tables are very large.

No matter what, the optimizer will decide the way to perform join by cost functions and statistics
values.

5.5.5 TABLE SCAN AND INDEX SCAN

Table scan means to achieve all rows from a table sequentially row by row. For instance, if a user
wants to find all rows in a table that matches the condition age > 50, then it will receive each row
from each data page, then compare each row with the matched condition to get the desired one.

Another scan type is called index scan, which means to build the index on some columns of a table,
then find all needed data by the reference of index. The index method used by DBMaster is B-tree,
and the precondition to use an index scan is to build an index on the column we want to use as the
predicate. Again, if a user wants to find all data from a table that matches the condition age > 50,
and there exists an index built on the column age. At this time, DBMaster will filter the data by the
index, then read desired data from the data page reference by an index, if it uses index scan.

It is determined by cost functions to use table scan or index scan.

5.5.6 SORT

Another important question of query optimizer is to determine how to sort: before join or after it, or
try to avoid sorting.

We use the following example to illustrate it.
DmSQL> select * from t1, t2 where t1.c1=t2.c1 order by t1.c2;

Query Execution Plan 1
sort t1.c2

 merge join t1.c1=t2.c1

 index scan t1 on idx1(c1)

 sort t2.c1

 table scan t2

Query Execution Plan 2
 nested join

 index scan t1 on idx2(c2)

 table scan t2, filter t1.c1=t2.c1

In QEP1, the optimizer performs sorting after merging, and in QEP2, it will perform sorting before
merging. It is determined by cost functions that which is better.

5.6 Time Cost of a Query

Performance Tuning Guide

 Performance Tuning Guide

33

For a database, there are two major parts to perform a query: time to read data from disk, and time
to compare the column values. The former takes more time than the latter.

5.6.1 OPERATION COST IN MEMORY (CPU COST)

The database server must process data in memory. It has to read a row into memory, then use
filter expression to test. On the other hand, it needs to load data from two tables respectively into
memory first, then test their join condition. Besides, the database server also has to collect data of
the selected columns from each row.

Most motions in the memory process runs fast. According to the differences of CPUs, database
server can handle hundreds, even thousands of comparison for a second. Thus it usually takes a
small part of time during the whole query execution for the process in memory.

However, it still takes more time for two types of operations. One of them is sorting, and another is
using wild cards in keywords such as “like” and “match”.

5.6.2 PROCESSION COST IN DISK ACCESS (I/O COST)

It takes much more time to read a row from the disk than to check a row in memory, so one of the
main purposes of the optimizer is to reduce the reading amount from the disk.

The basic unit to process disk storage of database server is called page. A page is blocks
clustered in a disk spaces, and the size of a page is related with the database server. The size is
4096 bytes for DBMaster. The capacity to contain how many rows in a page is related with the size
of a row. There are 10 to 100 rows in a data page in a common case. Besides the entity of an
index page contains a key value and a four-byte pointer, therefore there are usually 100 to 1000
entries in an index page.

The database server needs a memory space to store the copies of disk pages read from the disk
for processing. Because of the limitation of memory space, some of these pages might be reread in
some condition. We call such a memory space to be page buffer. If the needed page happens to
be in the page buffer, then the server will not read the row from the disk anymore, and it will rise
the performance for this situation. The size of a disk page and the number of page buffer is
decided by Database server and the operating system.

The real cost to read a page is variable and hard to be estimated precisely. It is the combination of
the following factors:

 Buffers – it is possible that the target page to be in page buffer. The access cost can be
almost omitted in this condition.

 Contention – If there are more than one application programs to use the hardware devices
such as disk, the request of database server will be delayed at this time.

 Seek time – this is the most time-consuming motion in a disk. It means the elapsed time to
move the read/write head to the location of the desired data. It is affected by the speed of
disk, and the initial position of disk read/write head. The variation is also large of seek
time.

 Latency time – or called rotation delay time. It is related with the speed of the disk, and
location of read/write head.

Performance Tuning Guide

 Performance Tuning Guide

34

5.6.3 COST OF TABLE SCAN

It is the spent time to scan all data from a table. No matter whether there are predicates in the
query or not, it needs to compare all data in the pages. Thus the cost of table scan equals to the
number of data pages.

5.6.4 COST OF INDEX SCAN

Index scan means to read data through B-tree index pages. There are two kinds of index scan: one
will read data page referenced by B-tree, and the other will read data directly from index leaf, not
data page. We call the latter leaf scan.

For example: suppose there is a table t1 with two columns c1 and c2. There is an index built on c1.
When we want to execute the following command

 dmSQL> select * from t1 where c1 > 0;

We will use index scan, but read data from the data from data pages referenced by index page.

Another command
 dmSQL> select c1 from t1 where c1 > 0;

We can use leaf scan, and there is no need to read data from the data pages because the leaf
pages contain all the desired data.

When we read all data, the cost of index scan is:

 cost = B tree level I/O + no. of leaf page I/O + cluster count

When we read all data but only need leaf scan, the cost of index scan is:

 cost = B tree level I/O + no. of leaf page I/O

When we read a row, the cost of index scan is:

 cost = B tree level I/O + one leaf page I/O + one data page I/O

When we read a row but only need leaf scan, the cost of index scan is:

 cost = B tree level I/O + one leaf page I/O

When we read partial data, the cost of index scan is:

 cost = B tree level I/O + (no. of leaf page x S) + (cluster count x S)

 where S means selectivity.

5.6.5 COST OF SORT

Except reading data from disk into memory, it spends more time on the computing in memory for
sorting. The computing cost is proportional to c x w x n x log2(n), where c is the number of
columns being sorted, w is the bytes of sorted key, and n is the number of rows being sorted.

5.6.6 COST OF NESTED JOIN

It will need more than two loops to access data pages for nested join. To the nested join, the outer
table is different from the inner one. Generally, the cost of nested join is

 outer table I/O + inner table I/O x number of rows in outer table

Performance Tuning Guide

 Performance Tuning Guide

35

5.6.7 COST OF MERGE JOIN

It is necessary to sort tables before performing merge join. Suppose we have already sorted two
tables needed to be merged on the merge keys, then the cost of merge join is the sum of I/O of
these two tables. If we do not perform sorting on merge keys, then we still need to add the cost of
sorting.

5.7 Statistics

Statistics represents the amount and distribution of data of a table. It provides the information to
cost functions to find the best access plan. But the statistics will be out of date as the data in a
table being inserted, deleted, or updated. We can execute command “update statistics” to update
statistics values to find real statistics at this time, to enhance the efficiency of a query.

5.7.1 TYPES OF STATISTICS

DBMaster will collect the following statistics.

5.7.1.1 For a table
 nPg – number of data pages

 nRow – number of data rows

 avLen – average bytes of a row

5.7.1.2 For a column
 distVal – number of distinct values

 avLen – average bytes of each column

 loVal – the second minimum value of a column

 hiVal – the second maximum value of a column

5.7.1.3 For an index
 nPg – number of index pages

 nLevel – number of levels of an index tree

 nLeaf – number of leaves of an index tree

 distKey – number of distinct keys

 distC1 – number of distinct keys of the first index column

 distC2 – number of distinct keys of the first two index columns

 distC3 – number of distinct keys of the first three index columns

 nPgKey – number of index pages for each key

 cCount – number of cluster count, which means the number of data pages access through
an index

Performance Tuning Guide

 Performance Tuning Guide

36

5.7.2 SYNTAX OF UPDATE STATISTICS

UPDATE STATISTICS
object_list SAMPLE = number

The object_list Clause

column_name

,
COLUMN

index_name

,
INDEXTABLE

()

table_name

,

Figure: Syntax for the UPDATE STATISTICS Statement

Where

 owner represents the table owner

 table represents the name of a table

 col1, col2 represent the name of columns

 idx1, idx2 represent the name if indices

 SAMPLE means the sampling rate, it is an integer between 1 and 100.

For instance,
dmSQL> UPDATE STATISTICS;

This command will update statistics values of all tables, including all columns, indices, and system
tables. The default value of sampling rate is 100.

dmSQL> UPDATE STATISTICS sample=30;

This command will update statistics values of all tables, including all columns, indices, and system
tables. The default value of sampling rate is 30.

dmSQL> UPDATE STATISTICS jeff.emp;

This command will update the statistics values of table jeff.emp.
dmSQL> UPDATE STATISTICS jeff.emp (TABLE COLUMN(name, age) INDEX(idx1));

This command will only update statistics values of columns name, age and index idx1, of table
jeff.emp.

dmSQL> update statistics jeff.emp, jeff.dept;

This command will update statistics values of tables jeff.emp, and jeff.dept.

On the other hand, DBMaster provides setup of date to update statistics automatically. Thus the
database server can update statistics by some prefix date. Please refer to chapter 7 “Managing
Schema Objects” for more information about updating statistics automatically.

5.7.3 LOAD AND UNLOAD STATISTICS

Users can use command “unload statistics” to dump the statistics values to an external text file.
Besides, users can also use command “load statistics” to read statistics values to database from
an external text file.

dmSQL> unload statistics to file1; // dump statistics from database to file1

dmSQL> load statistics from file1; // read statistics from external text file file1

Performance Tuning Guide

 Performance Tuning Guide

37

An experienced user can enhance the efficiency of query by means of modifying files with statistics,
and input it into database.

The following case gives the contents of the external file generated from “unload statistics”.
DBname = TESTDB

TBowner = jeff

TBname = emp

TBpage = 5

TBrows = 30

Tbavlen = 50

COname = age

COtype = INTEGER

COdist = 12

COavlen = 4

COlow = 25

COhigh = 42

IXname = idxage

IXpages = 5

IXlevel = 2

IXleaf = 3

IXdist = 12

IXdistC1 = 12

IXdistC2 = 12

IXdistC3 = 12

IXpgkey = 8

IXcount = 7

5.8 Accelerate the Execution of Query

Generally speaking, users can accelerate the execution of query by the following modifications:

 Reading less data rows.

 Avoid sorting, or sort on less data rows, or sort on less data columns.

 Using sequential way to read data.

It is not so intuitive to achieve the above goals. It depends on the design of application programs
and database. We will state some techniques and its limitations under some conditions.

5.8.1 DATA MODEL

The definition of data model includes all tables, views, and indices on the database, especially the
existence of indices. It describes whether an index be used in the conditions such like join, sort,
and views or not.

Performance Tuning Guide

 Performance Tuning Guide

38

5.8.2 QUERY PLAN

You can use command “set dump plan on” to check the query execution plan of DBMaster. We list
some characteristics of execution plan.

 Index: check the output data, to see whether an index been used or not. If so, how to use
it?

 Filter: check the predicate (factors), to see whether the predicate can filter many data or
not.

 Query: check query at final, to see whether the access plan is the best or not.

For example, we can use the following command to see the execution plan.
dmSQL> set dump plan on;

5.8.3 CHECK THE INDEX

Check whether there exist proper indices on query columns or not. You can use methods
mentioned in the following sections to approve the query efficiency.

5.8.4 ADJUST FILTER COLUMNS

It only uses a small part of information source for an efficient query. Users can use where predicate
in select command to control the amount of output information. This is called filter of data.

Here we list some methods to advance where predicate:

5.8.4.1 Avoiding Correlated Sub-queries
Correlated sub-queries means that there is a column appeared in main query and the sub-query in
the where predicate. It is different of the result of a sub-query for each data row in the main query.
To a sub-query, if the data of columns of each row are different from the one in previous row, then
it is equivalent to execute a new query for each row gain from the main query.

If you have found a time-consuming sub-query, first you can do is to check whether it is a
correlated sub-query or not. If so, rewrite the query to avoid this condition. If it is not easy to rewrite
the query, try other ways to reduce the number of data rows.

5.8.4.2 Avoiding Difficult Regular Expressions
Key word “like” provides the comparison of wild card (we call it the regular expression). When we
use wild card at the beginning of expression, database server will check each row because it
cannot use index to filter any rows. This will make DBMaster sequentially access and check every
row in a table.

For example:
dmSQL> select * from emp where name like ‘*st’;

5.8.5 RE-CONSIDER THE QUERY

When you understand what a query really does, you can find another equivalent query to get the
same result. We give some suggestions for users to rewrite an efficient query.

 Rewrite joins by views.

 Avoid or reduce sorting.

 Avoid access large table sequentially.

Performance Tuning Guide

 Performance Tuning Guide

39

 Use union to avoid sequentially access.

5.8.6 USE TEMPORARY TABLE TO ACCELERATE QUERY

It is useful to create a temporary, ordered table to accelerate query. It also can help you to avoid
sorting operations on multiple columns, and simplify the operation of optimizer. You can

 Use a temporary table to avoid sorting on multiple columns.

 Replace sorting on non-sequential access.

5.9 Syntax-Based Query Optimizer

You can now manually specify the type of scan to use in a query, and which index to use in an
index scan. In addition, the DBMaster query optimizer now automatically determines the most
efficient type of scan to use, even if you have not recently updated database statistics. There are
five different cases where you can specify the type of index you want to use.

5.9.1 FORCE INDEX SCAN

You can force an index scan with the following syntax:
tablename (INDEX [=] idxname [ASC|DESC])

In addition to specifying an index name to scan, you can also specify the value 0 to force a table
scan, or the value 1 to force a primary key index scan.

The following example forces a table scan.
SELECT * FROM t1 (INDEX=0)

The following example forces an index scan on the primary key.
SELECT * FROM t1 (INDEX=1)

The following example forces an index scan on the index idx1.
SELECT * FROM t1 (INDEX idx1)

The following example allows the query optimizer to decide what type of scan to use on table t1,
but forces an index scan on the index idx1 for table t2.

SELECT * FROM t1, t2 (INDEX idx1)

5.9.2 FORCE INDEX SCAN WITH ALIAS

You can force an index scan and provide an alias for the table with the following syntax:
tablename (INDEX [=] idxname) aliasname

The following example forces an index scan on the index idx1, and provides an alias for the table.
SELECT * FROM t1 (INDEX idx1) a, t1 b WHERE a.c1 = b.c1

5.9.3 FORCE INDEX SCAN WITH SYNONYM

You can force an index scan when using a synonym with the following syntax:
synonymname (INDEX [=] idxname)

The following example forces an index scan on the index idx1 when using synonym s1.
SELECT * FROM s1 (INDEX idx1)

Performance Tuning Guide

 Performance Tuning Guide

40

5.9.4 FORCE INDEX SCAN WITH VIEW

You can force an index scan when creating a view with the following syntax:
viewname (INDEX [=] idxname)

The following example forces an index scan on the index idx1 when creating view v1.
CREATE VIEW v1 as SELECT * FROM t1 (INDEX idx1)

But you can not force an index when selecting a view. The following example is a wrong usage

and will return errors.

SELECT * FROM v1 (INDEX idx1)

5.9.5 FORCE TEXT INDEX SCAN

You can force a text index scan with the following syntax:
tablename (TEXT INDEX [=] idxname)

The following example forces a text index scan on the text index tidx1.
SELECT * FROM t1 (TEXT INDEX tidx1)

5.10 Rewrite Query

5.10.1 AVOID SUBQUERIES : REWRITE AS JOIN IF POSSIBLE

 select * from t1 where c1 in (select c1 from t2);

 select t1.* from t1,t2 where t1.c1=t2.c1;

5.10.2 AVOID EXPRESSION AND BUILD-IN FUNCTION IN PREDICATE

 select * from t1 where c1*10=100;

 select * from t1 where c1=10;

5.10.3 AVOID ‘OR’: REWRITE AS ‘IN’ IF POSSIBLE

 c1=1 or c1=2

 c1 in (1,2)

 (c1>=1 and c1<=3) or (c1>=5 and c1<=7)

 c1 in (1 to 3, 5 to 7)

5.10.4 AVOID ‘BETWEEN’ : REWRITE AS ‘AND’ IF POSSIBLE

 c1 between 3 and 5

 c1>=3 and c1<=5

5.10.5 AVOID TABLE SCAN : REWRITE AS UNIONS IF POSSIBLE

 select * from t1 where (c1=3 and c3>3) or c2=5;

 select * from t1 where c1=3 and c3>3 union select * from t1 where c2=5;

Performance Tuning Guide

 Performance Tuning Guide

41

5.10.6 USE TEMPORARY TABLE WHEN NEED

 select * from t1 where c1=3 and c2 like ‘a%’ order by c3;

 select * from t1 where c1=3 and c2 like ‘b%’ order by c3;

 select * from t1 where c1=3 order by c3 into temp;

 select * from temp like ‘a%’;

 select * from temp like ‘b%’;

5.10.7 LARGE DATA UPDATE

 select * from tb1 into tb2;

 set load on;

 select * from tb1 into temp_tb2;

 set load off;

 It will be a big improvement when data size over 100M.

5.11 How to Read a Dump Plan

The first step for a user to check a slow query is to read its execution plan. To see a dump plan of
a query, you only need to execute the following command before you run your query:

dmSQL> set dump plan on;

But it seems to be very difficult for a normal user to understand the meanings written in each part
of the dump plan (that is, execution plan). Therefore we will give a detailed explanation about dump
plan in this section.

At the first glance, we will find that a dump plan is composed of several blocks called ON. In other
words, query optimizer divides a query into several ON blocks, and each of them is a logic
optimization unit. Then optimizer will optimize every ON block. For a simple or joined query,
DBMaster usually has only one ON block, but for a complex query such like subquery, DBMaster
may generate more than one ON block, including a main block and its sub blocks.

For every ON block, optimizer finds the best execution method based on cost. It will divide a ON
block into several PL blocks, and each one PL block represents an operation, such as scan, join
etc.

We will describe the information shown in PL block by several examples in the following
paragraphs. Before reading these examples, you should be more familiar with the following nouns
from previous sections in this chapter:

table scan

index scan

nested join

merge join

factor

5.11.1 EXAMPLE OF TABLE SCAN

Let’s see the following query, and explain the dump plan in detail.

Performance Tuning Guide

 Performance Tuning Guide

42

dmSQL> set dump plan on;

dmSQL> select * from t1 where c1>1;

Here gives the dump plan:
----- begin dump plan -----

{ON Block 0}

ON Type : SCAN

[PL Block 0]

Method : Scan

Table Name : t1

Type : Table Scan

Order : <none>

Factors : (1) t1.c1 > 1

I/O Cost : 101.0

CPU Cost : 25.3

Sub Cost : 0.0

Result Rows: 330.0

----- end dump plan -----

Now we explain the meaning in each line. The first two lines give the information of an ON block.

{ON Block 0} - This is a ON block, and its block ID is 0

ON Type: SCAN - ON block type is scan

This ON block contains one PL block.
[PL Block 0] - This is a PL block, and its block ID is 0

Method: Scan - This PL block will do a scan operation.

Table Name: t1 - Scan on table t1.

Type: Table Scan - Scan type is table scan.

Order: <none> - Scan order, it is no use for a table scan.

Factors: (1) t1.c1 > 1 - This scan will use filter t1.c1 > 1.

I/O Cost: 101.0 - Estimated I/O cost is 101.0 pages in this scan.

CPU Cost: 25.3 - Estimated CPU cost is 25.3 pages in this scan.

Sub Cost: 0.0 - Estimated sum of costs of this PL block's sub-block. In this
example, it has no sub PL block.

Result Rows: 330.0 - Estimated result rows after this scan and filter

5.11.2 EXAMPLE OF INDEX SCAN
dmSQL> set dump plan on;

dmSQL> select c1,c2 from t2 where c1>1 and c2=2;

The following shows the dump plan:
----- begin dump plan -----

{ON Block 0}

ON Type : SCAN

Performance Tuning Guide

 Performance Tuning Guide

43

[PL Block 0]

Method : Scan

Table Name : t2

Scan Type : Index Scan on idx21(c2, c1)

Order : ASC

Index EQFA#: 1

Index FA# : 2

Index FACOL: 1, 2

Index Cost : 2

Factors : (1) t2.c2 = 2

 : (2) t2.c1 > 1

I/O Cost : 2.0

CPU Cost : 0.6

Sub Cost : 0.0

Result Rows: 13.0

----- end dump plan -----

Similarly, the plan looks like the above one.
{ON Block 0} - This is a ON block, and its block ID is 0.

ON Type: SCAN - This ON block type is scan.

This ON block also contains one PL block.

[PL Block 0] - This is a PL block, and its block ID is 0.

Method: Scan - This block executes scan.

Table Name : t2 - Scan on table t2

Scan Type: Index Scan on idx21(c2, c1) - Scan type is index scan. Apply index
idx12, and the index column is c2, c1.

Order: ASC - Scan order, index scan by ascent order.

index EQFA#: 1 - Equal factor number that can be applied in this index scan, in
this example is t2.c2 = 2.

Index FA#: 2 - Factor number that can be applied in this index scan, in this
example is t2.c2 = 2 and t2.c1 > 1.

Index FACOL: 1, 2 – Factor ID that mapping from index columns. In this example, it
means that the first index column c2 maps to factor (1) t2.c2=2, and the second
index column c1 maps to factor (2) t2.c1 > 1.

Index Cost : 2 - Estimated index page cost is 2

Factors: (1) t2.c2 = 2

 (2) t2.c1 > 1 - Apply filters t2.c2 = 2 and t2.c1 > 1 in this scan.

I/O Cost: 2.0 - Estimated I/O cost is 2.0 pages in this scan.

CPU Cost: 0.6 - Estimated CPU cost is 0.6 it in this scan.

Sub Cost: 0.0 - Estimated sum of costs of this PL block's sub-block.

Result Rows: 13.0 - Estimated result rows after this scan and filter.

5.11.3 EXAMPLE OF JOIN

The following command will show the plan of a equal join.
dmSQL> set dump plan on;

dmSQL> select * from t1, t2 where t1.c2=t2.c2;

The plan of a join is much different from the simple scan.

Performance Tuning Guide

 Performance Tuning Guide

44

----- begin dump plan -----

{ON Block 0}

ON Type : JOIN

[PL Block 0]

Method : Join

Type : Merge Join

Factors : (1) t1.c2 = t2.c2

I/O Cost : 8.5

CPU Cost : 573.8

Sub Cost : 231.6

Result Rows: 500.0

Sub Block 1: [PL Block 1]

Sub Block 2: [PL Block 2]

[PL Block 1]

Method : Sort

I/O Cost : 4.2

CPU Cost : 274.4

Sub Cost : 120.0

Result Rows: 1000.0

SUB Block : [PL Block 3]

[PL Block 3]

Method : Scan

Table Name : t2

Type : Table Scan

Order : <none>

Factors : <none>

I/O Cost : 101.0

CPU Cost : 25.3

Sub Cost : 0.0

Result Rows: 1000.0

[PL Block 2]

Method : Sort

I/O Cost : 4.2

CPU Cost : 274.4

Sub Cost : 120.0

Result Rows: 1000.0

SUB Block : [PL Block 4]

[PL Block 4]

Method : Scan

Table Name : t1

Type : Table Scan

Order : <none>

Performance Tuning Guide

 Performance Tuning Guide

45

Factors : <none>

I/O Cost : 101.0

CPU Cost : 25.3

Sub Cost : 0.0

Result Rows: 1000.0

----- end dump plan -----

In this example, there is more than one PL block. We combine this PL block relationship using their
sub block information and draw a tree:

Figure 2

and we replace each node of the tree by the method.

Figure 3

Now, let me describe join and sort block respectively.
[PL Block 0] - This is a PL block, and its block ID is 0.

Method: Join - This block is a join.

Type: Merge Join - Join type is merge join.

Factors: (1) t1.c2 = t2.c2 - Apply join filter t1.c2 = t2.c2 in this join block.

I/O Cost: 8.5: Estimated I/O cost is 8.5 pages in this join block.

CPU Cost: 573.8 - Estimated I/O cost is 573.8 pages in this join block.

Sub Cost: 231.6 - Estimated sum of costs of this PL block's sub-block.

Result Rows: 500.0 - Estimated result rows after this join block.

Sub Block 1: [PL Block 1] - This block's first child links to [PL Block 1].

Sub Block 2: [PL Block 2] - This block's second child links to [PL Block 2].

The above is the join block. We give the description of sort here.
[PL Block 1] - This is a PL block, and its block id is 1.

Method: Sort - This is a sort block.

I/O Cost: 4.2 - Estimated I/O cost is 4.2 unit in this sort block.

CPU Cost: 274.4 - Estimated CPU cost is 274.4 unit in this sort block.

Sub Cost: 120.0 - Estimated sum of costs of this PL block's sub-block.

Result Rows: 1000.0 - Estimated result rows after this sort block.

SUB Block: [PL Block 3] - This block's child block link to [PL Block 3].

We have listed the most common cases of dump plans that users will meet. Of course, there are
still a lot of changes in dump plan. But they are all consists of the same elements, that is I/O cost,
CPU cost, and Result Rows. Once you find that the dump plan is not reasonable, you can use
syntax-base optimizer discussed in previous section to try other methods, or you should check
whether the statistics values are out of date or not.

Performance Tuning Guide

 Performance Tuning Guide

46

6. Redesigning Application

6.1 Redesigning the architecture of application
The user should use the advanced functions of the Database itself as much as possible, and
shuoldn’t realize so much data processing in the Application. You can pick out the data processing
from the Application, then use the Database’s function to achive. For example, it is available to use
Database funcions such as Primary key,Foreign key ,default and check to realize the restriction
processing when inputing and maintaining the data. And use trigger,stored command, stored
procedure and replication to realize the same function for the other logical processing.

6.2 Reducing lock contention
Resource contention occurs in a multi-user database system when more than one process tries to
access the same database resources simultaneously. This will lead to a deadlock when two or
more processes wait for each other. Resource contention causes processes to wait for access to a
database resource and reduce system performance.

When accessing data in a database, DBMaster processes will lock the target objects (records,
pages, tables) automatically. When two or more processes want to lock the same object, one must
wait. If more than two processes wait for other processes to release the lock, a deadlock will occur.
When a deadlock occurs, DBMaster will sacrifice the last transaction by rolling it back. Thus
deadlock reduces system performance.

There are four methods to Prevent/Avoid Deadlock:

 Set table’s lock mode to row

 Reduce unnecessary indexes or index columns
 Access tables in sequence e.g., two tables t1, t2, always update t1 before t2

 Shorten the transaction

Note: a multi-process application must process time out or deadlock error handling.

By analyzing the “wait for” graph, DBMaster can automatically detect a deadlock situation. If a
deadlock is detected, a victim transaction will be aborted to solve the deadlock problem.

Example:

DBMaster detects a deadlock when transaction T2 issues an X lock on Y. Transaction T2 will be
aborted to resolve the deadlock problem and the user executing transaction T2 will receive the
error message, “transaction aborted due to deadlock”:

 T1 T2

-------------- ------------

share_lock(Y);

read(Y);

Performance Tuning Guide

 Performance Tuning Guide

47

 share_lock(X);

 read(X);

exclusive_lock(X);

(T1 waits for T2) exclusive_lock(Y);

 (T2 waits for T1)

 T2 aborted by DBMaster

6.3 Limiting the number of connections
DBMaster allows no more than 1200 simultaneous session connection to server. If server
resources (such as memory, CPU power) are insufficient, it will limit the maximum number of
connections. Obviously, too many connections will reduce the performance of database too. So
when you no longer use the Database, please disconnect from the Database in the Application.

6.4 Avoiding duplicate connections
Once there is a connection to a database, more memories of server will be used and the usage
ratio of CPU will increase.

So we should avoid connection to database but do nothing. We must also avoid duplicate
connections.

As connection, system will assign some resources for it, not only memory but also CPU, disk and
so on, thus performance will get poor. As connection after disconnection, firstly system will spend
some time in releasing some resources occupied by the previous connection. Secondly system will
also apply and assign some resources for the next connection. So performance will be poorer.

As we know that, it's no good for performance of DBMaster to connect and disconnect frequently
in Application system.

6.5 Avoid Long Transactions
A long transaction will occupy many lock control blocks and journal blocks. If there is a long
transaction in progress when the above error occurs, analyze whether the transaction can be
divided into multiple small transactions. Because that the Long Transactions use a lot of resources,
that would reduce the Performance directly, and also easy to cause the Deadlock.

Performance Tuning Guide

	Introduction
	Database Performance Tuning
	The Tuning Process
	Monitoring a Database
	The Monitor Tables
	Killing Connections

	Tuning I/O
	Determining Data Partitions
	Determining Journal File Partitions
	Separating Journal Files and Data Files
	Using Raw Devices
	Pre-Allocating Autoextend Tablespaces

	Tuning Memory Allocation
	Tuning an Operating System
	Tuning DCCA Memory
	Tuning Page Buffer Cache
	Tuning Journal Buffers
	Tuning the System Control Area (SCA)
	Tuning the Catalog Cache

	Tuning Concurrent Processing
	Reducing Lock Contention
	Limiting the Number of Processes

	Database Model Design
	Tablespace
	Table
	Index
	Constraint
	Trigger
	Stored command
	Stored procedure

	Setting DBMaker Daemon
	I/O and Checkpoint
	I/O Daemon
	Checkpoint Daemon

	Update Statistics
	Backup Server
	Replication Server
	Auto-Commit mode

	Query Optimization
	Indexes
	Statistics Values are Outdated
	What is query optimization?
	Query Execution Plan (QEP)
	How Does the Optimizer Operate
	Input of Optimizer
	Factors
	Join Sequence
	Nested Join and Merge Join
	Table Scan and Index scan
	Sort

	Time Cost of a Query
	Operation Cost in Memory (CPU Cost)
	Procession Cost in Disk Access (I/O cost)
	Cost of Table Scan
	Cost of Index Scan
	Cost of Sort
	Cost of Nested Join
	Cost of Merge Join

	Statistics
	Types of Statistics
	Syntax of UPDATE STATISTICS
	Load and Unload Statistics

	Accelerate the Execution of Query
	Data Model
	Query Plan
	Check the Index
	Adjust Filter Columns
	Re-consider the Query
	Use Temporary Table to Accelerate Query

	Syntax-Based Query Optimizer
	Force index scan
	Force Index Scan With Alias
	Force Index Scan With Synonym
	Force Index Scan With View
	Force Text Index Scan

	Rewrite Query
	avoid subqueries : rewrite as join if possible
	avoid expression and build-in function in predicate
	avoid ‘or’: rewrite as ‘in’ if possible
	avoid ‘between’ : rewrite as ‘and’ if possible
	Avoid table scan : rewrite as Unions if possible
	Use temporary table when need
	Large Data Update

	How to Read a Dump Plan
	Example of Table Scan
	Example of Index Scan
	Example of Join

	Redesigning Application
	Redesigning the architecture of application
	Reducing lock contention
	Limiting the number of connections
	Avoiding duplicate connections
	Avoid Long Transactions

