

DBMaster
Reference Guide for SQL Server 2008
Migration to DBMaster 5.1
Version: 02.00

Author: DBMaster Support Team and Research & Development Division, SYSCOM
Computer Engineering CO.
Document No: 51/DBM51-T05272010-03-MRSQ

Publication Date: June 14, 2010

 Content

©Copyright 1995-2012 CASEMaker Inc. i

Content
1. Overview .. 1

2. Analyze the current system..................................... 2

2.1 Analyze AP system .. 2

2.2 Analyze Database Objects 2

3. Setup migration environment.................................. 4

4. Methods for migrating table schema and data....... 5

4.1 Database transfer tools... 5

4.1.1 SQL SERVER IMPORT AND EXPORT WIZARD 5
4.1.2 JDATATRANSFER TOOL IN DBMASTER 18

4.2 Other 3rd party tools ... 29

4.2.1 SQL SCRIPT BUILDER... 29
4.2.2 SQLTOTXT TOOL .. 30

4.3 Modify DDL manually ... 30

4.4 Write code.. 31

5. Compare SQL Server and DBMaster...................... 32

5.1 Schema Comparison.. 32

5.1.1 THE TERMINOLOGY COMPARISON 32
5.1.2 STORAGE STRUCTURE COMPARISON................................. 33
5.1.3 PROCESS AND RELATED TERM DEFINITION 33
5.1.4 RESERVED WORD CONFLICT IN DATABASE OBJECT........... 34
5.1.5 DATABASE OBJECT DESIGN CONCERNS............................ 36

5.2 Data Types Mapping .. 39

5.2.1 COMMON DATA TYPE MAPPING ... 39
5.2.2 DATA TYPES MAPPING CONCERN..................................... 44

5.3 Index Mapping ... 46

5.4 Support platform.. 50

5.5 Data Manipulation Language (DML) 51

5.5.1 CONNECTING TO THE DATABASE 52
5.5.2 SELECT STATEMENT... 52
5.5.3 INSERT STATEMENT.. 53
5.5.4 UPDATE STATEMENT .. 54
5.5.5 DELETE STATEMENT... 54
5.5.6 OPERATORS ... 56

 Content

©Copyright 1995-2012 CASEMaker Inc. ii

5.5.7 BUILT-IN FUNCTIONS... 61
5.5.8 LOCKING CONCEPTS AND DATA CONCURRENCY ISSUES..... 66
5.5.9 UDF DIFFERENCE .. 67
5.5.10 TRIGGER DIFFERENCE... 68
5.5.11 STORED PROCEDURE AND STORED FUNCTION 71
5.5.12 SQL SERVER 2008 AND DBMASTER IN AP 72

5.6 System Tables ... 72

6. DB Object Migration procedures 73

6.1 SCHEMA AND DATE MIGRATION... 73
6.2 CONVERT UDF.. 73
6.3 CONVERT TRIGGER.. 73
6.4 CONVERT STORED PROCEDURE.. 73

7. AP migration procedures....................................... 75

7.1 AP interface and Connect string 75

7.1.1 AP IN CLIENT ... 75
7.1.2 MIDDLE-TIER .. 75
7.1.3 AP OR (WEB) SERVER.. 75
7.1.4 AP IN SERVER.. 75

7.2 SQL Server special syntax and feature................. 76

7.2.1 FOR INSERT STATEMENT.. 76
7.2.2 FOR “TOP” KEYWORD .. 76
7.2.3 FOR NESTED QUERY.. 76

8. Testing application with new DB 77

8.1 How to pre-run for skip any object........................ 77

8.2 Test application with DBMaster after migration .. 77

9. Performance tuning ... 78

9.1 Application... 79

9.2 Database System... 79

9.2.1 TUNING MEMORY ALLOCATION... 79
9.2.2 QUERY OPTIMIZATION ... 81

9.3 OS... 81

9.4 Hardware ... 81

10. Appendix – Migration Samples......................... 83

10.1 Table Schema for all Types.............................. 83

10.1.1 CREATE TABLE WITH ALL TYPES IN SQL SERVER............ 83
10.1.2 MIGRATE WITH JDATATRANSFER TOOL 84

 Content

©Copyright 1995-2012 CASEMaker Inc. iii

10.2 Table Schema and Data 85

10.2.1 ORDINARY CHARACTER AND NUMERIC DATA TYPE........... 85
10.2.2 SPECIAL DATA TYPE ... 88

10.3 Applications (Source Code segment)............... 89

10.3.1 JAVA LANGUAGE ... 89
10.3.2 C# LANGUAGE.. 90
10.3.3 PHP LANGUAGE... 91

 Overview 1

©Copyright 1995-2012 CASEMaker Inc. 1

1. Overview

This document introduces some related messages about migrating SQL Server 2008 to DBMaster
5.1. Migration processes include schema transitions, DML mappings, Data storage and so on. With
this document, the users could easily understand the pros and cons between SQL Server and
DBMaster. Users would be also aware of characteristics of DBMaster and SQL Server.

SQL Server is known as an integrated RDBMS product. It is used to individuals and enterprises.
The SQL Server 2008 SQL Query analyzer adds Intelligent Functions for Cue. However, its many
limitations, such as platform dependence on Windows, are sometimes regarded very inadequate if
you want to migrate your database to other platforms. It is very important for an IT professional to
choose appropriate methods.

In addition, users who are not familiar with DBMaster may also find the helpful information in this
manual. It will be very easy to catch the similar idea from DBMaster that they had already known
in SQL Server. It can shorten learning curve for users.

We will introduce DBMaster in the following aspects:

z Migrate SQL Server database to DBMaster 5.1.

z Create ANSI-compliant names.

z Customize Users, Tables, Indexes, and Tablespaces.

z Remove and rename database objects if they are reserved words in DBMaster.

z Customize the default data type mapping rules.

z Migrate groups, users, tables, primary keys, foreign keys, unique constraints,
indexes, rules, check constraints, views, triggers, stored procedures, AP, user-
defined types and privileges to DBMaster.

 Analyze the current system 2

©Copyright 1995-2012 CASEMaker Inc. 2

2. Analyze the current system

Firstly, we should analyze the system before migrating a database from SQL Server to DBMaster
in some aspects, through which we can evaluate the workloads and costs of the migration.

For instance, we should analyze current operating system and get to know what system we use,
Windows or any other. Different operating systems have different characteristics. We also need to
know what should be considered as emphasis and difficulty in the migration process.

System analyses include both AP system analyses and DB system analyses. In the following
chapters we will introduce them in two aspects.

2.1 Analyze AP system
Users should understand system architectures first, and know what technologies have been used.
Such as Hiberanate, NHibernate, C, C++, Java, .Net, PHP, Ruby, etc.

In addition, the driver type is also important; users should know which one was used. For example:
JDBC, ODBC, DCI, OLEDB, and so on.

Next, analyze the hierarchical structure of AP system, for example: Client/Server, Browser/Server,
N-Tier.

Last, users need to analyze the special feature of SQL Server through which users get to know
how to convert them to DBMaster. For the special feature, we should consider the following
aspects.

We should consider the following aspects before migration.

z Special features of SQL Server

z The workaround of SQL Server special feature

z Special syntax of SQL Server

z How to convert special syntax into DBMaster

2.2 Analyze Database Objects
For a database, we should analyze all database objects. First of all, we have to know how many
database objects should be migrated, for example: tables, views, trigger, etc. We need evaluate
how much space is required for storing data.

Next, we should analyze all tables’ structures and get to know what contents of these tables will be
stored. It can help user divide tables into different table spaces to improve performance. Then
users can begin preparing for creating a corresponding database with DBMaster.

There are many differences between SQL Server and DBMaster. So we should consider these
differences in advance. We will introduce some aspects as followings:

 Analyze the current system 2

©Copyright 1995-2012 CASEMaker Inc. 3

z Data types belong to SQL Server but not apply to DBMaster.

z Data types belong to DBMaster but not apply to SQL Server.

z Built-functions belong to SQL Server but not apply to DBMaster.

z Built-functions belong to DBMaster but not apply to SQL Server.

z Indexes belong to SQL Server but not apply to DBMaster.

z Indexes belong to DBMaster but not apply to SQL Server.

In addition, users can evaluate workloads with above analyses. It will help user estimate the costs
of migration.

 Setup migration environment 3

©Copyright 1995-2012 CASEMaker Inc. 4

3. Setup migration environment

We mainly introduce environment and which aspects users should pay high attention to in this
section.

We must ensure the application can run normally with SQL Server before we do any works. Then
we will install DBMaster and create a database. Certainly, before that users should reserve enough
disk space for DBMaster database db files. For convenience, you can install DBMaster in same
machine with SQL Server (on Windows platform).

Next, we need to adjust or configure web server if users’ system has web server that is used for
deployment and testing web applications.

We also need to pay attention to the following aspects before migrating a database from SQL
Server to DBMaster.

z Adjust DBMaster configure parameters if necessary.

z Enroll settings in windows system.

z Special workaround for migration.

z DSN or environment variables should be installed.

- UnixODBC in Linux system (if users move to Linux system)

- ODBC Driver Manager in Windows

z Which DBMaster.(normal or bundle)

z Which DBMaster server is running? (dmserver or dmservice)

- dmservice is only for windows system, customer can install it as a windows service with
JServer Manager tool or dmsvcutl.exe. Then, the user can set the database service as
Auto Start when OS being started.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 5

4. Methods for migrating table
schema and data

Database Migration involves all of the database objects. But we only introduce the migration
methods for table schema and data in this section and other aspects will be described in chapter 6
and chapter 7.

4.1 Database transfer tools

4.1.1 SQL SERVER IMPORT AND EXPORT WIZARD

The SQL Server provides a tool-SQL Server Import and Export Wizard. It offers a simple method
to transfer data from a source to a destination.

4.1.1.1 How to start the SQL Server Import and Export Wizard
1. On the Start menu, point to All Programs >>Microsoft SQL Server 2008, and then

click Import and Export Data.
2. In Business Intelligence Development Studio, right-click the SSIS Packages folder, and

then click SSIS Import and Export Wizard.
3. In SQL Server Management Studio (SSMS), connect to the Database Engine server type,

expand Databases, right-click a database, point to Tasks, and then click Import
Data or Export data.

4. In a command prompt window, run DTSWizard.exe, located in C:\Program Files\Microsoft
SQL Server\100\DTS\Binn.

4.1.1.2 Operation steps
Users must ensure both SQL Server and DBMaster have been started before migration. In whole
process of migration, there are two points we should pay more attention to when we use SQL
Server Import and Export Wizard.

One point is about selecting provider. For example: ODBC Provider is available for migration from
SQL Server to DBMaster by SQL Server Import and Export Wizard.

The other point is about adjusting mapping data type and editing SQL statement manually, we will
introduce two methods – one is from SSIS import and export wizard, the other is from SSMS import
and export wizard.

More detail information for each step will be introduced as followings.

4.1.1.2.1 Import and Export Wizard via SSMS

Step 1: Start the SQL Server Import and Export Wizard via SQL Server Management Studio
(SSMS).

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 6

Step 2: Open the wizard Choose a Data Source for selecting a data source. The available data
sources include .NET Framework data providers, OLE DB providers, SQL Server Native Client
providers, ADO.NET providers, Microsoft Office Excel, Microsoft Office Access, and the Flat File
source.

You can set different options such as the authentication mode, the server name, the database
name, and the file format that depend on the data source you have chosen.

Here you can specify:

Data Source: SQL Server Native Client10.0 or other supported.

Serve name: (local) or available server name.

Authentication identify: you can use windows mode or SQL Server mode.

Database: specify the name of the source database which need migrated.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 7

Step 3: Open the wizard Choose a Destination. The available data destination includes .NET
Framework data providers, OLE DB providers, SQL Server Native Client, Excel, Access, and the
Flat File destination.

Here you can specify:

Target: select “.Net Framework Date Provider for Odbc”.

Driver: NULL. Don’t need any parameters.

DSN: the DSN name created by ODBC data source. You should build DSN in advance and ensure
connection available.

 Methods for migrating table schema and data 4

Step 4: Open the wizard Specify Table Copy or Query.

There are two options provided, including replicating one or more tables or view’s data and editing
query SQL. You can choose one of them to specify which data will be transmitted.

Step 5: Open the wizard Select Source Tables and Views

©Copyright 1995-2012 CASEMaker Inc. 8

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 9

♦ First is selection. You can specify whether to copy one or more tables and views from the data
source, and finally select the tables and/or views to copy.

♦ Second, click Edit Mappings… button and open the page Colunm Mappings in which you
can adjust column data types to be suitable for DBMaster. Select one table and change the
mappings between source columns and destination columns, or change the metadata of
destination columns

Include:

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 10

• Map source columns to different destination columns.

• Change the data type in the destination column.

• Set the length of columns with character data types.

• Set the precision and scale of columns with numeric data types.

• Specify whether the column can contain null values.

♦ You also can create a new destination table by select the Create destination table option.
Select the Delete and recreate destination table option will drop the destination table and then
re-created, enable identity inserts.

♦ The most important step is clicking the Edit SQL button. Click it and open the wizard Create
Table SQL Statement” to check the SQL statement which generates automatically whether
correct .If incorrect, please modify the problematic part and add the missing part to ensure the SQL
statement correct and complete.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 11

Step 6: Open the wizard Save and Run Package.

You can optionally save the package to the SQL Server msdb database or to the file system.

Execute immediately: By default, this check box is selected and the package runs immediately.

Save SSIS package: you can also decide whether to save the package to SQL Server or to the file
system. If you select to save the package, you must also specify a package protection level. And if
the protection level uses a password, please provide the password.

Step 7: Specify save path for SSIS package if you select File system in last step.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 12

Step 8: Next

Step 9: Finish

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 13

Table Employee migrates from SQL Server to DBMaster successfully.

4.1.1.2.2 Import and Export Wizard via SSIS

This step is to create a project before creating an Integration Services Package.

♦ Executing steps

Step 1: program | SQL Server Business Intelligence Development Studio, create an
Integration Services Project.

Step 2: Start the SQL Server Import and Export Wizard in two ways. One is right-clicking the
SSIS Packages folder, and then clicking SSIS Import and Export Wizard. The other is In
Business Intelligence Development Studio, on the Project menu, clicking SSIS Import and Export
Wizard.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 14

Come to the page Welcome to SQL Server Import and Export Wizard.

Step 3: this is different from SSMS “step 3 “

Here you must specify following parameters to find the DSN from ODBC data source:

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 15

Target: select “.Net Framework Date Provider for “Odbc” provider.

ConnectionString: Dsn= DB_SNOW; Driver= {"Driver= {DBMaster 5.1 Driver}; Database=
DB_SNOW; uid=sysadm; Pwd= ;"}

Driver: {DBMaster 5.1 Driver};

DSN: DB_SNOW

The DSN name is created by ODBC data source. You should ensure the connection is available
after setting the System or the User DSN.

Step 4: Open the page Specify Table Copy or Query

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 16

Step 5: Select source tables and views

Finish

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 17

Steps 6: Run the package from the wizard

Worthy of noting is “Step 6”,"save and run a package”. It’s different from SSMS. If the wizard is
started from an Integration Services Project in Business Intelligence Development Studio, you can’t
run the package from the wizard. Instead, the package is added to the Integration Services Project
from which you started the wizard. Then you can run the package in Business Intelligence
Development Studio.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 18

We can see 290 pieces of records migrated from SQL Server to DBMaster from the green
arrowhead.

4.1.2 JDATATRANSFER TOOL IN DBMASTER

The Data Transfer Tool provides a user-friendly interface for transferring data in and out of the
database. The tool performs the following functions:

z Import from text

z Import from XML file

z Import from ODBC

z Export to text

z Export to XML

z Batch transfer

For more information about performing each type of data transformation please reference JDBA
Toll Chapter Data Transfer.

Here we mainly introduce Import from ODBC. DBMaster supports importing data from other data
sources via ODBC. Other data sources may include other database engines such as Oracle,
Microsoft SQL Server, etc.

A large number of software applications have been developed to be compatible with Open
Database Connectivity (ODBC). ODBC is an industry standard for sharing data among diverse
data sources. DBMaster can import data from any ODBC compliant data source through the
Import from ODBC wizard.

Data may be imported by using three methods:

z Choose the tables directly

z With one or more SQL SELECT statements

z Via an XML batch file

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 19

Furthermore, you may specify the mapping of column data through the transformation function.
The transformation function supports direct column-to-column mapping or mapping through SQL
SELECT and SQL INSERT statements. When importing data directly from tables or through SQL
SELECT statements which allow saving a ‘map’ of the data transformation to an XML batch file.
The XML batch files are saved as a well-formed XML document with a form that can be parsed by
the data transfer tool. Batch files may be used to import table schema from a data source to
multiple DBMaster databases.

4.1.2.1 How to start the DBMaster JDataTransfer

The Data Transfer Tool is a separate application which can be started as GUI.

Start>programs>DBMaster 5.1>DataTransfer, or opened within JDBA Tool.

4.1.2.2 Execute steps Import from ODBC

Step 1: Open the Data Transfer Tool and select Import from ODBC option.

Step 2: Click Next. The Choose a Source Database window appears.

Database: Select the database to export data from in the Database menu.

Username: Enter a user name into the appropriate field.

Password: Enter corresponding password into the appropriate field.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 20

Step 3: Click Next. The Choose a Destination Data Source window appears.

Database: Select the database to import data to from the Database menu.

Username: Enter a user name into the appropriate field.

Password: Enter corresponding password into the appropriate field.

Step 4: Click the Next button. The Table Copy or Query window appears.

There are three options provided, select one of the three methods for data transfer:

Table: To import data from a list of tables,

SQL query: To import data using a series of SQL SELECT statements

Batch file: To import data through an XML file.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 21

Three choices and corresponding operations:
1. Selected Table check box.

Sub_step 1: Click Next. The Source Tables and Views window appears. All tables from the
source database will appear in the Source Table column. Check the box to the left of each table to
import. You may also choose to save the map of the import ODBC schema to an XML file by
clicking save batch. The Save Batch File will open. Select or create an XML file to save the
imported ODBC map schema to. Click Save Batch File to create the XML file. The Source Tables
and Views window will reappear.

Sub_step 2: For each source table or view selected, click the Destination Table field. If desired,
change the name of the destination table by selecting a new table from the menu or entering a new
name.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 22

Sub_step 3: You may modify column mapping or the result set to import by clicking the

Transform button of the corresponding source and destination table.

Sub_step 4: Change the name of the destination column by selecting a new column from the
menu or entering a new name.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 23

Sub_step 5: Click the Transformation tab to specify constraints on the result set. Enter a Valid
SQL SELECT statement into the Select SQL field and a valid SQL INSERT statement into the
Insert SQL field.

Sub_step 6: Click OK to return to the Source Tables and Views window.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 24

2. Select SQL query check box.

Sub_step 1: Click Next. The Source Query window appears. Click Add SQL. The SQL Query
Statement window appears. And enter a valid SQL SELECT statement into the SQL Query field.

Sub_step 2: Click OK. The Source Query window reappears.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 25

Sub_step 3: Click Add SQL. The SQL Query Statement window appears. Enter a valid SQL
SELECT statement into the SQL Query field.

Sub_step 4: click OK to return to the Source Query page.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 26

Sub_step 5: You may add more SQL query statements by clicking Add SQL and change the
name of the destination column by selecting a new column from the menu or entering a new name.

Sub_step 6: you also can modify the mapping of source and destination columns by clicking the
Transform button.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 27

Sub_step 7: Click the Transformation tab to specify constraints on the result set. Enter a Valid
SQL SELECT statement into the Select SQL field and a valid SQL INSERT statement into the
Insert SQL field.

Sub_step 8: click OK to return to the Source Query page.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 28

Note: The remaining operations are same as selecting Table.

3. Select Batch file Check box

Sub_step 1: Select an XML file from which to import the ODBC map schema. Click Open. The
Table Copy or Query window reappears.

Sub_step 2: Click Next. The Source Query window will open, displaying a mapping Schema
according to the XML file.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 29

NOTE: The remaining operations are same as select Table.

Step 5: Click Execute to import the source data. The Import Status window appears.

Step 6: If errors appear, click View log and scroll to the bottom to see the error message. If no
errors occurred, click Done.

4.2 Other 3rd party tools
Currently, there are many kinds of database migration tools can be used. Some of them are
popular which can be used for most Databases. Certainly, some of them are only designed for
special databases.

The user can choose a popular tool for their migration according to different requests.

In following chapters, we will introduce two popular database migration tools.

4.2.1 SQL SCRIPT BUILDER

SQL Script Builder is a powerful software by which users can create a database migration sql
script (or dump file) or database files from any ODBC data source. The script will migrate the

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 30

database (multiple tables selection) or only one table and records. Scripts are available in five
output formats; MySQL, MS SQL, Oracle, Pervasive and PostgreSQL, and files come in Access
mdb, Excel csv, MS xml. SQL Script Builder is very simple to use, you just have to choose the
database and tables from the list. SQL Script Builder scripts can be used on your DBMS (database
management system) or uploaded on a server.

SQL Script Builder can be used. For example, if you migrate a database from SQL Server to
DBMaster, You don't have to transfer whole database, you can import only one table at a time and
have no limit, what you need is the ODBC driver for the database you wish to import from. ODBC is
a universal interface almost every database provider supports it.

With SQL Script Builder, you can create an ODBC connection for origination database and
generate the script, then, you need to ensure the script can work well on the destination database.

♦ Operation Steps:

Step 1: Use this tool to convert the data from origination database to a supported file format. For
DBMaster, we recommend the XML format.

Step 2: Use JDataTransfer tool in DBMaster and select Import from XML option to import
datafiles that have been exported from SQL Server to DBMaster.

4.2.2 SQLTOTXT TOOL

SqlToTxt is a tool by which users can export SQL Server data to flat files. It is useful and the
operations are simple.

♦ Main features:

1. Support multiple formats files (txt, csv, xml, html, sql, Excel) for exporting data from SQL Server.

2. Support exporting from a single table, all tables or SQL query.

3. Support exporting SQL Server text (ntext) and image fields.

♦ Operation Steps:

Step 1: Use this tool to convert the data from origination database to a supported file format. For
DBMaster, we recommend the XML format.

Step 2: Open JDataTransfer tool in DBMaster, select Import from XML or Import from Text
option to import datafiles which have been exported from SQL Server to DBMaster.

4.3 Modify DDL manually
If you are familiar with DDL, you can create the entire schema from SQL Server firstly. And modify
the schema and make syntax and data types fit to DBMaster. For example: Via Management
Studio (Right-click the Database, then choose Task/Generate Scripts).

Then, run the schema script in dmSQL tool or JSQL tool. Please modify and try again if any errors
happen.

At last, export the data from SQL Server (Right-click the Database, then choose Task/Export
Data). You also can via Import and Export Data (Refer to Chapter 4.1.1 and select the Flat File
source for “Choose a Data Source” wizard). If exporting data is successful, please import the data
into DBMaster via JdataTransfer tool.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 31

Note: If you don’t want to use JdataTransfer to import, after exporting the data to Flat format files,
you may use the import command. Certainly, you may modify them for DBMaster and run in
dmSQL or JSQL tool.

4.4 Write code
Users can use a programming language they are familiar with to develop a simple script or tool for
migrating database. The work theory and process steps are similar as above Manual Methods.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 32

5. Compare SQL Server and
DBMaster

5.1 Schema Comparison

5.1.1 THE TERMINOLOGY COMPARISON

The following table enlists the terminologies in DBMaster and SQL Server. In many aspects,
DBMaster have such common characteristics with SQL Server. However, there are some
differences between them.

SQL Server DBMaster

Database Database

File Group Tablespace

Block Page/Frame

Login User

Role Group

Table Table

View View

Temporary Table (in the tempdb
database)

Temporary Table (in .db file,)

Cluster N/A

Check constraint Check constraint

Sequences Serial

Synonyms (after SQL Server2005
version)

Synonyms

DML Triggers DML Triggers

DDL Triggers N/A

Column default Column default

Unique index Unique index

Primary key Primary key

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 33

Foreign key Foreign key

Index Non-unique index

Transact-SQL (T-SQL) stored procedure Embedded-SQL (ESQL/C) stored
procedures, Java stored procedures and

SQL stored procedures (DBMaster
supported after 5.2 version)

Rule N/A

Default N/A

UDF UDF

User define data type Domain

UNIQUE N/A

5.1.2 STORAGE STRUCTURE COMPARISON

Basically, DBMaster has a great difference from SQL Server. Users should recognize these
differences with discretion.

Item SQL Server DBMaster

Interface or tools to
configure
parameters

Property interface of DB JConfiguration tool

Temporary Table Stored in tempdb database Temporarily in .db file

Data Files *.MDF or *.NDF *.SDB or *. DB

Journal
File

*.LDF *.JNL

File type

BLOB File *.MDF or *.NDF *.SBB or *.BB

Note that SQL Server allocates BLOB data and ordinary data within the same page. Despite it
contains a pointer which indicates the real location of BLOB data. It isn’t a good design for handling
the BLOB data. On the other hand, DBMaster allocates the BLOB data separately from ordinary
data. It would bring up some performance benefits.

5.1.3 PROCESS AND RELATED TERM DEFINITION

In SQL Server, every task would be taken care of by different processes. DBMaster, on the other
hand, will use the same method but look like a general process instead of individual processes.

Item SQL Server DBMaster

Start-up mode Single server supports multiple
databases

Single server supports one
database

System Monitor DBMaster Server Management
functionality Backup Device Backup Server

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 34

Roll forward Replay Journal

Rollback Rollback Journal

Recovery Recovery

Checkpoint Checkpoint

Backup Backup

Restore Restore

Import Import/Load

Export Export/Unload

5.1.4 RESERVED WORD CONFLICT IN DATABASE OBJECT

SQL Server and DBMaster reserved words are different. Many DBMaster reserved words are valid
object names or column names in SQL Server. Likewise, many SQL Server reserved words are
valid object names in DBMaster. Using reserved words as database object names makes it
impossible to use the same names across the two databases.

Choose a unique database object name by case and by at least one other characteristic, and
ensure that the object name is not a reserved word from either database.

Costumers can write object names in double quotation marks in DBMaster or brackets in SQL
Server if you want to use reserved words as object names.

For example,

In DBMaster: create table test ("ADD" int);

In SQL Server: create table test ([ADD] char (5))

Different from SQL Server, in DBMaster, we also can set keyword DB_ResWd to be 0 in
dmconfig.ini file before database creation, which allows objects containing reserved words to be
imported.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 35

SQL Server DBMaster

ADD, EXCEPT, PERCENT, ALL, EXEC, PLAN,
ALTER, EXECUTE, PRECISIONAND, EXISTS,
PRIMARY, ANY, EXIT, PRINT, AS, FETCH, PROC,
ASC, FILE, PROCEDURE, AUTHORIZATION,
FILLFACTOR, PUBLICBACKUP, FOR, RAISERROR,
BEGINFOREIGN, READ, BETWEEN, FREETEXT,
READTEXT, BREAK,
WRITETEXTFREETEXTTABLE, RECON-, FIGURE,
BROWSE, REFERENCES, FROM, BULKFULL,
REPLICATION, BY, FUNCTIONRESTORE,
CASCADE, GOTO, RESTICTCASE, GRANT,
CHACK, GROUP, REVOKECHACKPOINT, IF,
HABING, RIGHT, CLOSEHOLDLOCK, ROLLBACK,
CLUSTERED, IDENTITY, ROWCOUNT, COALESCE,
IDENTITY_INSERT, ROWGUIDCOL, COLLATE,
IDENTITYCOL, RULE, COLUMN, SAVE, COMMIT,
IN, CHEMA, COMPUTEINDEX, SELECT,
CONSTRAINT, INNER, SESSION_USER,
CONTAINS, INSERT, SETINTO, CONTAINSTABLE,
INTERSECTSETUSER, CONTICUE, SHUTDOWN,
CONVERT, IS, SOME, CREATE, JOIN, STATISTICS,
KEY, CROSS, SYSTEM_USERCURRENT, KILL,
TABLE, CURRENT_DATE, LEFT, TEXTSIZE ,
CURRENT_TIME, LIKE, THEN ,
CURRENT_TIMESTAMP, LINENO, TO ,
CURRENT_USER, LOAD, TOP, CURSOR
NATIONAL, TRAN, DATABASE, NOCHECK
TRANSACTION, DBCC, NONCLUSTERED
TRIGGER, ERRLVL DEALLOCATE, NOT, DROP，
OUTER TRUNCATE , DECLARE, NULL, TSEQUAL
DEFAULT, NULLIF, UNION , DELETE, OF
UNIQUE, DENY, OFF, UPDATE, DESC OFFSETS,
UPDATETEXT, DISK, ON, USE DISTINCT, OPEN,
USER, DISTRIBUTED OPENDATASOURCE,
VALUES, DOUBLE OPENQUERY, VARYING,
WITH, WHILE ESCAPE, PENROWSET, VIEW,
DUMMY, OPENXML WAITFOR, DUMP, OPTION,
WHEN , OVER,ELSE, OR, WHERE, ORDER END

ABSOLUTE, ACTION, ADD, ADMIN, AFTER,
AGGREGATE, ALIAS, ALLOCATE, ALTER, AND,
ANY, ARE, ARRAY, AS, ASC, ASSERTION, AT,
AUTHORIZATION, BEFORE, BEGIN, BINARY, BIT,
BLOB, BOOLEAN, BOTH, BREADTH, BY, CALL,
CASCADE, CASCADED, CASE, CAST, CATALOG,
CHECK, CLASS, CLOB, CLOSE, COLLATE,
COLLATION, COLUMN, COMMIT, COMPLETION,
CONNECT, CONNECTION, CONSTRAINT,
CONSTRAINTS, CONSTRUCTOR, CONTINUE,
CORRESPONDING, CREATE, CROSS, CUBE,
CURRENT, CURRENT_DATE, CURRENT_PATH,
CURRENT_ROLE, CURRENT_TIME,
CURRENT_TIMESTAMP, CURRENT_USER,
CURSOR, CYCLE, DATE, DAY, DEALLOCATE,
DEC, DECIMAL, DECLARE, DEFAULT,
DEFERRABLE, DEFERRED, DELETE, DEPTH,
DEREF, DESC, DESCRIBE, DESCRIPTOR,
DESTROY, DESTRUCTOR, DETERMINISTIC,
DICTIONARY, DIAGNOSTICS, DISCONNECT,
DISTINCT, DOMAIN, DOUBLE, DROP, DYNAMIC,
EACH, ELSE, END, END-EXEC, EQUALS, ESCAPE,
EVERY, EXCEPT, EXCEPTION, EXEC, EXECUTE,
EXTERNAL, FALSE, FETCH, FIRST, FLOAT, FOR,
FOREIGN, FOUND, FROM, FREE, FULL,
FUNCTION, GENERAL, GET, GLOBAL, GO, GOTO,
GRANT, GROUP, GROUPING, HAVING, HOST,
IDENTITY, IGNORE, IMMEDIATE, IN, INDICATOR,
INITIALIZE, INITIALLY, INNER, INOUT, INPUT, INT,
INTEGER, INTERSECT, INTO, IS, ISOLATION,
ITERATE, JOIN, KEY, LANGUAGE, LARGE, LAST,
LATERAL, LEADING, LESS, LEVEL, LIKE, LIMIT,
LOCAL, LOCALTIME, LOCALTIMESTAMP,
LOCATOR, MAP, MATCH, MODIFIES, MODIFY,
MODULE, NAMES, NATIONAL, NATURAL, NCHAR,
NCLOB, NEXT, NO, NONE, NOT, NULL, NUMERIC,
OBJECT, OF, OFF, ON, ONLY, OPEN, OPERATION,
OPTION, OR, ORDINALITY, OUT, OUTER,
OUTPUT, PAD, PARTIAL, PATH, POSTFIX, PREFIX,
PREORDER, PREPARE, PRESERVE, PRIMARY,
PRIOR, PRIVILEGES, PROCEDURE, READ,
READS, REAL, RECURSIVE, REFERENCES,
REFERENCING, RELATIVE, RESTRICT, RESULT,
RETURN, RETURNS, REVOKE, ROLE, ROLLBACK,
ROLLUP, ROUTINE, ROW, ROWS, SAVEPOINT,
SCHEMA, SCROLL, SCOPE, SEARCH, SECTION,
SELECT, SEQUENCE, SESSION, SESSION_USER,
SET, SETS, SIZE, SMALLINT, SOME, SPECIFIC,
SPECIFICTYPE, SQL, SQLEXCEPTION,
SQLSTATE, SQLWARNING, START, STATIC,
STRUCTURE, SYSTEM_USER, TABLE,
TEMPORARY, TERMINATE, THAN, THEN, TIME,
TIMESTAMP, TIMEZONE_HOUR,
TIMEZONE_MINUTE, TO, TRAILING,
TRANSACTION, TRANSLATION, TREAT, TRIGGER,
TRUE, UNDER, UNION, UNKNOWN, UNNEST,
UPDATE, USAGE, USING,VALUES, VARCHAR,
VARIABLE, VARYING, VIEW, WHEN, WHENEVER,
WHERE, WITH, WITHOUT, WORK, WRITE, ZONE

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 36

5.1.5 DATABASE OBJECT DESIGN CONCERNS

For Database Objects, or Schema Objects, users need to put many factors into account before
migration. It will contain a variety of constraints checking, data types mapping and so on. We enlist
the factors as followings.

z Data Types

z Entity Integrity Constraints

z Referential Integrity Constraints

z Unique Key Constraints

z Check Constraints

z Support Platforms

5.1.5.1 Entity Integrity Constraints
A primary key can be defined as part of a CREATE TABLE or an ALTER TABLE statement. SQL
Server internally creates a unique index to enforce the integrity.

So does DBMaster, a primary key constraint will be applied to a unique index internally. The
performance will be promoted for it’s an index too. The constraint will be kept to retain integrity.

SQL server

DBMaster

CREATE TABLE table_name(
Column1 datatype PRIMARY KEY,
Column2 datatype,
…);

CREATE TABLE table_name(
Column1 datatype,
Column2 datatype,
…,
CONSTRAINT pk_name
 PRIMARY KEY (Column1, Column2,…)
);

CREATE TABLE table_name(
Column1 datatype PRIMARY KEY,
Column2 datatype,
…);

CREATE TABLE table_name(
Column1 datatype,
Column2 datatype,
…,
PRIMARY KEY (Column1, Column2,…)
);

ALTER TABLE table_name
ADD PRIMARY KEY (column_name)

ALTER TABLE Table_name
ADD Constraint pk_name
PRIMARY KEY [CLUSTERED]
(Column1, Column2,…);

ALTER TABLE table_name
PRIMARY KEY (Column1, column2,…);

ALTER TABLE table_name
ADD CONSTRAINT
pk_name PRIMARY KEY(Column1,column2,…);

5.1.5.2 Referential Integrity Constraints
SQL Server provides declarative referential integrity. A CEATE TABLE or ALTER TABLE
statement can add foreign keys to the table definition. You can also define a foreign key for a table
in DBMaster. Foreign keys can be defined in a CREATE TABLE statement or an ALTER TABLE
statement.

DBMaster and SQL Server have many similarities in the term of Integrity Constraints. It makes the
migration process less labor.

SQL server

DBMaster

CREATE TABLE table_name1 CREATE TABLE table_name1(

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 37

(
Column1 datatype NOT NULL PRIMARY
KEY,
Column2 datatype NOT NULL,
Column3 datatype FOREIGN KEY
REFERENCES
table_name2(column_name)
)

CREATE TABLE table_name
(
Column1 datatype NOT NULL,
Column2 datatype NOT NULL,
Column1 datatype,…
PRIMARY KEY (column_nameF),
CONSTRAINT fk_name FOREIGN KEY
(column_nameP)
REFERENCES Persons(column_nameP)
)

Column1 datatype,
Column2 datatype,
…,
FOREIGN KEY fk_name(column1,…)
REFERENCES table_name2);

CREATE TABLE table_name(
Column1 datatype,
Column2 datatype,
…,
Column datatype CONSTRAINT fk_name
REFERENCES table_name2(column_name)
);

ALTER TABLE table_name
ADD FOREIGN KEY (column_name)
REFERENCES Persons(column_name)

ALTER TABLE table_name1
ADD CONSTRAINT fk_name
FOREIGN KEY (column_name)
REFERENCES
table_name2(column_name)

ALTER TABLE table_name
ADD FOREIGN KEY (column_name)
REFERENCES Persons(column_name)

ALTER TABLE table_name1 ADD CONSTRAINT
fk_name
FOREIGN KEY (column_name)
REFERENCES table_name2(column_name)

ALTER TABLE tb_name1 FOREIGN
KEY(column1,column2,…) REFERENCES
table_name2;

5.1.5.3 Unique index Constraints
SQL Server defines unique index as part of CREATE TABLE or ALTER TABLE statements. SQL
Server internally creates unique indexes to enforce these constraints.

You can also define a unique index for a table in DBMaster. Unique indexes can be defined in a
CREATE TABLE statement or an ALTER TABLE statement. DBMaster owns the same function
and can build unique index to confirm uniqueness of every record.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 38

SQL server

DBMaster

CREATE TABLE table_name1
(
Column1 datatype NOT NULL UNIQUE,
Column2 datatype,
,…)

CREATE TABLE table_name1
(
Column1 datatype NOT NULL,
Column2 datatype,
,…,
CONSTRAINT uc_name UNIQUE
(colunm1, column2,…)
)

CREATE TABLE table_name1
(
Column1 datatype NOT NULL UNIQUE,
Column2 datatype,
,…)

CREATE TABLE table_name1
(
Column1 datatype NOT NULL,
Column2 datatype,
,…,
CONSTRAINT uc_name UNIQUE (colunm1,
column2,…)
)

CREATE TABLE table_name1
(
Column1 datatype CONSTRAINT u UNIQUE,
Column2 datatype,
,…)

ALTER TABLE table_name
ADD UNIQUE (column_name)

ALTER TABLE table_name
ADD CONSTRAINT uc_name UNIQUE
(column1,column2,…)

ALTER TABLE table_name
ADD UNIQUE (column_name)

ALTER TABLE table_name
ADD CONSTRAINT uc_name UNIQUE
(column1,column2,…)

5.1.5.4 Check Constraints
SQL Server defines check constraints as part of the CREATE TABLE statement or the ALTER
TABLE statement. A check constraint is defined at the TABLE level and the COLUMN level. A
table-level check constraint can refer to any column in the constrained table. A column can have
only one check constraint. A column-level check constraint can refer to only the constrained
column.

Check constraints can be defined in a CREATE TABLE statement or an ALTER TABLE statement
in DBMaster as well. Multiple check constraints can be defined on a table.

Table-level check constraints from SQL Server databases map one-to-one with DBMaster check
constraints. Since DBMaster has the column-level check, migration from SQL Server to DBMaster
will have not lost the check constraints or sort of things.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 39

SQL server

DBMaster

CREATE TABLE table_name(
Column1 datatype CHECK
boolean_expression,
Column2 datatype CHECK
check_expression,
…);

CREATE TABLE table_name(
Column1 datatype ,
Column2 datatype,…
CONSTRAINT ck_name CHECK
(check_expression1 AND
check_expression2 AND …)
);

CREATE TABLE table_name(
Column1 datatype CHECK boolean_expression,
Column2 datatype CHECK boolean_expression,
…);

CREATE TABLE table_name(
Column1 datatype,
Column2 datatype,
[CONSTRAINT ck_name]
CHECK(boolean_expression1
 AND boolean_expression2
 AND …)
…
);

ALTER TABLE table_name
ADD CHECK (check_expression)

ALTER TABLE table_name
ADD CONSTRAINT ck_name CHECK
(check_expression1 AND
check_expression2,…)

ALTER TABLE table_name MODIFY
 (column1 to column1 datatype
CHECK column1 boolean_expression,…);

5.2 Data Types Mapping
This section provides detailed descriptions of the differences in data types used by SQL server and
DBMaster databases. Specifically, this section contains the following information:

5.2.1 COMMON DATA TYPE MAPPING

A table showing the base and available SQL Server data type and how they are mapped to
DBMaster data types.

Recommendations based on the information are listed in the table:
SQL server Description DBMaster Comments

Integer types Integer types
BIGINT The BIGINT data type

bytes storage with the
range of -2^63 to
2^63-1.

INTEGER
(4 byte)

Some huge number will lose its
precision(DBMaster supported
Bigint type after 5.2 version)

SMALLINT Two-byte integer, 15
bits, and a sign. (
-2^15 – 2^15-1)

SMALLINT
(2 byte)

Two-byte integer, 15 bits, and a
sign. (-2^15 – 2^15-1)

INT The INT data type
uses 4 bytes of
storage with the range
of
-2,147,483,648 to
2,147,483,647.

INTEGER
(4 byte)

The INTEGER data type uses 4
bytes of storage with the range
of -2,147,483,648 to
2,147,483,647.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 40

TINYINT The TINYINT data
type uses 1 bytes of
storage with the range
of 0-255

SMALLINT
(2 byte)

The SMALLINT data type uses
2 bytes of storage with the
range of -32,768 to 32,767

Floating point data
types

 Floating point data
types

REAL The REAL data use 4
bytes and has a valid
input range of -
3.40E+38 to -1.18E -
38、0 and 1.18 E -38
to 3.40E+38

FLOAT(REAL)
（DB_FltDb=0）
(4 byte)

The FLOAT data type uses 4
bytes of storage and has a valid
input range of 3.402823466E38
to –3.402823466E38. The
smallest valid input values
are1.175494351E-38 and –
1.175494351E-38.

FLOAT The FLOAT data has a
valid input range of -
1.79E+308 to
1.79E+308.

DOUBLE(DOUBLE
)
(DB_FltDb = 1)
(8 byte)

The DOUBLE data type uses 8
bytes of storage and has a valid
input range of 1.0E308 to –
1.0E308.

DECIMAL(p,s) The DECIMAL data
type bytes storage
with the range of -
10^38 +1 to 10^38 –1
with fixed precision.

DECIMAL(p,s) The default value for precision
is 17 with a maximum value of
= 38. Scale refers to the
number of digits to the right of
the decimal point. The default
value for scale is 6.

Binary digit data
types

 Binary digit data
types

BINARY The BINARY data type
is a fixed-length data
type that can contain
any binary value. The
length of RAW
columns is between 1
byte and 8000 bytes.

BINARY(1-3992)
(n byte)

The minimum length of BINARY
columns is 1 byte and the
maximum length is 3992 bytes.

VARBINARY(1-
8000)

The VARBINARY data
type is a variable-
length data type that
can contain any binary
value. The length of
RAW columns is
between 1 byte and
8000 bytes

LONG
VARBINARY

DBMaster cannot store any
string whose length exceeds 4K
into BINARARY or VAR
BINARARY column. Therefore,
VARBINARY in SQL Server is
preferable to map into LONG
VARBINARAY of DBMaster.

VARBINARY(max) The store max value
=2^31-1 Storage size
for the actual length of
the input data + 2
bytes.the length can
be zero bytes.

LONG
VARBINARY

DBMaster cannot store any
string whose length exceeds 4K
into BINARARY or VAR
BINARARY column. Therefore,
VARBINARY in SQL Server is
preferable to map into LONG
VARBINARAY of DBMaster.
The maximum length of LONG
VARBINARY columns is 8 TB.

Logical digit data
types

 Logical digit data
types

BIT Character types The BIT data type
bytes storage with the
1 or 0

N/A User should use SMALLINT
instead

Character data
types

 Character data
types

CHAR (1-8000) The CHAR data type
is a fixed-length data
type that can contain
any character from the

CHAR
 (n byte)
3968 (4KB page
size)

In DBMaster, CHAR columns
length can be Depending on
DB_PGSIZ (4k, 8k, 16k, and
32k) (NO Unicode).

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 41

keyboard. The CHAR
length in SQL server is
between 1 and 8000
bytes (NO Unicode).

size)

8064 (8KB page
size)

16256 (16KB page
size)

32640 (32KB page
size)

NCHAR The NCHAR data type
is a fixed-length data
type that can contain
any character from the
keyboard. The CHAR
length in SQL server is
between 1 and 4000
bytes (Unicode).

NCHAR
(n byte)
1984 (4KB page
size)

4032 (8KB page
size)

8128 (16KB page
size)

16320 (32KB page
size)

The NCHAR data type is a
fixed-length data type that can
contain any Unicode character.
NCHAR columns length can be
Depending on DB_PGSIZ (4k,
8k, 16k, and 32k) ((Unicode).

VARCHAR (1-8000) The VARCHAR data
type is a variable-
length data type that
can contain any
character that can be
entered from the
keyboard. In SQL
server, the length is
between 1 and 8000
bytes (NO Unicode).

VARCHAR
3968 (4KB page
size)

8064 (8KB page
size)

16256 (16KB page
size)

32640 (32KB page
size)

VARCHAR columns length can
be Depending on DB_PGSIZ
(4k, 8k, 16k, and 32k) (NO
Unicode).

VARCHAR(MAX) The VARCHAR data
type is a variable-
length data type that
can contain any
character that can be
entered from the
keyboard. In SQL
server, the length is
between 1 and 2^31-1
bytes (NO Unicode).

LONG VARCHAR SQL Server is preferable to
map into LONG VARCHAR of
DBMaster. The maximum
length of LONG VARCHAR
columns is 8 TB.

NVARCHAR
NVARCHAR(MAX)

The NVARCHAR data
type is a variable-
length data type that
can contain any
character that can be
entered from the
keyboard. In SQL
server, the length is
between 1 and 4000
bytes (Unicode).MAX
indicate storage
maximum is 2^31-1
bytes

NVARCHAR
1984 (4KB page
size)

4032 (8KB page
size)

8128 (16KB page
size)

16320 (32KB page
size)

The NVARCHAR data type is a
variable-length data type that
can contain any Unicode
character. NVARCHAR
columns length can be
Depending on DB_PGSIZ (4k,
8k, 16k, and 32k) (Unicode).

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 42

bytes.
Text and image data
types

 BLOB data types

TEXT The TEXT data type is
a variable-length data
type that can contain
any character that can
be entered from the
keyboard. In SQL
server, the length is
between 1 and 2^31-1
bytes(NO
Unicode).TEXT type
will be instead of
varchar(max) and
TEXT type will be
delete in future SQL
Server version.

LONG VARCHAR The maximum length of CLOB
columns is 8T.

NTEXT The NTEXT data type
is a variable-length
data type that can
contain any character
that can be entered
from the keyboard. In
SQL server, the length
is between 1 and
2^30-1 bytes
(Unicode). NTEXT
type will be instead of
nvarchar (max) and
NTEXT type will be
delete in future SQL
Server version.

NCLOB The NCLOB data type is a
variable length data type that
can contain any Unicode
character. Each Unicode
character occupies 2 bytes of
storage. The maximum length
for an NCLOB column is 8 TB.

LONG
VARBINARY

Similar the BLOB IMAGE The IMAGE data type
is a variable-length
data type that can
contain any binary
value. The length of
RAW columns is
between 0 byte and
2^31-1 bytes IMAGE
type will be instead of
VARBINARY(max)
and IMAGE type will
be delete in future
SQL Server version.

File DBMaster provides the
SYSTEM FO and User FO.

Date and Time
types

 Date and Time
types

DATETIME Stored date and time
from 1753.1.1 to
9999.12.31

N/A In DBMaster user should use
TIMESTAMP instead but the
precision of TIMESTAMP is one
second.
Migration from SQL Server to
DBMaster would lose the
precision of data in some
cases.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 43

SMALLDATETIME Smalldatetime data
type can only accurate
to 1 minute and valid
years range from 1900
to 2079.

N/A In DBMaster User should use
TIMESTAMP instead but the
precision of TIMESTAMP is one
second.
Migration from SQL Server to
DBMaster would lose the
precision of data in some cases

DATE DATE data type allow
only store a date and
valid years range from
0001 to 9999 only
occupy 3 bytes

DATE The DATE data type uses 4
bytes of storage that contains
the calendar date (year, month,
and day). Valid year range from
0001 to 9999.

TIME(x) TIME date type use 24
hours format and time
values can accurate to
100 ns. Only store
time value without
time, TIME date type
support from 0 to 7
different precision, the
same as DATETIME2
format. Its disk
spending is 3 to 5
bytes depends on
accuracy.

TIME Stored the time (accurate to
second).map SQL Server
time(0)
I.e. x =0.

DATETIME2(x) DATETIME2 date type
expanded the
DATETIME data type
from scope and date
acceptable in the
date/time value adding
additional precision
parts of time. Expand
valid years range from
0001 to 9999. time to
store a part only
hours, minutes and
seconds of value or it
can support most of 7
decimal in different
storage
microseconds.DATETI
ME2(X) to specify
precision and
accuracy length is
representative of
x(from 0-7)

TIMESTAMP(11
bytes)

In DBMaster, the precision of
TIMESTAMP is one second.
Migration from SQL Server to
DBMaster would lose the
precision of data in some cases
.But if x=0 i.e. .DATETIME2 (0)
in SQL Server equal to
TimeStamp in DBMaster.

DATETIMEOFFSET DATETIMEOFFSET
data type storage date
and time (24 hours)
which consistent with
time zone. Time
section can accurate
to 100 ns. Time zone
represents a [- | +] hh:
mm.An effective
timezone specified
range from -14:00 to
+14:00, this values
add or subtract UTC
can get local time.

N/A

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 44

Money data types Money data types
MONEY Monetary data values

from -2^63 through
2^63 - 1

N/A User should use DECIMAL or
INT to be the replacement or
create domain replacement

SMALLMONEY Monetary data values
from -214,748.3648
through
+214,748.3647

 User should use DECIMAL or
INT to be the replacement or
create domain replacement

New data types New data types
SQL_VARIANT SQL Server

SQL_VARIANT can
hold up the data type
that SQL_SERVER
support (EXPECT for
text, ntext,
timestamp,varchar(ma
x),nvarchar(max)
sql_variant,hierarchyid
user define type),

N/A

HierarchyId N/A
UniqueIdentifier N/A
XML N/A
 BLOB(CLOB) DBMaster BLOB only holds up

to 2GB. CLOB field exceeds
over 2GB.it corresponding to
long varchar and long varbinary
data type

 Media Types Large object columns may also
be specified as media types to
aid in media process functions
such as full text search for
MicrosoftO WordO documents.
The following media types are
available: MsWordType,
HtmlType, XmlType,
MsWordFileType,
HtmlFileType, and
XmlFileType.

TABLE A special data type
used to store a result
set for later processing

N/A

Identify Auto increase SERIAL Auto increase
Special types Special types
UNIQUEIDENTIFIE
R

 OID
(8 byte)

Fn,pn,sn 8 byte.

5.2.2 DATA TYPES MAPPING CONCERN

This section outlines conversion considerations for the Datetime and Image data type as examples
to illustrate the factors you should consider:

z DATETIME Data Types

z IMAGE and TEXT Data Types (Binary/Character Large Objects)

5.2.2.1 DATETIME Data Types
There are some kinds of data types in SQL server, such as DATETIME, SMALLDATETIME. Note
that there’s a TIMESTAMP in SQL Server. But this TIMESTAMP is totally irrelevant with the
Date/Time data. In SQL server, TIMESTAMP must be acquired from the DB system when INSERT

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 45

or UPDATE this specific row, and the column value is not the normal Date/Time. It is used to
realize the version control. And it has nothing to do with the Date/Time data at all. Do not misuse
TIMESTAMP in DBMaster. It is equivalent to DATETIME in SQL Server.

The date/time definition and its precision in SQL Server differ from the ones in DBMaster. For
example, SQL Server has two DATETIME Data types (before SQL Server2008 version) ---
Datetime and Smalldatetime data type. Datetime data storing date and time values can be
accurate to 3/100 of a second and valid years range from 1753 to 9999, Smalldatetime data type
can only be accurate to 1 minute and valid years range from 1900 to 2079.SQL Server2008 adds
DATETIME2, DATE, TIME, DATETIMEOFFSET several data types, giving us more data types
selection which can be used to store date and time data.

DATETIME2 data type expands the DATETIME data type from scope and date acceptable in the
date/time value adding additional precision parts of time. Expanded valid years range from 0001 to
9999..The accuracy of the part time DATETIME2 depends on how you define DATETIME2 column,
time to store a part only hours, minutes and seconds of value or it can support most of 7 decimal in
different storage microseconds. DATETIME2(X) to specify precision and accuracy length is
representative of x(from 0-7)

You can use the DATE data type only to store a DATE or TIME data type only to store a time value.
In these new types of data section support accuracy if time can be reached 100ns.If there is a
need to store the date and time of the SQL Server to maintain consistent, can use
DATETIMEOFFSET data types, with these new data/time data types, you should be able to find
good solutions to help you store your date using the correct format and support different date and
time range when migration. Microseconds can be accurate to 100 ns. In addition, DATETIME2(3)
format equals the use of SQL Server DATETIME old version format, but DATETIME2(3) can be
used to support accuracy 1 millisecond and old version supports 3.33 milliseconds. If you want to
store a date is accurate to seconds, you can use the DATETIME (0).

DATE data type allow only storing a date and valid years ranging from 0001 to 9999.If you only
need to store the DATE and no use of time DATE data type, its disk spending is only 3 bytes,
saving 1 byte than SMALLDATETIME old data type.

TIME date type use 24 hours format and time values can be accurate to 100 ns. It only store time
value without date data. TIME date type supports from 0 to 7 different precisions, the same as
DATETIME2 format. Its disk spending is 3 to 5 bytes depending on accuracy.

DATETIMEOFFSET data type storage date and time (24 hours) which are consistent with time
zone. Time section can be accurate to 100 ns. The time zone consistency means time zone
identifier is stored in DATETIMEOFFSET list. Timezone represents a [- | +] hh: mm. An effective
timezone specified ranges from -14:00 to +14:00, then this values add or subtract UTC to get local
time.

But DATE data type only stores the date values in DBMaster, and DATE data type can contain
valid years ranging from 0001 to 9999. TIMESTAMP has a precision of 1 second, and
TIMESTAMP stores the date and time values and the valid years ranging from 0001 to 9999 in
DBMaster. According to the description here, Migration from SQL Server to DBMaster would lose
the precision of data in some cases. But new data types added in SQL Server2008 provide more
type selections for us to choose and more valid years range for date migration with different data
structures. For instance, DATETIME2 and DATE TYPE in SQL Server has same range with DATA
and TIMESTAMP data type in DBMaster.

Example:

SQL Server:

CREATE TABLE example_table

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 46

(date_column DATE not null,

Datetime_column, DATETIME2 (0) not null

text_column bigint not null,

varchar_column varchar(10) not null)

DBMaster:

CREATE TABLE example_table

(date_column DATE not null,

Datetime_colunm TIMESTAMP not null,

text_column long varchar not null,(supported bigint after DBMaster5.2 version)

varchar_column varchar(10) not null)

5.2.2.2 BLOB/CLOB Data Types (IMAGE and TEXT Data Types)
The physical and logical storage methods for IMAGE and TEXT data in DBMaster differ from SQL
Server. Given the LONG VARCHAR and LONG VARBINARY data type, DBMaster will
automatically allocate the physical storage. While the BLOB size is less than 3952 bytes（in 4k

page size）, 8048bytes (in 8k page size), 16240 bytes(in 16k page size), 32624 bytes(in 32 k page
size), the BLOB data could be stored together with normal data. If the data size is greater than 4K
(4k page size for example), a pointer is used to indicate the LONG VARCHAR, LONG
VARBINARY data. But the real BLOB data will be put into so-called “.BB” files. The other
alternative is to use FILE data type. DBMaster uses FULL PATH link to indicate FILE data type.
The physical data is stored externally as a file appearance.

This dynamical arrangement allows multiple columns of BLOB data per table and better
performance. Similarly, in SQL Server, text data, ntext data and image data may be stored in a
BLOB type field. SQL Server has no CLOB type and adds another data type—sql_variant type, it
supports all kinds of data types (text, ntext, image). SQL Server also allows multiple BLOB
columns per table. However, despite that SQL Server have different methods to handle ordinary
data and BLOB data, it comprises BLOB and ordinary data into the same file MDF.

After the version 4.0 of DBMaster, the keywords BLOB and CLOB are applied to LONG
VARBINARY and LONG VARCHAR. In most cases, you only map TEXT to CLOB, IMAGE to
BLOB when migrating from SQL Server. But if the CHAR or VARCHAR size is greater than 4K, you
should use LONG VARCHAR instead of the original data type.

5.3 Index Mapping
A database index is a data structure that improves the speed of data retrieval operations on a
database table at the cost of slower writes and increased storage space. Indexes can be created
by using one or more columns of a database table, providing the basis for both rapid random look
up and efficient access of ordered records. The disk space required to store the index is typically
less than that required by the table (since indexes usually contain only the key-fields according to
which the table is to be arranged, and excludes all the other details in the table), yielding the
possibility to store indexes in memory for a table whose data is too large to store in memory.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 47

SQL
Server

Description DBMaster Comments

Clustered
index

Clustered indexes base on
clustered key index sorting
and are stored in sequence
data in tables or views.
Clustered indexes are
realized by B_tree index
structure, b_tree index
structure supports quick
retrieval for row basing on
clustered index key. Only
one clustered index can be
created on a given database
table. Clustered indexes can
greatly increase overall
speed of retrieval, but usually
only where the data is
accessed sequentially in the
same or reverse order of the
clustered index, or when a
range of items are selected.
The primary feature of a
clustered index is therefore
the ordering of the physical
data rows in accordance with
the index blocks that point to
them.

N/A

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 48

Nonclustered
index

SQL server creates a non-
clustered index by default
and can support as many as
249 non-clustered indexes
per table. The data is present
in random order, but the
logical ordering is specified
by the index. The data rows
may be randomly spread
throughout the table. The
non-clustered index tree
contains index keys in sorted
order, with the leaf level of
the index containing the
pointer to the page and the
row number in the data page.
In non-clustered index:

The physical order of the
rows is not the same as the
index order.

Typically created on column
used in JOIN, WHERE, and
ORDER BY clauses.

Good for tables whose
values may be modified
frequently.

Index DBMaster creates an
index by syntax:

CREATE [UNIQUE]
INDEX index-identifier
ON base-table-name
({column-identifier |
expression}
[ASC|DESC]',...)[IN
tablespace-name]

[FILLFACTOR unsigned-
integer]

DBMaster supports as
many as indexes per
table, have no limit. But
create an index on one or
more columns, up to a
maximum of 32 columns.

DBMaster limits indexes
to a maximum record size
of 4000 bytes.

Creating indexes for
frequently used
expressions will improve
query performance.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 49

Text indexes
A special type of functional
index basing on the mark.
Generated and maintained by
text engine. To help users to
in search of complex words
on the string data.

SIGNATURE
TEXT INDEX

DBMaster creates a
signature text index by
syntax:

CREATE SIGNATURE
TEXT INDEX text- index-
identifier ON
table_name(column_nam
e,…) [TOTAL TEXT SIZE
number] [MB SCALE
number] [ORDER BY
column_name
ASC|DESC]

Signature text indexes
are built in the same
tablespace as the column
for which the index is
being built.

A text index provides fast
access to rows that
contain one or more
words or phrases in
columns containing text.
Text indexes contain a
representation of all the
text found in the text
columns they are based
on. The data is encoded
and structured to make
retrieval much faster than
directly from the table.

Typically created on
column used Order By
clause. Rebuild the text
index if you load data
after creating text index.

Text index names must
be unique for each table.
Text index names have a
maximum length of thirty-
two characters, and may
contain numbers, letters,
the underscore character,
and the symbols $ and #.
The first character can
not be a number

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 50

IVF TEXT
INDEX

DBMaster creates a ivf
text index by syntax:

CREATE IVF TEXT
INDEX text-index-
identifier ON
table_name(column_nam
e,…) [STORAGE PATH
path] [TOTAL TEXT SIZE
number MB] [ORDER BY
column_name
ASC|DESC]

IVF indexes are built in a
separate file and exhibit
better performance for
larger indexes.

An IVF text index can be
used in place of a
standard index to
increase the performance
of queries, particularly on
columns that contain
more than 200 MB of
data.

IVF indexes are sorted in
the operating system’s file
system, and are
administered through the
database. The location
where the IVF index
should be stored is
specified when the index
is created. DBMaster
manages the creation of
sub-directories within the
IVF index root directory.

Besides these special
features others are same
as signature text index.

5.4 Support platform
DBMaster supporting platform includes Windows system and non-Windows (Unix, Linux,etc) But
SQL Server supporting platform is limited to Windows Series only. When migrating with database,
DBMaster give you the more flexibility to move to other platforms if needed.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 51

Database Platforms

Microsoft SQL Server Windows Series

DBMaster
Windows, Linux, Others by request

(FreeBSD, Sun Solaris, Sun SPARC, HP UX,
AIX, DG/UX)

5.5 Data Manipulation Language (DML)
This section uses tables to compare the syntax and description of Data Manipulation Language
(DML) elements in SQL Server and DBMaster databases. The following topics are present in this
section:

z Connecting to the Database

z SELECT Statements

z SELECT with GROUP BY Statements

z INSERT Statements

z UPDATE Statements

z DELETE Statements

z Operators

z Comparison Operators

z Arithmetic Operators

z String Operators

z Set Operators

z Bit Operators

z Built-In Functions

z Character Functions

z Date Functions

z Mathematical Functions

z Locking Concepts and Data Concurrency Issues

z Locking

z Row-Level Versus Page-Level Locking

z Read Consistency

z Logical Transaction Handling

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 52

5.5.1 CONNECTING TO THE DATABASE

SQL Server DBMaster Description
Use DB_NAME

Connect to DB_NAME
USER_NAME PASSWORD;

Recommendations:

SQL Server installation can support multiple databases, and in DBMaster it could start one
database by one server. In SQL Server, we should note that the so-called “role” role. There are two
sorts of roles-” the server role “and “the database role”. It is not similar as the DBMaster; the server
role is used to divide users into different groups, which possess the management privileges. The
database role is used to grant privilege to single user or multi-users to connect to the database. In
DBMaster, users are assigned to multiple groups or roles. It is only permitted to login in as one role.
Only the highest privilege will be activated after logging into the DBMaster Database System.

5.5.2 SELECT STATEMENT

SQL server DBMaster Description

SELECT getdate(); SELECT curdate(); SELECT Statements without
FROM Clauses

Select clause Select clause
SELECT [ALL | DISTINCT]
[TOP n [PERCENT][WITH
THES]]
{select_list}

SELECT [ALL | DISTINCT]
{select_list} {LIMIT offset, count}

The ALL keyword means every
record regardless of its duplicate
occurrence. However, using
DISTINCT keyword will eliminate
the duplicate rows.
Users can extract the first n rows in
SQL Server by using “Top n
clause”. DBMaster provides more
powerful functionality as “Limit
offset, count” instead.

{select_list}
{ * | {table_name |
view_name |
table_alias},|{column_name
| expression | IDENTITY
[[AS] column_alias] |
column_alias=expression}
[…n]

{select_list}
{ * | [remote-table-
name@][owner.]{table | view |
synonym} | {[remote-table-
name@] [owner.]table.column |
expression } [AS] alias}}

COLUMN ALIAS is defined by
putting the alias directly after the
selected COLUMN. This function is
supported after DBMaster 4.0.3.
You can also retrieve data from
SYNONYMS. EXPRESSION could
be a column name, a literal, a
mathematical computation, a
function, several functions
combined, or one of several
PSEUDO-COLUMNS.

From clause From clause

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 53

SELECT …FROM
{<table_source>} [,...n]
<table_source> ::=
table_name [[AS]
table_alias] [WITH
(<table_hint> [,...n])]
| view_name [[AS]
table_alias]
| rowset_function [[AS]
table_alias]
| OPENXML
| derived_table [AS]
table_alias [(column_alias
[,...n])]

SELECT … FROM [[db-
name[@server-
name]:]user.]|[databaselink]table
-name|view] [ALIAS]

The main difference is DBMaster
must use
DB_NAME@HOST:USERNAME.
TABLE_NAME as its full valid table
name. It would take effort to
transfer the SQL server @dblink to
its corresponding name in
DBMaster.
DBMaster supports database link
currently.

Join table Join table

{Select clause}
<joined_table>
<joined_table> ::=
<table_source> <join_type>
<table_source> ON
<search_condition>
| <table_source> CROSS
JOIN <table_source>
| <joined_table>
<join_type> ::=
[INNER | { { LEFT | RIGHT |
FULL } [OUTER] }]
[<join_hint>]
JOIN

table-reference [,] { LEFT
OUTER JOIN | LEFT JOIN |
OUTER }
{ table-reference | (table-
reference-list) }

Note that SQL Server provides a
“FULL OUTER JOIN”, which is not
implemented in DBMaster. User
should use workaround to
generate the wanted results.

Where,Group
by ,having ,into clause

Where,Group by, having, into
clause

SELECT …FROM …
WHERE
<search_condition> |
<old_outer_join>
<old_outer_join> ::=
column_name { *= | =* }
column_name
GROUP BY [ALL]
group_by_expression [,...n]
[WITH { CUBE |
ROLLUP }]
HAVING
<search_condition>

SELECT …FROM …[WHERE]
[GROUP BY (column-identifier [,
column-identifier]…)] [HAVING
search-condition]

Aggregate functions and syntax
are identical in both databases. If a
GROUP BY clause is used, all
non-aggregate select columns
must be in a GROUP BY clause.

INSERT INTO new_table
SELECT FROM....

INSERT INTO <table> SELECT
COLUMN_NAME_LIST
FROM....
SELECT FROM… INTO <table>

You could retain the original syntax
in SQL server or rewrite it to the 2nd

syntax. It allows you to insert the
results of the SELECT statement
into a table.

5.5.3 INSERT STATEMENT

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 54

SQL server DBMaster Description
INSERT [INTO]
{ table_name WITH
(<table_hint_limited> [...n])
| view_name
| rowset_function_limited }
{ [(column_list)]
{ VALUES ({ DEFAULT | NULL
| expression }[,...n])
| derived_table
| execute_statement } }
| DEFAULT VALUES

INSERT INTO remote-table-
name [(column-identifier [,
column-identifier]...)] { VALUES
(insert-value[,insert-value]...) |
DEFAULT VALUES | select-
order-by-statement }

Insertings can only be done
on single table views.
Additionally, DBMaster has
not implement the syntax
“insert into table_name
values (sub-query)”. User
might need to create
temporary table or (sub-
query) into table_name
syntax as a workaround.

Recommendations:

The values supplied in the VALUES clause in either database may contain functions. The SQL
Server-specific functions must be replaced with the equivalent DBMaster ones. In addition,
DBMaster has not implement “INSERT INTO table_name VALUES (sub-query)” syntax. Users
need to rewrite their SQL commands with the temporary table or (sub-query) into table_name
syntax alternatively.

5.5.4 UPDATE STATEMENT

SQL server DBMaster Description

UPDATE
{ table_name WITH
(<table_hint_limited> [...n])
| view_name
| rowset_function_limited }
SET
{column_name = {expression
| DEFAULT | NULL}
| @variable = expression
| @variable = column =
expression } [,...n]
{{[FROM {<table_source>}
[,...n]]
[WHERE
<search_condition>] }
| [WHERE CURRENT OF
{ { [GLOBAL] cursor_name }
| cursor_variable_name}] }
[OPTION (<query_hint>
[,...n])]

UPDATE [remote-table-
name@][owner.]{table |
view } [table-option]
SET column-identifier =
{expression | subquery |
NULL} [, column-identifier =
{expression | subquery |
NULL}]...
[WHERE CURRENT OF
cursor-name] | [WHERE
search-condition]

A single subquery may be
used to update a set of
columns. This subquery
must select the same
number of columns (with
compatible data types) as
are used in the list of
columns in the SET clause.
The CURRENT OF cursor
clause causes the UPDATE
statement to affect only the
single row currently in the
cursor as a result of the last
FETCH. The cursor SELECT
statement must have
included in the FOR
UPDATE clause.
Updates can only be done
on single table views.

5.5.5 DELETE STATEMENT

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 55

SQL Server DBMaster Description

 DELETE [FROM]
{ table_name WITH
(<table_hint_limited> [...n])
| view_name
| rowset_function_limited }
[FROM {<table_source>} [,...n]]
[WHERE
{ <search_condition>
| { [CURRENT OF
{ [GLOBAL] cursor_name }
| cursor_variable_name }] }]
[OPTION (<query_hint> [,...n])]
<table_source> ::=
table_name [[AS] table_alias]
[WITH (<table_hint> [,...n])]
| view_name [[AS] table_alias]
| rowset_function [[AS]
table_alias]
| derived_table [AS] table_alias
[(column_alias [,...n])]
| <joined_table>
<table_hint_limited> ::=
{ FASTFIRSTROW
| HOLDLOCK
| PAGLOCK
| READCOMMITTED
| REPEATABLEREAD
| ROWLOCK
| SERIALIZABLE
| TABLOCK
| UPDLOCK
}
<table_hint> ::=
{ INDEX(index_val [,...n])
| FASTFIRSTROW
| HOLDLOCK
| NOLOCK
| PAGLOCK
| READCOMMITTED
| READPAST
| READUNCOMMITTED
| REPEATABLEREAD
| ROWLOCK
| SERIALIZABLE
| TABLOCK
| TABLOCKX
| UPDLOCK }
<query_hint> ::=
{ { HASH | ORDER } GROUP
| { CONCAT | HASH | MERGE }
UNION
| FAST number_rows
| FORCE ORDER
| MAXDOP
| ROBUST PLAN
| KEEP PLAN }

DELETE FROM remote-
table-name [table-option]
[WHERE search-
condition]

FROM keyword is optional in
SQL Server but elementary
in DBMaster. In SQL Server,
ALIAS can be specified for
the table name as a
correlation name, which can
be used in the condition
clause. But users can’t use
ALIAS in DBMaster.
Deletes can only be
performed through single
table views in both SQL
server and DBMaster.
SQL Server provides many
functions for performance
concern. But DBMaster
performs way better than
SQL Server in DELETE
operations. It is not very
necessary to have this
function in DBMaster.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 56

5.5.6 OPERATORS

5.5.6.1 Operator comparison

Operator Same in both

Databases
SQL server only DBMaster only

Equal to =
Not equal to !=, <>
Less than <
Greater than >
Less than or equal to <= !>
Greater than or equal to >= !<
Greater than or equal to x and
less than or equal to y

BETWEEN x AND y

Full Text Search Contain Match, Contains
Pattern Matches LIKE ’a\%’

ESCAPE ’\’
 Contain, Match

“a” followed by 1 character LIKE ’a_’
Does not match pattern NOT LIKE
No value exists IS NULL
A value exists IS NOT NULL
At least one row returned by
query

EXISTS (query)

No rows returned by query NOT EXISTS
(query)

Equal to a member of set IN,=ANY/SOME
Not equal to a member of set NOT IN

!= ANY/SOME, <>
ANY/SOME

Less than a member of set < ANY/SOME
Greater than a member of set > ANY/SOME
Less than or equal to a member
of set

<= ANY/SOME

Greater than or equal to a
member of set

>= ANY/SOME

Equal to every member of set =ALL
Not equal to every member of
set

!= ALL, <> ALL

Less than every member of set < ALL
Greater than every member of
set

> ALL

Less than or equal to every
member of set

<= ALL

Greater than or equal to every
member of set

>= ALL

Add +
Subtract -
Multiply *
Divide /
Modulo Mod(x,y) %
Concatenate + ||,

Concat(substr1,sub
str2)

Identify Literal ’this is a string’
Distinct row from either query UNION
All rows from both queries UNION ALL

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 57

5.5.6.2 Search String methods
DBMaster supports “MATCH”, “CONTAIN”, “CONTAINS”, and “LIKE” for pattern search.

Basically, “Like” operators will scan the whole record and seek the pattern as a token. DBMaster
provides another operator “CONTAIN” to seek the word fragment. In addition, users could use
“MATCH” operator to seek the full word. Only the MATCH and CONTAINS operators can be
applied to a text index search.

SQL Server supports “CONTAINS”,” FREETEXT “and ‘LIKE’ for pattern search, basically,” LIKE”
operators used to seek the word fragment. In addition, users could use “FREETEXT” and
“CONTAINS” operators to seek the full word. Only the “FREETEXT” and “CONTAINS” operators
can be applied to a TEXT INDEX search.

You could see the difference in the following case: DBMaster supports “Contain” and “Match” for
pattern search and SQL Server supports “FREETEXT” for pattern search.

These keywords have totally different meaning and the syntax is different too. Users must know
how to translate to the corresponding functions in DBMaster.

Table: Dept

ID Name

1 DBMaster Support

2 Support SQL Server

3 SQL Server DBMaster

SQL Server Usages DBMaster Usages

Like Like is a predicate used in a
WHERE clause to search
columns for fuzzy search, in most
cases, working with wildcard.

Syntax:

Expression [NOT] LIKE Condition

Like This takes the form: x LIKE ‘y’
ESCAPE ‘z’; the LIKE condition is
satisfied when the string value or
expression to the left of the LIKE
keyword meets the criteria
specified in the case-sensitive
quoted string to the right of the
keyword.

Syntax:

Expression [NOT] LIKE Condition

Contains A predicate used in a WHERE
clause to search columns
containing character-based data
types for precise or fuzzy (less
precise) matches to single words
and phrases, the proximity of
words within a certain distance of
one another, or weighted
matches.

CONTAINS can search for:

A word or phrase.

contains The contains operator’s condition is
satisfied when the concatenated
string from concatenate columns
matches the string pattern. Used in
Full-Text-Index, so Create TEXT-
INDEX first before using
CONTAINS predicate.

Syntax:

CONTAINS (column_name,'
contains_search_condition ');

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 58

The prefix of a word or phrase.

A word near another word.

A word inflectionally generated
from another

Syntax:

CONTAINS

({ column_name | (column_list) |
* } ,

'< contains_search_condition >'
[, LANGUAGE language_term])

Note:SQL Server support

{ < simple_term > | < prefix_term
> }

{ NEAR | ~ }

{ < simple_term > | < prefix_term
> } syntax to return adjacent rows

 and
FORMSOF ({ INFLECTIONAL |
THESAURUS } , < simple_term >
 [,...n]) do deformation matching

If using these syntaxes,
DBMaster doesn’t support
currently.

N/A SQL Server can’t supported
Match keyword, but we can use
CONTAINS or LIKE as a
replacement.

One way is using ‘LIKE’ keyword
and adding the percent symbol
as wildcards in the quoted
strings. The other way is use
‘CONTAINS’ instead but you
must ensure a Text-Index had
been build on these columns.

Alternative syntax:

Column_name LIKE
'%condition%';

 CONTAINS (column_name,
‘condition’);

match This takes the form: x NOT CASE
MATCH ‘y’; the MATCH condition
is satisfied when the quoted string
to the right of the MATCH keyword
matches the entire string value or
expression to the left of the
keyword. The NOT keyword inverts
the search results and CASE
keyword makes the search case-
sensitive,

Syntax:

Column_name MATCH Condition

FreeText FreeText command used to
matching FULL SEARCH basing

N/A DBMaster can’t support
FREETEXT keyword.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 59

on the deformation, literally,
Synonyms.

Syntax:

FREETEXT ({ column_name |
(column_list) | * } ,
'freetext_string' [, LANGUAGE
language_term])

We can use CONTAINS as a
replacement. But we must ensure
the string pattern precision. for
example, you must write ‘support’
can find the records in which ID
equal to 1 and 2.if you write pattern
string ‘supported’ or ‘supporting’ no
record will be return.

Alternative syntax:

CONTAINS (column_name,'
contains_search_condition ');

N/A SQL Server can’t support
CONTAIN keyword, but we can
use CONTAINS or LIKE as a
replacement.

Alternative syntax:

column_name LIKE
'%condition%';

 CONTAINS
(column_name,'"*condition*"');

If using CONTAINS and asterisks
wildcard character, conditions
must be included in double
quotes,

contain This takes the form x NOT CASE
CONTAIN ‘y’; the CONTAIN
condition is satisfied when the
quoted string to the right of the
CONTAIN keyword matches any
part of the string value or
expression to the left of the
keyword. The NOT keyword inverts
the search results and the CASE
keyword makes the search case-
sensitive, both are optional

Syntax:

column_name CONTAIN
‘condition’;

Recommendations:

Match and Contain are applied to full text search in DBMaster. DBMaster provides pattern
matching for BLOBs. The CONTAIN and MATCH function are similar to the LIKE function except
that wildcard characters are not supported. The difference between CONTAIN and MATCH is that
the former is a partial word match and the latter is a full word match. For example, 'This is a
character.' CONTAIN 'char' and 'this is a character.' MATCH 'character', but 'This is a character.'
doesn’t MATCH 'char'.

FREETEXT and CONTAINS are applied to Full text search in SQL Server. The difference between
FREETEXT and CONTAINS is that the former supports the deformation, literally and thesaurus
match and the later supports five-part which includes a word or a phrase, the prefix of a word or a
phrase, a word near another word, a word inflectionally generated from another (for example, the
word drive is the inflectional stem of drives, drove, driving, and driven),a word that is a synonym of
another word using a thesaurus (for example, the word metal can have synonyms such as
aluminum and steel).

Create TEXT-INDEX first before using CONTAINS or FREETEXT predicates in SQL Server. Match
and Contains have no limit in DBMaster.

For example:

Like:
SQL Server:

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 60

Select * from dept where name LIKE '%DBM%'

DBMaster:

Select * from Dept where name like '%DBM%';

ID NAME

1 DBMaster Support

3 SQL Server DBMaster

Contains:
SQL Server:

1. Select * from dept where CONTAINS (name,'DBMaster')

Note:

Execute a search to find any record containing words “DBMaster”.

The search for a word, double quotation marks are not required, only need a pair of single
quotation marks.

2. Select * from dept where CONTAINS (name,'"*DBM*"')

Note:

The search will return any record that included ‘DBM’.

Use asterisks as one or more characters’ wildcard character. It’s similar with ‘LIKE’. If using
wildcards, conditions must be included in double quote. Otherwise SQL Server will put asterisks
as text value to search, for example, searching '*DBM*' without double quotation equals to put
asterisks literal value as the part of search condition to process.

DBMaster:

1. Select * from dept where name CONTAIN ‘DBMaster’;

ID NAME

1 DBMaster Support

3 SQL Server DBMaster

2. Select * from dept where name CONTAIN ‘DBM’;

ID NAME

1 DBMaster Support

3 SQL Server DBMaster

FreeText:
SQL Server:

Select * from dept where FREETEXT (name,’ support')

Select * from dept where FREETEXT (name,’ supporting')

Select * from dept where FREETEXT (name,’ supported')

Note:

The search will return records that include each tense of word ‘support’. Despite both
‘supported’ and ‘supporting’ are not exist in the records, but returned 2 rows, because find
the past tense and doing tense about ‘support’.

However, FREETEXT is a vague way to search text index compared with CONTAINS.

DBMaster:

Select * from dept where CONTAINS (name,’ support');

ID NAME

1 DBMaster Support

2 Support SQL Server

Match:
SQL Server:

Select * from Dept where name like '%DBMaster%';

Select * from Dept where contains (name,'DBMaster');

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 61

DBMaster：

Select * from Dept where name match 'DBMaster';

ID NAME

1 DBMaster Support

3 SQL Server DBMaster

Contain:
SQL Server:

Select * from Dept where name like '%DBM%';

Select * from Dept where contains (name,'"*DBM*"');

DBMaster:

Select * from Dept where name contain 'DBM';

ID NAME

1 DBMaster Support

3 SQL Server DBMaster

5.5.7 BUILT-IN FUNCTIONS

The user who reads the following table and functions listed will get surprise that SQL server had so
many common functions as DBMaster. We classify all the functions into four categories:

z Math/Number Functions

z Character Functions

z Conversion Functions

z Date Functions

Reference functions, such as REF, DEREF are rarely seen in any other RDBMS. In addition, some
unique functions of SQL server have not been put here for its uniqueness.

In most cases, users would need very little effort to migrate SQL server functions to DBMaster
functions, the SQL server unique functions or Object-Reference functions are not commonly seen
after all.

5.5.7.1 Math/Number Functions:

SQL server DBMaster Description
ABS(numeric_
expression)

ABS(n) Return the absolute value of x as a
double-precision floating-point
number.

ACOS(float_expression) ACOS(n) Return the arc cosine of n in the
range 0 to pi as a double-precision
floating-point number.

ASIN(float_expression) ASIN(n) Return the arc sin of n in the range -
pi/2 to pi/2 as a double-precision
floating-point number.

ATAN(float_expression) ATAN(n) Return the arc tangent of n in the
range -pi/2 to pi/2 as a double-
precision floating-point number.

ATN2 (float_expression ,
float_expression)

ATAN2(n) Return the arc tangent of x/y in the
range -pi to pi as a double precision
floating-point number.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 62

CEILING(numeric_expre
ssion)

CEILING(n) Return the least integral value
greater than or equal to n as a
double-precision floating-point
number.

COS(float_expression) COS(n) Return the cosine of n as a double-
precision floating-point number. n is
expressed in radians.

EXP(float_expression) EXP(n) Return the exponential function e**x
as a double-precision floating-point
number.

FLOOR(numeric_expres
sion)

FLOOR(n) Return the greatest integral value
less than or equal to x as a double-
precision floating-point number.

LOG(float_expression) LOG(n) Return the natural logarithm of x as a
double-precision floating-point
number.

LOG10(float_expression
r)

LOG10(n) Return the logarithm to base 10 as a
double-precision floating-point
number.

N/A(%) MOD(m,n) Return the remainder (modulus) of m
divided by n as a double-precision
floating-point number.

POWER(m,n) POW(m,n)
POWER(m,n)

Return x**y as a double-precision
floating-point number.

ROUND
(numeric_expression ,
length [,function])

ROUND(n) Return the closest integer number of
the real number x. different from
DBMaster in SQL Server need
specify length via second parameter

SIGN(numeric_expressio
n)

SIGN(n) Return the sign of a number codes
as +1 for positive, 0 for zero, and -1
for negative. Returns an integer
value 1, 0 or -1.

SIN(float_expression) SIN(n) Return the sine of n as a double-
precision floating-point number. n is
expressed in radians.

SQRT(float_expression) SQRT(n) Return a double-precision floating-
point number y where x = y*y.

SQUARE(float_expressio
n)

N/A Instead of POW(x,y) or POWER(x,y)
and make sure x equal to y. Returns
x**y as a double-precision floating-
point number.

TAN(float_expression) TAN(n) Return the tangent of n as a double-
precision floating-point number. n is
expressed in radians.

DEGREES
(numeric_expression)

DEGREES(n) Return the number of degrees in
radians as a double precision
floating-point number

RADIANS(numeric_expr
ession)

RADIANS(n) Return the number of radians in
degrees as a double precision
floating-point number.

PI() PI() Return the constant value of p,
3.1415926535897936, as a decimal
number with a precision of 38 and a
scale of 16.

RAND ()|(n) RAND () Return a random Integer value. In
SQL Server rand () function can
have parameters but DBMaster
can’t.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 63

5.5.7.2 Character Functions:

SQL server DBMaster Description
ASCII(<char_expressio
n>)

ASCII(string) Return the ASCII code value of the
leftmost character of string_exp as an
integer. These 2 functions between
DBMaster and SQL server are identical.

CHAR(<integer_expres
sion>)

CHAR(INT code) Convert the decimal code for an ASCII
character to the corresponding
character. These 2 functions between
DBMaster and SQL server are identical.

UNICODE
('ncharacter_expressio
n')

N/A Return the unicode value of the first
character of string as an integer
according to the Unicode definition.

NCHAR
(integer_expression)

N/A Convert to the corresponding character
for a Unicode character.

 CHARINDEX
(expression1 ,expressi
on2 [, start_location])
|
CHARINDEX
(expression1 ,expressi
on2)

LOCATE(STRING
string_exp1, STRING
string_exp2, INT start)

Return the starting position of the first
occurrence of string_exp1 within
string_exp2, The search for the first
occurrence of string_exp1 begins with
the first character position in
string_exp2 unless the optional
argument, start, is specified.
(1) If either string_exp1 or string_exp2
is null, the result should be null
(2) If start is null, return 0
(3) If string_exp1 is an empty string, the
result should be 1
In SQL Server if not specify the start
position default begin with the first
character position in string2 to search.
but in DBMaster must specify the third
parameter.

LEN(string_expression) LENGTH(string)
CHAR_LENTTH(string)
CHARACTER_LENTTH
(string)

Compute the length allocated to an
expression, giving the result in bytes.
These two functions between DBMaster
and SQL server are identical.

SUBSTRING(expressio
n, start, length)

SUBSTRING(string_ex
p, int start, int length)

Return the part of the string. Note that
start position in DBMaster must be
negative. However, SQL server could
use negative to indicate scan the string
backward.

COALESCE(expression
[,…,n])

COALESCE (variable,
new_value)

If the value of the variable is NULL, the
new_value is returned.

1.CASE input_pression
WHEN
when_expression
THEN
result_expressuion[….,
n][ELSE
else_result_expression]
END
2 CASE WHEN
Boolean_express
THEN
result_express[…,n][EL
SE
else_result_expression]
END

1.CASE input_pression
WHEN
when_expression
THEN
result_expressuion[….,
n][ELSE
else_result_expression]
END

2.CASE WHEN exp1
THEN result1 WHEN
exp2 THEN result2
ELSE default_value
END

CASE compares expr to each search
value one by one. If expr is equal to a
search, then returns the corresponding
result. If no match is found, then SQL
Server returns default. If default is
omitted, then SQL server returns null.
In DBMaster, you could use CASE
WHEN…THEN… WHEN…THEN…
END to implement the same function.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 64

REPLICATE
(string_expression ,inte
ger_expression)

REPEAT(string_exp, int
count)

Produces a string with char_ exp
repeated n times.

UPPER(character_expr
tession)

UPPER(String),
UCASE(String)

Convert lowercase characters to
uppercase characters. These three
functions between DBMaster and SQL
server are identical.

LOWER(character_expr
tession)

LOWER(string),
LCASE(string)

Convert all upper case characters in
string_exp to lower case. These three
functions between DBMaster and SQL
server are identical.

LTRIM(character_exprt
ession)

LTRIM(char_exp) Truncate trailing spaces from the left
end of char_exp. These two functions
between DBMaster and SQL server are
identical.

RTRIM(character_exprt
ession)

RTRIM(char_exp) Truncate the trailing spaces from the
right end of char_exp. These two
functions between DBMaster and SQL
server are identical.

N/A TRIM(char_exp) Truncate the trailing spaces from both
end of char_exp.

REPLACE(‘string_expr
ession1,’’string_express
ion2,’’string_expression
3’

REPLACE(string_exp1,
string_exp2,
string_exp3)

Replace all occurrences of string_exp2
in string_exp1 with string_exp3. These
2 functions between DBMaster and
SQL server are identical.

SOUNDEX(character_e
xprtession)

N/A Return the numeric difference of the
SOUNDEX values of the string.
DBMaster hasn’t supported this yet.

RIGHT
(character_expression
, integer_expression)

RIGHT(string_exp1,n) Return the rightmost count characters
in string

LEFT
(character_expression
, integer_expression)

LEFT(string_exp1,n) Return the leftmost count characters in
string

N/A CONCAT(string_exp1,s
tring_exp2)
||

Return a character string that is the
result of concatenating string_expr2 to
string_ep1. The resulting string is
DBMS dependent.

STR (float_expression
[, length [, decimal]])

N/A Return a character data that is the
result of converted by digital data.

STUFF
(character_expression
, start ,
length ,character_expre
ssion)

N/A Return a character string that is the
result of the one string insert into
another string .It will delete the
specified length character of the first
string from beginning, and then will
insert the second string into the first
string from start location.

REVERSE
(character_expression
)

N/A Return a character string of reverse
expression.

SOUNDEX
(character_expression

N/A Return a character code (SOUNDEX)
consists of four characters used to
assess the similarity of the two strings.

DIFFERENCE
(character_expression
,
character_expression)

N/A Return an integer value to specify the
difference of SOUNDEX between the
two character expressions.

PATINDEX
('%pattern%' ,
expression)

N/A Return the beginning position of one
mode first occurring in one expression.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 65

5.5.7.3 Conversion Functions:

SQL server DBMaster Description
CAST(expression as
Datatype)
CONVERT(<datatype>[
(<length>)],<expression
>,[,<style>])

CAST(Column as
Datatype)

DBMaster uses CAST function to cast
one data type to another. SQL server is
able to set up all data types in the sql
including bigint and sql_variant

5.5.7.4 Date Functions:

SQL server DBMaster Description
DATEADD(datepart,num
ber,date)

ADD_DAYS(DATE
date_val,INT s)

Add the int_exp number of days to the
date contained in datetime_var.
In sql ,the datepart contains the
Year,Quarter, Month ,dayofyear, day,
Week, Hour, minute, second,
millisecond. Specify the first
parameter datepart ‘D’.

DATEDIFF(datepart,star
tdate,enddate)

DAYS_BETWEEN(DAT
E date1,DATE date2)

Return the number of days between
the given two dates. date1 can be
earlier or later than date2.

DATEADD(datepart,num
ber,date)

ADD_MONTHS(DATE
date_val,INT s)

Return a date which is got from
adding s months to date_val. s can be
a negative number. Specify the first
parameter datepart ‘M’.

N/A
CURDATE() Return current date.In SQL Server we

can use select statement
CONVERT(varchar,year(getdate()))+'-
'+CONVERT(varchar,month(getdate()
))+'-
'+CONVERT(varchar,day(getdate()))
to replace

GETDATE()

NOW() Return current date and time as a
timestamp value.

DATEPART(<date_part>
,<date>)

YEAR(date),MONTH(dat
e),WEEK(date),
QUARTER(date),
DAYNAME(date),
DAYOFYEAR(date),
DAYOFMONTH(date),
DAYOFWEEK(date),
DATEPART(date),
TIMEPART(date),
MDY(date), HMS(date),
HOUR(date),
MINUTE(date),
SECOND(date)

Return the specified part of the date
as an integer.

N/A LAST_DAY(dateval) Return the last date of the month
which dateval belongs to.

DATEDIFF(<date
part>,<date1>,<date2>)

DAYS_BETWEEN(date1
,date2)/30

Return the difference between the
dates specified by the datetime1 and
datetime2 variables. This difference is
calculated in the number of months.

 NEXT_DAY(dateval,wee
kday)

Return the date of the next first
Weekday.

DATE() NOW() Return the system date.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 66

Note：Above comparing descriptions in table mainly base on DBMaster.

z Math/Number functions in SQL Server2008

The math/number functions (e.g. CEILING, ABS, FLOOR, POWER, DEGREES, RADIANS AND
SIGN) return values and the input values, and both of them are same data type. But triangle
function and other functions (including EXP, LOG, LOG10, and SQRT) will convert input values to
float and return float values.

z Character Functions in SQL Server2008

The character function e.g. QUOTENAME SQL Server proprietary uncommon function we don’t list
and introduce here.

z Date Functions in SQL Server2008:

Date function refers to time zone that we don’t mention in this document.

5.5.8 LOCKING CONCEPTS AND DATA CONCURRENCY ISSUES

SQL server DBMaster

SQL server supports table-lock, page-lock
and row-lock

DBMaster supports the record-lock, page-
lock and table-lock.
DBMaster supports the “Dirty Read”, “Read
with shared lock”, and “Read with exclusive
lock”

Recommendations:

In SQL server, before positioning UPDATE or DELETE statement, the SELECT statement
declaration must contain the FOR BROWSE option. SQL Server2000 FOR BROWSE option is
similar to the FOR UPDATE option in other SQL databases. This operation helps to prevent
conflicts with other users. DBMaster, use the “select * for update” to prevent other session from
updating the locked data. Basically, the reader of the data is never blocked both in SQL server and
DBMaster. But users should be aware of the different manners when a “select” command is
submitted on these two databases and its consequences.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 67

SQL server DBMaster
♦ SQL server transactions are explicit.
Statements are automatically committed to the
database. But users could change this pattern,
for example use” SET implict_transactions{ ON
| OFF }”to achieve the different state

♦ COMMIT WORK commits the pending

changes to the database.
♦ ROLLBACK undoes all the transactions

after the last COMMIT WORK statement.
♦ Savepoints can be set in transactions

with the following command:
SAVE TRAN savepoint_name
♦ The following command rolls back to

the specified SAVEPOINT;
ROLLBACK savepoint_name
two-phase commit is automatic and transparent
in SQL server. Two-phase commit operations
are needed only for transactions, which modify
data on two or more databases.

♦ DBMaster transactions are explicit.
Statements are automatically committed to the
database by default. But users could change
the DB_ATCMT=0 to change this pattern, or
use “set autocommit off” to achieve the same
effect.
♦ COMMIT WORK commits the pending

changes to the database.
♦ ROLLBACK undoes all the transactions

after the last COMMIT WORK statement.
♦ Savepoints can be set in transactions

with the following command:
SET SAVEPOINT savepoint_name
♦ The following command rolls back to

the specified SAVEPOINT;
ROLLBACK <savepoint_name>
Two-phase commit is automatic and
transparent in DBMaster. Two-phase commit
operations are needed only for transactions,
which modify data on two or more databases.

Recommendations:

Transactions are not implicit in DBMaster and SQL Server. Therefore, applications expect that
every statement they issue is automatically committed after it is executed. In DBMaster, you could
use “DB_ATCMT=1” in dmconfig.ini or set autocommit on/off to change this manner and In SQL
Server you can use “SET implict_transactions {ON | OFF}” to change state.

When converting an SQL Server application to a DBMaster application, you don’t need to do some
additional work. In DBMaster, transactions may also be explicitly begun by a client application by
issuing a BEGIN TRAN statement during the conversion process. AUTOCOMMIT is default
manner in DBMaster and SQL Server. Thus these two Databases will automatically commit every
statement and write changes to Journal Files. It seems to bring some convenience. As a matter of
fact, too many I/O for writing journals delays the operations. Users could easily find greatly
improvement if turning off the “AUTOCOMMIT” option.

5.5.9 UDF DIFFERENCE

A UDF is a method that can be called in the context of a statement, can take any number of
parameters, and can return any type of data.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 68

SQL server DBMaster

CREATE FUNCTION [schema_name.]
function_name
([{ @parameter_name
[AS][type_schema_name.] parameter_data_typ
e
 [= default] [READONLY] }
 [,...n]
]
)
RETURNS return_data_type
 [WITH <function_option> [,...n]]
 [AS]
 BEGIN
 function_body
 RETURN scalar_expression
 END
[;]

CREATE FUNCTION
<udf_dll_name.function_name>
(<function_datatype>)
 RETURN
<function_output_datatype>;

Recommendations:

Both SQL Server and DBMaster allow programmers to build their own user-defined functions
(UDF). Once a UDF has been written in SQL Server or DBMaster, it is treated as a new built-in
function with the same usages.

There is great difference exist between SQL Server and DBMaster although both of them have
UDF objects.

In SQL Server, we can create user defined function (UDF) by T-SQL script language so it with
more powerful in Access to the database. Whereas DBMaster use C language as the carrier to
create UDF, More embodies the function and feature of C language. But it doesn’t represent very
well in data access aspect, Because of this user need to spend time and do a careful technical
evaluation if using UDF in your application programs.

5.5.10 TRIGGER DIFFERENCE

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 69

SQL server DBMaster

CREATE TRIGGER trigger_name
ON { table | view }
[WITH ENCRYPTION]
{
{ { FOR | AFTER | INSTEAD OF }
{ [DELETE] [,] [INSERT] [,] [UPDATE] }
[WITH APPEND]
[NOT FOR REPLICATION]
AS
sql_statement [...n]
} |
{ FOR | AFTER | INSTEAD OF { [INSERT] [,]
[UPDATE] }
[WITH APPEND]
[NOT FOR REPLICATION]
AS
{ IF UPDATE column
[{ AND | OR } UPDATE column]
[...n]
| IF COLUMNS_UPDATED { bitwise_operator }
updated_bitmask
{ comparison_operator } column_bitmask [...n]
}
sql_statement [...n]
}
}

Create Trigger trigger_name {Before|After}
{Insert|Delete|Update[OF column_name]} On
Table_name {FOR EACH ROW|FOR EACH
STATEMENT}[When trigger_condition] trigger_body

ALTER TRIGGER trigger_name
ON table | view
[WITH ENCRYPTION]
{ { FOR | AFTER | INSTEAD OF { [DELETE] [,]
[INSERT] [,]
[UPDATE] }
[NOT FOR REPLICATION]
AS sql_statement [...n] }
|
{ FOR | AFTER | INSTEAD OF { [INSERT] [,]
[UPDATE] }
[NOT FOR REPLICATION]
AS
{ IF UPDATE column
[{ AND | OR } UPDATE column]
[...n]
| IF COLUMNS_UPDATED
{ bitwise_operator }updated_bitmask
{ comparison_operator } column_bitmask [...n]
}
sql_statement [...n]
}
}

ALTER TRIGGER trigger_name REPLACE WITH

DROP TRIGGER Trigger_name DROP TRIGGER Trigger_name FROM Table_name
Trigger events

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 70

There are three trigger events in the SQL Server：
FOR, AFTER,INSTEAD OF

There are four trigger events in the
DBMaster ：
BEFORE…FOR EACH
STATEMENT”,”BEFORE…FOR EACH
ROW”,”AFTER…FOR EACH
STATEMENT” ,”AFTER…FOR EACH ROW”
Note: In SQL Server, “FOR” has the similar meaning
as “AFTER” in DBMaster.

function support

Reference objects：

SQL Server support Trigger applies to both table
and view object

action time：

AFTER

trigger type：

table triggers

data reference：

deleted and inserted tables hold the old values or
new values of the rows that may be changed by the
user action in SQL Server

Reference objects：

DBMaster only supports Table object currently.

action time：

AFTER，BEFORE

trigger type：

Row triggers and statement triggers.

data reference：

DBMaster has new and old buffer corresponding
with deleted and inserted in SQL Server.

Recommendations:

There are lots of differences between SQL Server and DBMaster in the trigger.

Firstly, in syntax level, they are different from each other.

For example, creating a trigger tr0 on the table “w” in SQL Server, users would use the command-”
create trigger tr0 on w after insert as insert into q values (300,300)”.Yet in the DBMaster users
need to rewrite as ”create trigger tr0 after insert on w for each row (insert into q values (300,300));”
The syntax difference would need a bit of attention.

Secondly, there are three trigger events in SQL Server, including the “FOR”, “AFTER”,” INSTEAD
OF”. But there are four trigger events in DBMaster - “ BEFORE…FOR EACH
STATEMENT”,”BEFORE…FOR EACH ROW”,”AFTER…FOR EACH
STATEMENT” ,”AFTER…FOR EACH ROW”. In SQL Server, “FOR” has similar meaning as
“AFTER” in DBMaster.

The primary advantage of INSTEAD OF triggers in SQL Server is that they allow views that would
not be updatable support update. A view comprising multiple base tables must use an INSTEAD
OF trigger to support insert, update and deletion reference data in the tables. Another advantage of
INSTEAD OF triggers is that they allow you to code logically that can reject parts of a batch while
other parts of a batch are allowed to succeed. Please refer to the SQL Server On-Line Help if
interested.

In DBMaster, the keyword “FOR EACH ROW” means that if one record was modified in the
database then the trigger would be executed. The keyword” FOR EACH STATEMENT” means
execute the action before or after the SQL statement. The keyword [WITH ENCRYPTION] of
trigger in SQL Server is used to encrypt the table sys-comments that store the information about
triggers. However, DBMaster doesn’t provide such syntax when creating the schema object. Users
must remove the original “WITH ENCRYPTION” from SQL Server syntax.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 71

One of the most powerful features of a trigger is the ability to use a stored procedure as a trigger
action in DBMaster. Therefore, if some complex job can’t be done in DBMaster, try to implement it
in triggering Stored Procedures.

Thirdly, functions support

1) Reference objects, SQL Server supports Triggers applies to both table and view objects but
DBMaster only supports Table objects currently.

2) About trigger action time. Trigger for INSERT, UPDATE, and DELETE operations can be
specified on a table or a view. SQL Server only supports AFTER fire. But DBMaster supports both
AFTER and BEFORE.

3) About trigger types, SQL Server only supports table triggers but DBMaster includes row triggers
and statement triggers. Namely either row or table data once change triggers will be fire.

4) Last one is about trigger data reference. DML triggers use the deleted and inserted logical
(conceptual) tables. They are structurally similar to the table on which the trigger is defined, that is,
the table on which the user action is tried. The deleted and inserted tables hold the old values or
new values of the rows that may be changed by the user action in SQL Server. Different with SQL
Server, DBMaster have new and old buffer corresponding with deleted and inserted in SQL Server.

5.5.11 STORED PROCEDURE AND STORED FUNCTION

SQL server DBMaster
CREATE PROC [EDURE] procedure_name [;
number]
[{ @parameter data_type }
[VARYING] [= default] [OUTPUT]
] [,...n]
[WITH
{ RECOMPILE | ENCRYPTION | RECOMPILE ,
ENCRYPTION }]
[FOR REPLICATION]
AS sql_statement [...n]

CREATE PROCEDURE procedure-name
[(procedure-parameter [, procedure-parameter ...])]
{
[RETURNS STATUS] |
[RETURNS [STATUS,] procedure-result [,procedure-
result ...]]
} |
CREATE PROCEDURE FROM source-file-path

Recommendations:

In SQL Server, there are two types of stored procedures. The first one is the system stored
procedures which are stored in the “master” database with the “SP_ “prefix .The other is the user
stored procedure, which is put in the user database.

SQL Server stored procedures use the Transact-SQL. On the other hand, DBMaster uses the
ESQL/C for ESQL/C stored procedures or Java for Java stored procedures to do coding. But future
release version-5.2 version can supports SQL SP (Script Stored Procedure). This is the biggest
difference between these two provided stored procedures (ESQL/JAVA). T-SQL is the core
components of SQL Server. T-SQL includes the commands that can create the logic store cells. T-
SQL could be used to add and manage data or the other database objects. If T-SQL commands
were stored in SQL Server, it would be referred to as “Stored Procedures”.

To develop ESQL/C stored procedures, DBMaster has to hook up to the external C-Compiler. This
compiler is usually VC in Windows Platform, GCC in Linux. The normal process to build a C-
Compiler in DBMaster is: compile the stored procedure, put it into the corresponding folder, and
create the procedure in dmsqlc with the syntax “create procedure from …” syntax. How to write
procedural Language in DBMaster is beyond the scope of this document. For details, please refer
to the “ESQL C Programmer’s Guide” manual.

 Compare SQL Server and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 72

For Java stored procedures, if you know how to access a database using Java programs, the
coding and creating processes are very easy and fast.

5.5.12 SQL SERVER 2008 AND DBMASTER IN AP

SQL server DBMaster
Supported driver:

JDBC/ODBC,Hibernate,Nhibernate,OLE DB

Supported driver:

JDBC/ODBC, DCI, Ruby, Hibernate,
Nhibernate,OLE DB

Connection String:

ODBC:
"Driver={SQL Server};" +
 "Server=Server Name;" +
"Database=DarabaseName;" +
 "Uid=Username;" + "Pwd=Password;"

OLE DB:
"Driver=SQLOLEDB;" +
 "Data Source=ServerName;" +
 "Initial Catalog=DataBaseName;" +
 "User id=UserName;" +
 "Password=Secret;";

JDBC:

jdbc:SQL Server://IP_Address:TCP_Port;
databaseName=DatabaseName;
user=UserName;
password=Password;

Connection String:

ODBC:
"Driver={DBMaster 5.1
Driver};Database=Database
name;uid=Username;Pwd=Password;"

OLE DB:
"Provider=DMOLE51;Data Source=
Databasename;User Id= Username; Password =;"

JDBC:

Class.forName("dbmaster.sql.JdbcOdbcDriver ");
Connection conn= DriverManager.getConnection
(jdbc: dbmaster:// IP_Address:TCP_Port
/DatabaseName, user, password);

5.6 System Tables
Each database has its system table. User maybe need query these tables to get some informations.

We list three of them as following:

SQL Server DBMaster

Check one table/view exist
select 1 from sys.tables where name = ‘XXXXX’ select 1 from systable where table_name=’

XXXXX’
select 1 from sys.views where name = ‘XXXXX’ select 1 from sysviewdata where view_name=

‘XXXXX’
Check DB Version from SQL

select serverproperty('productversion') select value from sysinfo where info='VERSION'
Check Procedure exist

select count(*) from sysobjects where
name=’XXXXXXX’ and Type='P'

select count(*) from sysprocinf where modulename
= ‘XXXXXXX’

 DB Object Migration procedures 6

©Copyright 1995-2012 CASEMaker Inc. 73

6. DB Object Migration procedures

6.1 SCHEMA AND DATE MIGRATION

Please refer to chapter 4 for more information about how to migrate a database from SQL Server
to DBMaster.

You should rebuild indexes, constrains and so on after migration.

6.2 CONVERT UDF

There are great difference exists between SQL Server UDF and DBMaster UDF. Please read the
detailed introduction about it in chapter 5 sections 5.5.9.

First, we should analyze the UDF function in SQL Server.

Second, we can rewrite UDF according to DBMaster syntax.

Note: Please spend some time for a careful technical evaluation before using UDF.

6.3 CONVERT TRIGGER

SQL Server stored produces have three kinds, including DML, DDL, or logon triggers. DBMaster
only includes DML stored produces. This article will focus on (DML) triggers.

Difference in the Trigger between SQL Server and DBMaster had been introduced in chapter 5
section 5.5.10 which include syntax levels, trigger events, ”for each row/statement”
syntax, ”after/before” syntax and so on.

First, we should analyze the SQL Server Trigger.

Second, we can rewrite Triggers according to DBMaster syntax.

Note: some syntax we can’t support which should be replaced with other methods. For example,
we think to write a stored procedure for some processes.

6.4 CONVERT STORED PROCEDURE

Detailed Recommendations for stored procedures between SQL Server and DBMaster have been
introduced in chapter 5.5.11. Stored Procedure and Stored Function”. Here we mainly discuss how
to convert stored produces from SQL Server to DBMaster successfully. SQL Server stored
procedures use the T-SQL but DBMaster uses the ESQL/C for ESQL/C stored produces or java for
java stored procedures to do coding. T-SQL includes the commands that can create the logical
store cells. DBMaster can create logical store cells with SQL SP in release 5.2. And in current
DBMaster version, we can develop ESQL/C stored procedures with external C-Complier or Java
stored produces.

Because the difference is so big as above description, we can’t convert them directly. So we
should do following things step by step.

 DB Object Migration procedures 6

©Copyright 1995-2012 CASEMaker Inc. 74

1. First, we have to analyze the purpose of the stored procedures created by T-SQL in SQL
Server.

2. Next, we need choosing one language from ESQL/C and Java for creating stored procedure.

3. Rewriting the stored produces with suitable syntax for DBMaster and make it having same
actions as the old one in SQL Server.

4. Creating and testing the stored procedure in DBMaster.

Note: For moe details description about creating stored procedures by ESQL/C or JAVA, please
refer to the “ESQL C Programmer’s Guide” manual or “Creating Stored procedures using Java”
section in DBA manual.

 AP migration procedures 7

©Copyright 1995-2012 CASEMaker Inc. 75

7. AP migration procedures

It’s very important for us to check application program interfaces first. For example, we should
check whether the interfaces are supported by DBMaster if we want to migrate them from another
database.

Next, we must consider how to rewrite the connect strings according to the driver.

Finally, mark the special syntax in SQL Server and find the solution for DBMaster.

7.1 AP interface and Connect string
We must make clear what kinds of interfaces are used in application programs, and whether these
interfaces are supported by DBMaster.

What types of data provider or divers are used to access data source. JDBC, ODBC or any others,
for example: If data provider changes, we might consider changing driver.

We can discuss each tier from following aspects.

Finally, you’d better do a quick testing for the application program that has been modified. In order
to make sure it can connect to DBMaster successfully.

7.1.1 AP IN CLIENT

A part of application program codes that related to database connection or manipulation may need
to do some modifying. Such as DSN, CONNECT SRTING and so on in client.

In addition, if the application need get some information from SYSTEM Table (or CATALOG).
Please refer to the chapter 5.5 to modify the usage.

7.1.2 MIDDLE-TIER

If use COM+ or implement DB-tier encapsulation implemented with similar technology, users need
to consider modifying connect string and any other parameters of COM components in DB-tier.

7.1.3 AP OR (WEB) SERVER

Regarding AP server, users may need to modify some parameters that related to DB Server such
as Server IP address, Port Number, Driver etc.

7.1.4 AP IN SERVER

Here, users need to check whether there are some schedules or tasks deployments exist in server
separately and whether these programs need modifying.

 AP migration procedures 7

©Copyright 1995-2012 CASEMaker Inc. 76

7.2 SQL Server special syntax and feature
On one hand, we must solve connect situation, on the other hand, we must pay special attention to
special syntax in SQL Server. Consider what method is substitute for these special grammars.

There are too many special syntax exists in SQL Server. In order to find replaced solutions for an
alternative. We give some simple samples as followings. You must understand this aspect of
knowledge about SQL Server and DBMaster before migration. You also can Comparison with
chapter 5 that describes the difference between SQL Server and DBMaster. For more information
you can reference SQL Server and DBMaster User Guide.

7.2.1 FOR INSERT STATEMENT

In SQL Server, you can write a command “insert [into] table_name values (data)”,”into” keywords
can be omitted, but in DBMaster, you can’t omit “into”. So if you insert statements lacking of “into”
keyword you must add it and make statement integrated when you transfer it to DBMaster.

7.2.2 FOR “TOP” KEYWORD

In SQL Server, you can write “select top count columns_name from table_name”, but in DBMaster,
“top” keyword isn’t supported, we must use “select columns_name from table_name limit count” to
realize the same function.

7.2.3 FOR NESTED QUERY

Suppose we have a table named tb_nest that records all staff information. If we want to know who
is the latest one for each department.

In SQL Server, we can write following statements
select ID,emp_from,name,content,come_date

 from sysadm.tb_nest tb1 where

 ID=(select top 1 ID from sysadm.tb_nest tb2

 group by emp_from ,come_date,ID having tb2.emp_from = tb1.emp_from

 order by come_date desc)

In DBMaster, the grammar isn’t supported. In order to achieve the same function in DBMaster, we
adopt the method of temporary table by rewriting statements.
select emp_from, max (come_date) as come_date from tb_nest group by emp_from

into temp;

select * from tb_nest tb1 join temp tb2 on tb1.emp_from =

tb2.emp_from and tb1.come_date=tb2.come_date

 Testing application with new DB 8

©Copyright 1995-2012 CASEMaker Inc. 77

8. Testing application with new DB

Testing applications are required at any moment, at the beginning, in the process or at the end of
migration. It can help us confirm our modifications or adjustments to be befitting.

8.1 How to pre-run for skip any object
In order to find problems timely and get to know where the problems exist, we must test the
program every time to find out which part has something wrong.

It’s better for us to begin migrating next section after having tested and ensured the part of you just
finished has no problems. This is very helpful for you to migrate all application programs from SQL
Server to DBMaster successfully.

8.2 Test application with DBMaster after migration
A validate testing is required after whole application programs have been migrated completely from
SQL Server to DBMaster. You can ensure the application run normally on new platform with the
validate testing.

 Performance tuning 9

©Copyright 1995-2012 CASEMaker Inc. 78

9. Performance tuning

When you develop an application system with any database, the system performance is an
important thing and you must be concerned about it, we must tune database after migration and
make sure the application program run efficiently. Of cause, performance tuning is about the whole
processes of using database not only tuning after migration .The amount data is growing in
database. You should pay attention to database performance tuning often. If any database
performance down, we should detect database and adjust timely in use.

Performance tuning need adjusting not until migration finished from SQL Server to DBMaster. It’s
from the beginning design and planning the whole db to the end use.

Generally speaking, there are many factors affecting the performance of DBMaster. We can see
them from the following figure.

Query Optimization

Concurrent Process

Application System Architecture
Application System

Database Model Design

(Tablespace, Table, Index, Stored command, Stored procedure,
Trigger)

Daemon

(Auto-commit, Checkpoint, Update statistic, Backup server,
Replication)

Memory Allocation Database System

Disk I/O

(Database Data Partition)

OS (File system, Raid)

Network

I/O

Memory
Hardware

CPU

 Performance tuning 9

©Copyright 1995-2012 CASEMaker Inc. 79

9.1 Application
It comprises writing queries that limit the use of stored commands or searches for procedures.
Designing a good schema or developing an application with better utilities can both significantly
increase applications perform.

Using indexes can improve the application performance for accessing to database if you built the
index reasonable. For example, if you build some indexes only on the required columns in a table.
DBMaster will find the data effectively.

Another attention for Applications is Concurrent Processes. Obviously, minimizing lock contention
and avoiding deadlocks can increase throughput of applications. In addition, shortening
transactions can promote concurrency, but it is possible to degrade database performance
oppositely.

9.2 Database System
It includes Disk I/O, Memory Allocation and Daemon. Make sure there are enough physical
memory for DCCA and few I/O access times.

9.2.1 TUNING MEMORY ALLOCATION

DBMaster stores information temporarily in memory buffers and permanently on disk. Since it takes
much less time to retrieve data from memory than disk, performance will increase if data can be
obtained from the memory buffers. The size of database memory allocation will affect performance
of a database. However, performance will become an issue only if there is not enough memory. So
we must tune the memory usage for a database and it includes how to calculate the required
DCCA size, and how to monitor and allocate enough memory for the page buffers, journal buffers
and system control area.

To achieve the best performance, follow the steps in the order shown:

1. Tune the operating system.

2. Tune the DCCA memory size.

3. Tune the page buffers.

4. Tune the journal buffers.

5. Tune the SCA.

Memory requirement for DBMaster varies according to the applications in use, tune memory
allocation after tuning application programs and SQL statements.

9.2.1.1 Tuning an Operating System
The operating system should be tuned to reduce memory swapping and ensure that the system
runs smoothly and efficiently.

Memory swapping between physical memory and the virtual memory file on disks takes a
significant amount of time. It is important to have enough physical memory for running processes.
Measure the status of an operating system with the operating system utilities. An extremely high
page-swapping rate indicates that the amount of physical memory in a system is not large enough.
In this case, you should remove any unnecessary processes or add more physical memory to the
system.

 Performance tuning 9

©Copyright 1995-2012 CASEMaker Inc. 80

9.2.1.2 Tuning DCCA Memory
The Database Communication and Control Area (DCCA) is a group of shared memory allocated by
DBMaster servers. Every time DBMaster is started, it allocates and initializes the DCCA.

The DCCA is the resource most frequently accessed by DBMaster processes. It is important to
ensure there is enough physical memory to prevent the operating system from swapping the
DCCA to disks too often or it will seriously degrade performance of a database.

Usually a larger number of buffers are better for system performance. However, if the DCCA is too
large to fit in physical memory, the system performance will degrade. Therefore, it is important to
allocate enough memory for the DCCA but still fit the DCCA in physical memory.

You can set the appropriate parameters: DB_NBufs, DB_NJnlB and DB_ScaSz in dmconfig.ini
before starting the database to configure the size of each of the DCCA components.

The total memory allocation for the DCCA is the sum of the size of DB_NBufs, DB_NJnlB and
DB_ScaSz.

9.2.1.3 Tuning Page Buffer Cache
DBMaster uses the shared memory pool for the data page buffer cache. The buffer cache allows
DBMaster to speed up data access and concurrency control. Adjusting the size of the page buffers
will have the greatest effect on performance.

We can improve buffer cache performance by following ways

1. Update statistics on schema objects.

2. Set NOCACHE on large tables.

3. Reorganize data in poorly clustered indexes.

4. Enlarge cache buffers.

5. Reduce the effect of checkpoints.

For concrete realization of above methods please reference DBA manual Chapter “Performance
Tuning”.

9.2.1.4 Tuning Journal Buffers
The journal buffers store the most recently used journal blocks. With enough journal buffers, the
time required to write journal blocks to disks and roll back transactions when updating data and
reading journal blocks from disks is reduced.

You should determine whether there are sufficient journal buffers for the system. The optimum
number of journal buffers is the sum of journal blocks needed by the longest running transactions
at the same time.

There are two ways used to estimate the number of journal buffers, one is the number of used
journal blocks and the other measurement is the journal buffer flush rate.

More details please reference DBA manual Chapter “Performance Tuning”.

9.2.1.5 Tuning the SCA
Cache buffers and some control blocks, such as session and transaction information, have a fixed
size, and are pre-allocated from the DCCA when a database is started. However, some
concurrency control blocks are allocated dynamically from the DCCA while the database is running,
their size is specified by DB_ScaSz.

 Performance tuning 9

©Copyright 1995-2012 CASEMaker Inc. 81

If a database application gets the error message “database request shared memory exceeds
database startup setting”, it means that DBMaster cannot dynamically allocate memory from the
SCA area. Usually, this error is due to a long transaction using too many locks. If this situation
happens often, solve it with the methods illustrated below.

1. Avoid Long Transactions

2. Avoid Excessive Locks on Large Tables

3. Increase the SCA size

For details please reference DBA manual Chapter “Performance Tuning”

9.2.2 QUERY OPTIMIZATION

The query optimizer will make a query of SQL commands much faster and efficient by means of
choosing the best execution method internally.

If performance degrades, we should check the query plan by the command “Set dump plan on”
and the SQL to improve the performance by forcing index scan, rewriting query, etc. For details
please reference DBA manual Chapter “Performance Tuning”.

9.3 OS
A suitable OS is important for improving the performance of whole system, so please chose one
OS with special designed for supporting the application disposal and the database as possible as
you can.

In addition, about hard disks which support the technical Raid, please chose different Raid Level
for different data types.For example, in DBMaster, you can put data file into Raid 1,3,5, and put
journal file into Raid 0,which can guarantee safeness and a high efficiency.

9.4 Hardware
It is the basic factor not only affects the performance of DBMaster, but also affects the whole PC’s.

z CPU: A faster CPU or multi CPUs can help improving performance.

z Memory: Enough memory can hold more cached data, so I/O access time will be reduced.

z I/O: Faster hard disks can improve the I/O throughput and more hard disks can promote the
I/O concurrency.

z Network: Speeding up transmission for network can reduce response time for users. Using
only network protocols required will reduce load balancing of the operating systems.

Obviously, enhancing the hardware can greatly improve the overall database system
performance absolutely.

On the whole, we must rebuild indexes, adjust configuration according to DB and AP and so on
which in order to improve the database application program performance. For more contents
please refer to the DBA manual chapter “Performance Tuning”.

 Appendix – Migration Samples 10

©Copyright 1995-2012 CASEMaker Inc. 83

10. Appendix – Migration Samples

In this chapter, we will provide some real samples for both DBMaster and SQL Server. The content
involves samples for not only some Table Schema and Data but also applications with different
program languages. It provides a good demonstration of Migration from SQL Server to DBMaster.

The purpose is to help users quickly get to know the difference between DBMaster and SQL
Server, and easily catch on the migration steps. It can reduce the migration costs.

In addition, these simple samples can not contain all of instances at present. And we will enhance
all the features which the users care in this document continually.

10.1 Table Schema for all Types
In order to make users get to know Types Mapping between SQL Server and DBMaker, we give an
example here. Users can write the SQL manually or generate the Script files automatically by
JDatatransfer Tool. (We recommend using JDatatransfer tool because some Data Types in SQL
Server are special and they are not so easily perceived or understood by users).

In this section, we don’t refer the migration of DATA, and we will demonstrate the samples for
migration of ordinary types and special types data in next chapter 10.2.

10.1.1 CREATE TABLE WITH ALL TYPES IN SQL SERVER

We create a table with all types which queried from SQL Server by “select systypes.name from
systypes”.
create table mssql_all_types(

 col_bigint bigint,

 col_binary binary(200),

 col_bit bit,

 col_char char(30),

 col_date date,

 col_datetime datetime,

 col_datetime2 datetime2(7),

 col_datetimeoffset datetimeoffset(7),

 col_decimal decimal(13, 3),

 col_float float,

 col_geography geography,

 col_geometry geometry,

 col_hierarchyid hierarchyid,

 col_image image,

 col_int int,

 col_money money,

 col_nchar nchar(40),

 col_ntext ntext,

 Appendix – Migration Samples 10

©Copyright 1995-2012 CASEMaker Inc. 84

 col_numeric numeric(8, 2),

 col_nvarchar nvarchar(40),

 col_real real,

 col_smalldatetime smalldatetime,

 col_smallint smallint,

 col_smallmoney smallmoney,

 col_sql_variant sql_variant,

 col_sysname sysname,

 col_text text,

 col_time time(7),

 col_timestamp timestamp,

 col_tinyint tinyint,

 col_uniqueidentifier uniqueidentifier,

 col_varbinary varbinary(200),

 col_varchar varchar(30),

 col_xml xml)

After the table being created, you can find the Default Value is NOT NULL for following two Types.

[col_sysname] [sysname] NOT NULL,

 [col_timestamp] [timestamp] NOT NULL,

10.1.2 MIGRATE WITH JDATATRANSFER TOOL
If you import from ODBC with JDatatransfer Tool when the table “mssql_all_types” is not exist in
DBMaster, you can choose Create destination table to migrate the Table Schema from SQL
Server to DBMaster.

Certainly, you can modify the Type, Precision, Nullable for Destination Columns (Refer to 4.1.2.2
Execute steps Import from ODBC).
create table SYSADM.MSSQL_ALL_TYPES (

 COL_BIGINT INTEGER default null ,

 COL_BINARY BINARY(200) default null ,

 COL_BIT SMALLINT default null ,

 COL_CHAR CHAR(30) default null ,

 COL_DATE DATE default null ,

 COL_DATETIME TIMESTAMP default null ,

 COL_DATETIME2 TIMESTAMP default null ,

 COL_DATETIMEOFFSET CHAR(34) default null ,

 COL_DECIMAL DECIMAL(13, 3) default null ,

 COL_FLOAT REAL default null ,

 COL_GEOGRAPHY CHAR(1) default null ,

 COL_GEOMETRY CHAR(1) default null ,

 COL_HIERARCHYID CHAR(892) default null ,

 COL_IMAGE LONG VARBINARY default null ,

 COL_INT INTEGER default null ,

 COL_MONEY DECIMAL(19, 4) default null ,

 COL_NCHAR NCHAR(40) default null ,

 COL_NTEXT NCLOB default null ,

 COL_NUMERIC DECIMAL(8, 2) default null ,

 COL_NVARCHAR NVARCHAR(40) default null ,

 COL_REAL REAL default null ,

 COL_SMALLDATETIME TIMESTAMP default null ,

 Appendix – Migration Samples 10

©Copyright 1995-2012 CASEMaker Inc. 85

 COL_SMALLINT SMALLINT default null ,

 COL_SMALLMONEY DECIMAL(10, 4) default null ,

 COL_SQL_VARIANT CHAR(10) default null ,

 COL_SYSNAME NVARCHAR(128) not null ,

 COL_TEXT LONG VARCHAR default null ,

 COL_TIME CHAR(16) default null ,

 COL_TIMESTAMP BINARY(8) not null ,

 COL_TINYINT SMALLINT default null ,

 COL_UNIQUEIDENTIFIER CHAR(36) default null ,

 COL_VARBINARY BINARY(200) default null ,

 COL_VARCHAR VARCHAR(30) default null ,

 COL_XML CHAR(30) default null)

 in DEFTABLESPACE lock mode row fillfactor 100 ;

10.2 Table Schema and Data
In this section, we will divide all the Data Types into Ordinary Type and Special Type.

The Ordinary Type data is ordinary characters and the numeric data type, which can be exported
with TEXT-Format file from SQL Server via Import and Export Wizard, and imported into
DBMaster via Import from Text in JDataTransfer Tool (or via manual import command).

The Special Type data have different structures for different Databases, which must be converted
by some built-in functions or ODBC Applications. For example: via Import from ODBC in
JDataTransfer Tool.

10.2.1 ORDINARY CHARACTER AND NUMERIC DATA TYPE
Step 1: Create table ordinary_types in Oracle.
create table ordinary_types(

 col_bigint bigint,

 col_char char(30),

 col_date date,

 col_datetime datetime,

 col_datetime2 datetime2(7),

 col_datetimeoffset datetimeoffset(7),

 col_decimal decimal(13, 3),

 col_float float,

 col_int int,

 col_money money,

 col_numeric numeric(8, 2),

 col_real real,

 col_smalldatetime smalldatetime,

 col_smallint smallint,

 col_smallmoney smallmoney,

 col_time time(7),

 col_tinyint tinyint,

 col_varchar varchar(30));

Step 2: Insert Data by some Applications or by hand.

For example:

 Appendix – Migration Samples 10

©Copyright 1995-2012 CASEMaker Inc. 86

insert into ordinary_types values(10000,'COL_CHAR CHAR(30) null','2006-04-25','2006-04-25 10:23:30.123','2006-04-
25 10:23:30.1234567','2007-05-08 12:35:29.1234567 +12:15',4359305.23,9849.34,1000,8888.88,12345.23,9849.34,'2006-
04-25 10:23:30',10,83534.348,'23:24:51.1234567',10,'COL_VARCHAR VARCHAR(30) null');

insert into ordinary_types values(20000,'COL_CHAR CHAR(30) null','2006-04-26','2006-04-25 10:23:30.123','2006-04-
25 10:23:30.1234567','2007-05-08 12:35:29.1234567 +12:15',4359305.23,9849.34,1000,8888.88,12345.23,9849.34,'2006-
04-25 10:23:30',10,83534.348,'23:24:51.1234567',10,'COL_VARCHAR VARCHAR(30) null');

insert into ordinary_types values(30000,'COL_CHAR CHAR(30) null','2006-04-27','2006-04-25 10:23:30.123','2006-04-
25 10:23:30.1234567','2007-05-08 12:35:29.1234567 +12:15',4359305.23,9849.34,1000,8888.88,12345.23,9849.34,'2006-
04-25 10:23:30',10,83534.348,'23:24:51.1234567',10,'COL_VARCHAR VARCHAR(30) null');

Step 3: Create table ordinary_types in DBMaster.

You can create table manually or Import from ODBC (choose Create destination table and
modify the Type, Precision, Nullable for Destination Columns) with JDataTransfer Tool.

In addition, the Type Mapping may be different between the new version and the old version of
JDataTransfer Tool. Especially for Type NCHAR, NVARCHAR, DATE, DATETIME,
DATETIME2, DATETIMEOFFSET, SMALLDATETIME, TIME, TIMESTAMP. Please take the
following example for reference.
create table ordinary_types(

 col_bigint integer,

 col_char char(30),

 col_date date,

 col_datetime char(23),

 col_datetime2 char(27),

 col_datetimeoffset char(34),

 col_decimal decimal(13, 3),

 col_float real,

 col_int integer,

 col_money decimal(19, 4),

 col_numeric decimal(8, 2),

 col_real real,

 col_smalldatetime timestamp,

 col_smallint smallint,

 col_smallmoney decimal(10, 4),

 col_time char(16),

 col_tinyint smallint,

 col_varchar varchar(30));

Step 4: Export Data separately from SQL Server.

Please use Import and Export Wizard in SQL Server (refer to Chapter 4.1.1), and choose the
Flat File destination. Operation steps as following:

Input File Name (c:\test\ordinary_types.txt) Æ click Next Æ click Next Æ choose Source
Table or View Æ click Next Æ click Next Æ Finished.

Step 5: Import Data into DBMaster.

Please use Import from Text with JDataTransfer Tool and you must choose the uniform
separator character to export TEXT format data. For example: Comma (Semicolon by default)
for Column Delimiter, {CR}{LF} for Row Delimiter. Please take following steps and Charts for
reference.

Open Import from Text Æ click Next Æ Input Text file (c:\test\ordinary_types.txt) Æ click
Next Æ (Chart 1) Æ click Next Æ click Next Æ choose Database, User Name and Password
Æ click Next Æ(Chart 2).

(Chart 1)

 Appendix – Migration Samples 10

©Copyright 1995-2012 CASEMaker Inc. 87

(Chart 2)

In addition, you can also use the IMPORT command in dmSQL tools as following:
dmSQL> import ordinary_types from c:\test\ordinary_types.txt description c:\test\desc.txt;

desc.txt
FORMAT=VARIABLE

COLUMN_DELIMITER=','

ROW_TERMINATOR="\r\n"

 Step 6: Check the Data in DBMaster.

 Appendix – Migration Samples 10

©Copyright 1995-2012 CASEMaker Inc. 88

dmSQL> def table ordinary_types;

dmSQL> select * from ordinary_types;

10.2.2 SPECIAL DATA TYPE
Step 1: Create table special_types in SQL Server.
create table special_types(

 col_binary binary(200),

 col_bit bit,

 col_geography geography,

 col_geometry geometry,

 col_hierarchyid hierarchyid,

 col_image image,

 col_nchar nchar(40),

 col_ntext ntext,

 col_nvarchar nvarchar(40),

 col_sql_variant sql_variant,

 col_sysname sysname,

 col_text text,

 col_timestamp timestamp,

 col_uniqueidentifier uniqueidentifier,

 col_varbinary varbinary(200),

 col_xml xml);

Step 2: Insert Data by some Applications or by hand.

For example:
insert into special_types values(cast('4142434445464748494a'as binary(50)),10,null,null,CAST('/1/1/' AS
hierarchyid),cast('4142434445464748494a' as
binary(50)),'4142434445464748494a','4142434445464748494a','4142434445464748494a','IANTCHAR10','4142434445464748494
a','COL_TEXT LONG VARCHAR default null',null,'6F9619FF-8B86-D011-B42D-00C04FC964FF',cast('4142434445464748494a' as
binary(50)),'COL_XML CHAR(30) default null');

insert into special_types values(cast('4142434445464748494a'as binary(50)),10,null,null,CAST('/1/1/' AS
hierarchyid),cast('4142434445464748494a' as
binary(50)),'4142434445464748494a','4142434445464748494a','4142434445464748494a','IANTCHAR10','4142434445464748494
a','COL_TEXT LONG VARCHAR default null',null,'6F9619FF-8B86-D011-B42D-00C04FC964FF',cast('4142434445464748494a' as
binary(50)),'COL_XML CHAR(30) default null');

insert into special_types values(cast('4142434445464748494a'as binary(50)),10,null,null,CAST('/1/1/' AS
hierarchyid),cast('4142434445464748494a' as
binary(50)),'4142434445464748494a','4142434445464748494a','4142434445464748494a','IANTCHAR10','4142434445464748494
a','COL_TEXT LONG VARCHAR default null',null,'6F9619FF-8B86-D011-B42D-00C04FC964FF',cast('4142434445464748494a' as
binary(50)),'COL_XML CHAR(30) default null');

Note: It’s hard to demonstrate the migration for type GEOGRAPHY and GEOMETRY, and we
only insert NULL values.

Step 3: Create Table in DBMaster manually or Export from ODBC.

You can only export table schema from ODBC via JDataTransfer Tool, Please refer to 4.1.2.2
Execute steps Import from ODBC which include choosing Create destination table and
modifying the Type, Precision, Nullable for Destination Columns.
create table special_types(

 col_binary binary(200),

 col_bit smallint,

 col_geography char(1),

 col_geometry char(1),

 col_hierarchyid char(892),

 col_image long varbinary,

 col_nchar nchar(40),

 Appendix – Migration Samples 10

©Copyright 1995-2012 CASEMaker Inc. 89

 col_ntext nclob,

 col_nvarchar nvarchar(40),

 col_sql_variant char(10),

 col_sysname nvarchar(128) not null,

 col_text long varchar,

 col_timestamp binary(8) not null,

 col_uniqueidentifier char(36),

 col_varbinary binary(200),

 col_xml char(30));

Note: Please modify the Default Value to NOT NULL for column COL_SYSNAME and column
COL_TIMESTAMP.

Step 4: Import the special type Data into DBMaster.

Please use Import from ODBC with JDataTransfer Tool (refer to 4.1.2.2 Execute steps Import
from ODBC).

10.3 Applications (Source Code segment)
We provide some parts of Source Code segments in this section. And the issue is focusing mainly
on the different usage of Connection between DBMaster and SQL Server.

In addition, we will demonstrate the different usage of placeholder in JAVA and C# Language
Samples. The placeholder in JAVA is “?” when users pass parameters; the placeholder in C# is
same “?” for DBMaster, and is “@xxxxx” for SQL Server (SQL Server Data Provider for .NET).

10.3.1 JAVA LANGUAGE

z SQL Server
try{

 Class.forName(“com.microsoft.sqlserver.jdbc.SQLServerDriver”).newInstance();

Connection conn =
DriverManager.getConnection("jdbc:sqlserver://192.168.0.8:1433;DatabaseName=testdb","sa","pw123");

PreparedStatement pstmt = conn.prepareStatement("insert into ordinary_types(col_varchar, col_int,
col_float) values(?,?,?)");

 pstmt.setString(1, “varchar-abcbc”);

 pstmt.setInt(2, 1000);

 pstmt.setFloat(3, (float)32322555.3332);

 pstmt.executeUpdate();

......

 }

 }catch(Exception ex){

 ex.printStackTrace();

}

z DBMaster
try{

 Class.forName(“dbmaster.sql.JdbcOdbcDriver”).newInstance();

Connection conn = DriverManager.getConnection("jdbc:dbmaster:testdb","SYSADM","test123");

PreparedStatement pstmt = conn.prepareStatement("insert into ordinary_types(col_varchar, col_int,
col_float) values(?,?,?)");

 pstmt.setString(1, “varchar-abcbc”);

 Appendix – Migration Samples 10

©Copyright 1995-2012 CASEMaker Inc. 90

 pstmt.setInt(2, 1000);

 pstmt.setFloat(3, (float)32322555.3332);

 pstmt.executeUpdate();

......

 }

 }catch(Exception ex){

 ex.printStackTrace();

}

Note: DBMaster only supports JDBC Type2 at present, users need to install native DLL for JDBC
Driver. In addition, don’t forget to set IP and Port in Dmconfig.ini.

10.3.2 C# LANGUAGE

z SQL Server (SQL Server Data Provider for .NET)
String connStr = "Data Source=localhost;Initial Catalog=testdb;User Id=sa;Password=pwd123;";

SqlConnection conn = new SqlConnection(connStr);

conn.Open();

SqlCommand cmd = new SqlCommand();

cmd.Connection = conn;

cmd.CommandText = “insert into ordinary_types(col_int, col_char, col_numeric) values(@p1,@p2,@p3)”;
cmd.Parameters.Add(new SqlParameter(“@p1”,SqlDbType.Int));

cmd.Parameters.Add(new SqlParameter(“@p2”,SqlDbType.Char, 30));

cmd.Parameters.Add(new SqlParameter(“@p3”,SqlDbType.Decimal));

cmd.Parameters[“@p1”].Value = 1001;

cmd.Parameters[“@p2”].Value = “Li Ping”;

cmd.Parameters[“@p3”].Value = 2345.34;

cmd.ExecuteNonQuery();

cmd.Parameters.Clear();

 cmd.CommandText = “select col_int, col_char, col_numeric from ordinary_types where col_int=1001”;
cmd.CommandType = CommandType.Text;

SqlDataReader reader = cmd.ExecuteReader();

 while(reader.Read()){

 for(int i=0;i<reader.FieldCount;i++){

 Console.WriteLine(reader[i]);

 }

 }

 conn.Close();

z DBMaster (ADO.NET ODBC Provider)
 String connStr = “Driver={DBMaster 5.1 Driver}; Database=testdb; Uid=SYSADM; Pwd=test123”;

OdbcConnection conn = new OdbcConnection(connStr);

 conn.Open();

 OdbcCommand cmd = new OdbcCommand();

cmd.Connection = conn;

cmd.CommandText = “insert into ordinary_types(col_int, col_char, col_numeric) values(?,?,?)”;
cmd.Parameters.Add(new OdbcParameter(“p1”,OdbcType.Int));

cmd.Parameters.Add(new OdbcParameter(“p2”,OdbcType.Char, 30));

cmd.Parameters.Add(new OdbcParameter(“p3”,OdbcType.Numeric));

cmd.Parameters[0].Value = 1001;

cmd.Parameters[1].Value = “Li Ping”;

cmd.Parameters[2].Value = 2345.34;

 Appendix – Migration Samples 10

©Copyright 1995-2012 CASEMaker Inc. 91

cmd.ExecuteNonQuery();

cmd.Parameters.Clear();

 cmd.CommandText = “select col_int, col_char, col_numeric from ordinary_types where col_int=1001”;
 OdbcDataReader reader = cmd.ExecuteReader();

 while(reader.Read()){

 for(int i=0;i<reader.FieldCount;i++){

 Console.WriteLine(reader[i]);

 }

 }

 conn.Close();

Note: We don’t provide the .NET Provider at present, so we only can use ADO.NET ODBC
Provider or ADO.NET OLEDB Provider to connect DBMaster (The following Source Code
segment is for ADO.NET OLEDB Provider).
 String connStr = “Provider=DMOLE51; Data Source=testdb; User Id=SYSADM; Password=test123”;

OleDbConnection conn = new OleDbConnection(connStr);

 conn.Open();

 OleDbCommand cmd = new OleDbCommand();

cmd.Connection = conn;

cmd.CommandText = “insert into ordinary_types(col_int, col_char, col_numeric) values(?,?,?)”;
cmd.Parameters.Add(new OleDbParameter(“p1”,OleDbType.Integer));

cmd.Parameters.Add(new OleDbParameter(“p2”,OleDbType.Char, 30));

cmd.Parameters.Add(new OleDbParameter(“p3”,OleDbType.Numeric));

cmd.Parameters[0].Value = 1001;

cmd.Parameters[1].Value = “Li Ping”;

cmd.Parameters[2].Value = 2345.34;

cmd.ExecuteNonQuery();

cmd.Parameters.Clear();

 cmd.CommandText = “select col_int, col_char, col_numeric from ordinary_types where col_int=1001”;
 OleDbDataReader reader = cmd.ExecuteReader();

 while(reader.Read()){

 for(int i=0;i<reader.FieldCount;i++){

 Console.WriteLine(reader[i]);

 }

 }

 conn.Close();

10.3.3 PHP LANGUAGE

We demonstrate the PHP PDO samples. If users don’t adopt PDO, please refer to our PHP
samples in Installed Directory which use the PHP ODBC API.

z SQL Server
<?php

try{

$dbh = new PDO ("mssql:host=localhost;dbname=testdb","as","pwd123");
 /*** echo a message saying we have connected ***/

 echo 'Connected to database';

}catch(PDOException $e){

 echo $e->getMessage();

 }

?>

z DBMaster

 Appendix – Migration Samples 10

©Copyright 1995-2012 CASEMaker Inc. 92

<?php

try{

 $dbh = new PDO("odbc:Driver={DBMaster 5.1 Driver};Database=testdb", "sysadm", "test123");

 /*** echo a message saying we have connected ***/

 echo 'Connected to database';

}catch(PDOException $e){

 echo $e->getMessage();

 }

?>

Note: If users didn’t use the PDO in SQL Server as following:
<?php

$dbhandle =mssql_connect(“localhost”,”sa”,”pwd123”) or die("Couldn't connect to SQL Server ");

$dbselected=mssql_select_db(“testdb”, $dbhandle) or die("Couldn't open database");

$result = mssql_query(“select sysobjects.name from sysobjects”);

$numRows = mssql_num_rows($result);

?>

Please use PHP ODBC API for DBMaster.
<?php

$conn=odbc_connect("dbsample5","SYSADM","");

$rs_count=odbc_exec($conn,"select count(*) from SYSUSER");

?>

	Overview
	Analyze the current system
	Analyze AP system
	Analyze Database objects

	Setup migration environment
	Methods for migrating table schema and data
	Database transfer tools
	SQL SERVER IMPORT AND EXPORT WIZARD
	JDATATRANSFER TOOL IN DBMASTER

	Other 3rd party tools
	SQL SCRIPT BUILDER
	SQLTOTXT TOOL

	Modify DDL manually
	Write code

	Compare SQL Server and DBMaster
	Schema Comparison
	THE TERMINOLOGY COMPARISON
	STORAGE STRUCTURE COMPARISON
	PROCESS AND RELATED TERM DEFINITION
	RESERVED WORD CONFLICT IN DATABASE OBJECT
	DATABASE OBJECT DESIGN CONCERNS

	Data Types Mapping
	COMMON DATA TYPE MAPPING
	DATA TYPES MAPPING CONCERN

	Index Mapping
	Support platform
	Data Manipulation Language (DML)
	CONNECTING TO THE DATABASE
	SELECT STATEMENT
	INSERT STATEMENT
	UPDATE STATEMENT
	DELETE STATEMENT
	OPERATORS
	BUILT-IN FUNCTIONS
	LOCKING CONCEPTS AND DATA CONCURRENCY ISSUES
	UDF DIFFERENCEUDF DIFFERENCE
	TRIGGER DIFFERENCE
	STORED PROCEDURE AND STORED FUNCTION
	SQL SERVER 2008 AND DBMASTER IN AP

	System Tables

	DB Object Migration procedures
	SCHEMA AND DATE MIGRATION
	CONVERT UDF
	CONVERT TRIGGER
	CONVERT STORED PROCEDURE

	AP migration procedures
	AP interface and Connect string
	AP IN CLIENT
	MIDDLE-TIER
	AP OR (WEB) SERVER
	AP IN SERVER

	SQL Server special syntax and feature
	FOR INSERT STATEMENT
	FOR “TOP” KEYWORD
	FOR NESTED QUERY

	Testing application with new DB
	How to pre-run for skip any object
	Test application with DBMaster after migration

	Performance tuning
	Application
	Database System
	TUNING MEMORY ALLOCATION
	QUERY OPTIMIZATION

	OS
	Hardware

	Appendix - Migration Samples
	Table Schema for all Types
	Create Table with All Types in SQL Server
	Migrate with JDatatransfer Tool

	Table Schema and Data
	Ordinary character and Numeric Data Type
	Special Data Type

	Applications (Source Code segment)
	JAVA Language
	C# Language
	PHP Language

