

DBMaker DCI MFCOBOL User's Guide
Version: 5.1

Document No: 51/DBME51-T12302010-01-DMFC
Author: DBMaster Support & production Team, Research & Development Division,

SYSCOM Computer Engineering CO.
Print Date: Nov 1 2011

 Introduction

DBMaster DCI MFCOBOL User’s Guide

1

Table of Content

1 Introduction ..4
1.1 Additional Resources... 5
1.2 Technical Support .. 5
1.3 Document Conventions.. 6

2 DCI for MFCOBOL..7
2.1 DCI for MFCOBOL Overview... 7

File System and Databases ... 7
Relation Chart .. 8
System Requirements .. 8

2.2 Setup Instructions .. 9
Install Net Express 5.1 ... 9
Install DBMaster 5.1 ... 9
Obtain the DBMaster libraries for MFCOBOL... 9
Obtain the oldnames.lib from Visual Studio ... 9
SET CALLFH "DBMAKERINTF".. 9
Building and Running program with IDE... 9
Building and Running program with Command Line ... 10

2.3 Basic Configuration for DCI ..11
DCI_DATABASE... 11
DCI_LOGIN... 11
DCI_PASSWD .. 11

2.4 Generate XFD files .. 12
Generate XFD files with configure Option .. 12

3 Compiler and Runtime Options ..13
3.1 Using DCI for MFCOBOL Systems .. 13
3.2 Using the MFCOBOL Default System.. 13
3.3 Using Views ... 14
3.4 Using DCI_SET_WHERE .. 14

4 Configuration File Variables..15
4.1 Setting DCI_CONFIG Variables ... 15

DCI_CASE .. 15
DCI_COMMIT_COUNT... 16
DCI_DATABASE... 16
DCI_DEFAULT_TABLESPACE.. 17
DCI_DISCONNECT .. 17
DCI_GETENV... 17
DCI_LOGFILE .. 17

 Introduction

DBMaster DCI MFCOBOL User’s Guide

2

DCI_LOGIN... 18
DCI_LOGTRACE ... 18
DCI_MAPPING... 18
DCI_MAX_ATTRS_PER_TABLE... 19
DCI_MAX_BUFFER_LENGTH ... 19
DCI_PASSWD .. 20
DCI_STANDARD_FILE ... 20
DCI_SETENV.. 21
DCI_SET_WHERE... 21
DCI_TABLESPACE .. 22
DCI_USEDIR_LEVEL... 22
DCI_USER_PATH... 23
DCI_VARCHAR... 23
DCI_XFDPATH... 23

4.2 DCI_SET_TABLE_CACHE Variables .. 23
4.3 Mapping to Multiple Databases.. 25

5 MFCobol Application with DCI ..27
5.1 DLL .. 27
5.2 EXE.. 27
5.3 GNT ... 27

Use DCI Indirectly .. 27
Use DCI Directly... 29

6 How to build DBMASTERINTF.DLL...30
6.1 DBMASTERINTF and DBMASTERINTF.dll .. 30

Usage of DBMASTERINTF.. 30
Usage of DBMASTERINTF.dll ... 30

6.2 Build Steps ... 31
Environment preparing .. 31
Related file preparing .. 31
The bulid dll command .. 32
Reference DBMASTERINTF.dll in program ... 32

7 Additions of DCI ...33
7.1 Addition DCI Feature ... 33
7.2 Addition DCI Functions .. 33

DCI_SETENV.. 34
DCI_GETENV... 34
DCI_DISCONNECT .. 34
DCI_SET_TABLE_CACHE.. 35

8 COBOL Conversions ...36
8.1 Mapping COBOL Data Types... 36
8.2 Mapping DBMaster Data Types ... 37

9 Limitations of DCI ..39
9.1 Table or Column Name Limitations .. 39
9.2 Comp-1/comp-2 Type .. 39
9.3 Enough length for redefine one column ... 40
9.4 Define a variable for Space.. 40
9.5 Execute with run/runw/runmw command ... 40

 Introduction

DBMaster DCI MFCOBOL User’s Guide

3

10 Compatibility for Visual COBOL ...42
Environment Variables ... 42
Microsoft Visual Studio.. 42
N type.. 42
FCD3 OPTION.. 42

11 Appendix – XML for old versions ...44
11.1 Generate XML files with DCIBench.. 44

DCI_XMLPATH... 44
11.2 Using DCI with XML... 45

Type comp/comp-4/comp-5 .. 45
Type comp-1/comp-2... 46
Redefines statement in .cpy.. 47
Type Z9... 47
Type N... 47
multi-01 Level .. 48

..

 DBMaker DCI MFCOBOL User’s Guide

1 Introduction

This book is intended for software developers who want to combine the reliability of COBOL
programs with flexibility and efficiency of a relational database management system
(RDBMS). The manual gives systematic instructions on how to use the DBMaster COBOL
Interface for MFCOBOL (DCI for MFCOBOL), a program designed to allow for efficient
management and integration of data with COBOL using the DBMaster database engine...

DCI for MFCOBOL provides a communication channel between COBOL programs and
DBMaster. DBMaster COBOL Interface for MFCOBOL (DCI for MFCOBOL) allows COBOL
programs to efficiently access information stored in the DBMaster relational database. In
order to store data, COBOL programs usually use standard B-TREE files. Information
stored in B-TREE files are traditionally accessed through standard COBOL I/O statements
like READ, WRITE and REWRITE.

COBOL programs can also access data stored in the DBMaster RDBMS. Traditionally,
COBOL programmers use a technique called embedded SQL to embed SQL statements
into the COBOL source code. Before compiling the source code, a special pre-compiler
translates SQL statements into "calls" to the database engine. These calls are executed
during the runtime in order to access the DBMaster RDBMS.

Though this technique is a good solution for storing information on a database using
COBOL programs, it has some drawbacks. First, it implies COBOL programmers have a
good knowledge of the SQL language. Second, a program written in this way is not portable.
In other words, it cannot work both with B-TREE files and the DBMaster RDBMS.
Furthermore, SQL syntax often varies from database to database. This means that a
COBOL program embedding SQL statements tailored for a specific DBMaster RDBMS
cannot work with another database. Finally embedded SQL is difficult to implement with
existing programs. In fact, embedded SQL requires significant application re-engineering,
including substantial additions to the working storage, data storage, and reworking the logic
of each I/O statement.

There is an alternative to embedded SQL. Some suppliers have developed seamless
interfaces from COBOL to the database. These interfaces translate COBOL I/O commands
into SQL statements on the fly. In this way, COBOL programmers need not be familiar with
SQL and COBOL programs can stay portable. However, performance is the main problem
here.

In fact, SQL has a different purpose than COBOL I/O statements. SQL is intended to be a
set-based, ad hoc query language that can find almost any combination of data from a
general specification. By contrast, COBOL B-TREE (or other data structure) calls are
designed for direct data access via well-defined traversal keys and/or navigation logic.
Therefore, forcing transaction rich, performance sensitive COBOL applications to operate
exclusively via SQL-based I/O is often an inappropriate method.

CASEMaker's COBOL interface product, DCI for MFCOBOL, does not use SQL for this
reason. Instead, it provides for direct data storage access and traversal in a manner similar

DBMaster DCI MFCOBOL User’s Guide 4

 DBMaker DCI MFCOBOL User’s Guide

to the way COBOL itself accesses any other user replaceable COBOL file system. DCI for
MFCOBOL provides a seamless interface between a COBOL program and the DBMaster
file system. Information exchange between the application and the database is invisible to
the end user. On the other hand, for desktop decision support systems (DSS), data
warehousing, or 4GL applications, DBMaster provides full SQL-based file/ data storage
access as required, as well as the reliability and robustness of a RDBMS.

CASEMaker’s Database and DCI for MFCOBOL products combine the power of 4GLs and
navigational data structures with the ad hoc flexibility of SQL-based database access and
reporting. They also provide startling performance.

1.1 Additional Resources
DBMaster provides a complete set of DBMS manuals in addition to this one. For more
detailed information on a particular subject, consult one of the books listed below:

• For an introduction to DBMaster’s capabilities and functions, refer to the “DBMaster
Tutorial”.

• For more information on designing, administering, and maintaining a DBMaster
database, refer to the “Database Administrator's Guide”.

• For more information on DBMaster management, refer to the “JServer Manager
User’s Guide”.

• For more information on DBMaster configurations, refer to the “JConfiguration Tool
Reference”.

• For more information on DBMaster functions, refer to the “JDBA Tool User’s Guide”.

• For more information on the dmSQL interface tool, refer to the “dmSQL User’s Guide”.

• For more information on the SQL language used in dmSQL, refer to the “SQL
Command and Function Reference”.

• For more information on the ESQL/C programming, refer to the “ESQL/C User’s
Guide”.

• For more information on the native ODBC API, refer to the “ODBC Programmer’s
Guide”.

• For more information on error and warning messages, refer to the “Error and
Message Reference”.

DBMaster DCI MFCOBOL User’s Guide

1.2 Technical Support
CASEMaker provides thirty days of complimentary email and phone support during the
evaluation period. When software is registered an additional thirty days of support will be
included. Thus, extending the total support period for software to sixty days. However,
CASEMaker will continue to provide email support for any bugs reported after the
complimentary support or registered support has expired (free of charges).

Additional support is available beyond the sixty days for most products and may be
purchased for twenty percent of the retail price of the product. Please contact
sales@casemaker.com for more details and prices.

CASEMaker support contact information for your area (by snail mail, phone, or email) can
be located at: www.casemaker.com/support. It is recommended that the current database
of FAQ’s be searched before contacting CASEMaker support staff.

Please have the following information available when phoning support for a troubleshooting
5

mailto:sales@casemaker.com
http://www.casemaker.com/support

 DBMaker DCI MFCOBOL User’s Guide

enquiry or include the information with a snail mail or email enquiry:

• Product name and version number

• Registration number

• Registered customer name and address

• Supplier/distributor where product was purchased

• Platform and computer system configuration

• Specific action(s) performed before error(s) occurred

• Error message and number, if any

Any additional information deemed pertinent

1.3 Document Conventions
This book uses a standard set of typographical conventions for clarity and ease of use. The
NOTE, Procedure, Example, and CommandLine conventions also have a second setting
used with indentation.

Convention Description
Italics Italics indicate placeholders for information that must be supplied,

such as user and table names. The word in italics should not be
typed, but is replaced by the actual name. Italics also introduce
new words, and are occasionally used for emphasis in text.

Boldface Boldface indicates filenames, database names, table names,
column names, user names, and other database schema objects.
It is also used to emphasize menu commands in procedural
steps.

KEYWORDS All keywords used by the SQL language appear in uppercase
when used in normal paragraph text.

small caps Small capital letters indicate keys on the keyboard. A plus sign (+)
between two key names indicates to hold down the first key while
pressing the second. A comma (,) between two key names
indicates to release the first key before pressing the second key.

NOTE Contains important information.
 Procedure Indicates that procedural steps or sequential items will follow.

Many tasks are described using this format to provide a logical
sequence of steps for the user to follow

 Example Examples are given to clarify descriptions, and commonly include
text, as it will appear on the screen.

CommandLine Indicates text, as it should appear on a text delimited screen. This
format is commonly used to show input and output for dmSQL
commands or the content in the dmconfig.ini file

Figure 1-1 Document Conventions Table

DBMaster DCI MFCOBOL User’s Guide 6

 DBMaker DCI MFCOBOL User’s Guide

2 DCI for MFCOBOL

This chapter provides essential information pertaining to setting up and configuring a DCI
for MFCOBOL environment for DBMaster. It also provides information on running the
demonstration program that assists in understanding the basic functions of DCI (the DCI
libraries that are essential to interfacing with DBMaster).

The following topics are covered in this chapter:

• Software and hardware requirements

• Generate XFD files

• Step-by-step setup instructions for Windows platforms

• Options for configuring DCI for MFCOBOL for DBMaster

2.1 DCI for MFCOBOL Overview
DCI for MFCOBOL is that it comprises the DCI libraries, and XML or XFD files containing a
database table description must have the same name of the database table plus the “.xml”
or “.xfd” extension.

Although traditional COBOL file systems and databases both contain data, they
significantly differ. Databases are generally more robust and reliable than traditional file
systems. Furthermore, they act as efficient systems for data recovery from software or
hardware crashes. In addition, in order to ensure data integrity, DBMaster RDBMS provides
support for referential actions, such as domain, column, and table constraints.

File System and Databases

There are some parallels in the way data is stored by a database and COBOL indexed files.
The following table shows the different data structures of each system and how they
correspond to one another.
COBOL Indexed
File System Object

Database Object

Directory Database
File Table
Record Row
Field Column

Figure 2-1 COBOL and Database Object Structures

Indexed file operations are performed on records in COBOL and operations are performed
on columns in a database. Logically, a COBOL indexed file represents a database table.
Each record in a COBOL file represents a table row in a database and each field represents
a table column. Data can have multiple definition types in COBOL while table columns in a
database have to be associated with a particular data type such as integer, character, or
date.

DBMaster DCI MFCOBOL User’s Guide 7

 DBMaker DCI MFCOBOL User’s Guide

 Example

A COBOL record is defined using the following format:
terms-record.

 03 terms-code PIC 999.

 03 terms-rate PIC s9v999.

 03 terms-days PIC 9(2).

 03 terms-descript PIC x(15).

The COBOL record displayed in the above example would be represented in a database as
shown below. Each row is an instance of the COBOL 01 level record terms-record.
terms_code terms_rate terms_da

ys
terms_descript

234 1.500 10 net 10
235 1.750 10 t 10
245 2.000 30 net 30
255 1.500 15 net 15
236 2.125 10 net 10
237 2.500 10 net 10
256 2.000 15 net 15

Figure 2-2 COBOL Records Converted to Database Rows

Relation Chart

Figure 2-3 Data Flowchart

System Requirements
DCI for MFCOBOL for DBMaster is an add-on module that must be linked with Micro
Focus Net Express. In order to interface, Net Express 5.1 or later must be used.

DBMaster DCI MFCOBOL User’s Guide 8

 DBMaker DCI MFCOBOL User’s Guide

The following platforms are supported by DCI for MFCOBOL:

• Windows 98/ME/NT/2000/XP and Windows 2008, Windows 7
The following software must be installed for DCI for MFCOBOL to function:

• DBMaster version 5.1 or later

• Micro Focus Net Express 5.1 or later

• Microsoft Visual Studio 2005 or 2008 (Testing on Windows 2008)

2.2 Setup Instructions
Net Express5.1 and DBMaster5.1 must be installed and configured. Refer to the Quick
Start insert included with the DBMaster CD for instructions on installation of DBMaster.

Install Net Express 5.1
Please refer to MF install manual.

Install DBMaster 5.1
Please refer to the Quick Start.

Obtain the DBMaster libraries for MFCOBOL
Copy the libraries to your working directory, for example:
copy dmdcic.lib d:\mfdcilib

copy dmmfcbl.lib d:\mfdcilib

copy dmapi51.lib d:\mfdcilib

Obtain the oldnames.lib from Visual Studio
You can copy this library from VS 2005 or VS 2008, for example:
copy “C:\Program Files\Microsoft Visual Studio 9.0\VC\lib\oldnames.lib” d:\mfdcilib

SET CALLFH "DBMAKERINTF"
Add the following statement to the beginning of the COBOL program.
$SET CALLFH "DBMAKERINTF"

Building and Running program with IDE
After finishing the installing of the necessary software, you can build and run the COBOL
programs with IDE or Command Line (refer to next chapter). For each MFCOBOL project
that you want to build with DCI for MFCOBOL, you can do with the following steps.
1. Build the project to the executable file.

a) Execute Micro Focus Net Express
b) Create a new empty project
c) Choose Project -> Add file to project to add your COBOL source code
d) Choose Project -> Package selected files and then choose Executable File

(EXE)
e) Press mouse right button at tempate.int, and choose Remove file build type
f) Choose Project -> Build Setting and choose Link and change the category to

Advanced
g) Add the MF DCI libraries in the Link with these LIBs:

d:\mfdcilib*.lib

DBMaster DCI MFCOBOL User’s Guide 9

 DBMaker DCI MFCOBOL User’s Guide

h) Choose Project ->Project Properties can set Compile Environment for 64bit
(32bit by default)

i) Choose Project -> Rebuild to compile and build the project
2. Now you will have template.exe under debug\ or release\ directory depends on the

settings of Type of Build.
3. Generate an XFD file for database table description, and copy file to the same

directory with executable file.
Certainly, you can use DCI_XFDPATH to appoint the locations.
NOTE: About generate XFD, please refer to Chapter 2.4.
4. Set IDE/Environment Setting in Net Express, for example: DCI_CONFIG=d:\mfdci.cfg
DCI_DATABASE DBSAMPLE5

DCI_LOGIN SYSADM

DCI_PASSWD

5. Now you can run your MFCOBOL executable file with DCI.
6. If you want to use DCI_SETENV, DCI_GETENV in your COBOL program.

a) Copy mfcall.obj to d:\mfdcilib
b) Choose Project -> Build Setting and choose link and switch the category to

Advanced
c) Add the mfcall.obj in the Link with these OBJs
d) d:\mfdcilib\mfcall.obj
e) Choose Project -> Rebuild to compile and build the project

NOTE: How to generate the mfcall.obj file, please refer to Chapter 7 for more information
about mfcall.obj

Building and Running program with Command Line
This section mainly introduces Command Line compile way for using MFCOBOL with DCI.
You can do with the following steps.

1. Init the Microsoft VC compiling environment
x32: C:\Program Files\Microsoft Visual Studio 9.0"\VC\bin\vcvars32.bat

x64: C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\bin\amd64\vcvarsamd64.bat

2. Set Path environment
x32: set path=%path%;C:\Program Files\Micro Focus\Net Express 5.1\Base\Bin

x64: set path=%path%;C:\Program Files (x86)\Micro Focus\Net Express 5.1\Base\Bin\WIN64

3. set DCI_CONFIG variable
set DCI_CONFIG=D:\mfdci.cfg

For example (d:\mfdci.cfg):
DCI_DATABASE DBSAMPLE5

DCI_LOGIN SYSADM

DCI_PASSWD

4. Build the execution file
Execute following command in command line
cbllink –ofile_name.exe -s file_name.cbl oldnames.lib dmmfcbl.lib dmdcic.lib dmapi51.lib

5. Execute execution file
The file_name.exe will be produced under current working directory and you can run it.
\file_name.exe
NOTE: Before running the exe, you must have prepared the relevant XFD file, please refer
to Chapter 2.4.

6. If you want to use DCI_SETENV, DCI_GETENV in your COBOL programs.
cbllink -ofile_name.exe -s file_name.cbl mfcall.obj oldnames.lib dmmfcbl.lib dmdcic.lib dmapi51.lib
NOTE: How to generate the mfcall.obj file, please refer to Chapter 7 for more information

DBMaster DCI MFCOBOL User’s Guide 10

 DBMaker DCI MFCOBOL User’s Guide

about mfcall.obj

2.3 Basic Configuration for DCI
The DCI_CONFIG file is located in a directory determined by an environment variable
(see “Configuration File Variables” for details). To start working with DCI right away there
are some important settings in the DCI_CONFIG file that need setting. The DCI_CONFIG
file sets parameters for DCI that determine how data appears in the database, as well as
performs some basic DBA functions to allow accessing to the database. The following
configuration variables need setting in order to get DCI working.

• DCI_DATABASE

• DCI_LOGIN

• DCI_PASSWD

 Example
The following shows a basic DCI_CONFIG file.
DCI_DATABASE DBMaster_Test

DCI_LOGIN SYSADM

DCI_PASSWD

DCI_XFDPATH C:\mftest\xfd

DCI_DATABASE
The database that all transactions from DCI are made to is specified by DCI_DATABASE.
The database must first be established after DBMaster setup.

 Syntax
The following entry must be included in the configuration file.
DCI_DATABASE DBMaster_Test

NOTE: Refer to the section on “DCI_DATABASE“in Chapter 4 for more information.

DCI_LOGIN
To ensure that your COBOL applications have permission to access objects in the
database, it is given a username. The configuration variable DCI_LOGIN sets the
username for all COBOL applications that use DCI. Initially this variable is set to SYSADM
to ensure full access to the database. This value can be set to another username. See
“DCI_LOGIN” in Chapter 4 for more information.

 Syntax
In order to connect to the database via the username SYSADM, the following must be
specified in the DCI configuration file:
DCI_LOGIN SYSADM

DCI_PASSWD
Once a username has been specified via the DCI_LOGIN variable, a database account is
associated with it. There is no password for SYSADM. This is the default setting for
DBMaster, but it can be changed. Consult with the database administrator to ensure that
the account information (LOGIN, PASSWD) is correct. See “DCI_PASSWD” in Chapter 4
for more information.

DBMaster DCI MFCOBOL User’s Guide

 Syntax
If the database account is set to SYSADM, then the configuration file should appear as the

11

 DBMaker DCI MFCOBOL User’s Guide

following.
DCI_PASSWD

2.4 Generate XFD files
If you want to use the MFCOBOL with DCI, you must prepare the XFD format file
containing a database table description and must have the same name of the database
table plus the “.xfd” extension.

Generate XFD files with configure Option
If we want to use xfd file as database table description, it’s so easy for you to generate the
XFD file at the same time when building the COBOL program.
1. You only need to use the option “-uxfd.cfg” in Command Line as the following:
cbllink –ofile_name.exe –uxfd.cfg -s file_name.cbl oldnames.lib dmmfcbl.lib dmdcic.lib dmapi51.lib
2. Content of xfd.cfg file has only one keyword as the following:
CREATEXFD

NOTE: This option can be supported by Micro Focus Net Express 5.1 (Detail Version is
5.104.0083 which doesnn’t include the Personal Edition Version).
If use the old version earlier than 5.104.0083, you may encounter the following error
message:
Micro Focus Net Express V5

Version 5.100.0157 Copyright (C) 1984-2008 Micro Focus (IP) Limited.

URN AXCGG/AA0/00000

Execution error : file 'C:\Program Files\Micro Focus\Net Express 5.1\Base\BIN\check.lbr\XFDGEN.gnt'

error code: 114, pc=0, call=1, seg=0

114 Attempt to access item beyond bounds of memory (Signal 11)

* Checking terminatedERROR: (9) Program indicated failure

DBMaster DCI MFCOBOL User’s Guide 12

 DBMaker DCI MFCOBOL User’s Guide

3 Compiler and Runtime Options

This section describes configuration settings for DCI for MFCOBOL used to specify which
file system to use.

3.1 Using DCI for MFCOBOL Systems
Existing files opened with a COBOL application are associated with their respective file
systems as defined in the XFD file. When new files are created by a COBOL application
with DCI, users must insert the following syntax in the beginning of their COBOL program.

 Syntax
$SET CALLFH ”DBMASTERINTF

In addition, if you want to use a COBOL application with DCI, besides statically adding
above one Line in first line of the COBOL program, you can dynamically use the DCI with a
build option as the following (only supported after 5.1 Version):

 Example 1
cbllink -otempate.exe -uxfdlib.cfg -s tempate.cbl oldnames.lib dmmfcbl.lib dmdcic.lib dmapi51.lib

xfdlib.cfg context as the following:
CREATEXFD CALLFH "DBMAKERINTF"

 Example 2
cbllink -otempate.exe -uxfddll.cfg -s tempate.cbl

xfddll.cfg context as the following:
CREATEXFD CALLFH "DBMAKERINTF.DLL"

 Example 4
cobol tempate.cbl CREATEXFD CALLFH "DBMAKERINTF" gnt

CALLFH "EXTFH" is default option, the following two lines is equivalent.
cobol tempate.cbl CREATEXFD gnt

cobol tempate.cbl CREATEXFD CALLFH "EXTFH" gnt

 Example 15
cobol tempate.cbl CREATEXFD CALLFH "DBMAKERINTF.dll" gnt

NOTE: About DBMAKERINTF.dll, please refer to Chapter 6.

3.2 Using the MFCOBOL Default System
After adding "$SET CALLPFH "DBMASTERINTF" in first line of the COBOL program, all
the files opened in the COBOL become DCI files. If users want to OPEN the file as original
MFCOBOL files, they should write the following line in the DCI configuration file.

 Syntax

DBMaster DCI MFCOBOL User’s Guide 13

 DBMaker DCI MFCOBOL User’s Guide

DBMaster DCI MFCOBOL User’s Guide 14

DCI_STANDARD_FILE

 Example

If file1 and file2 are MFCOBOL files
DCI_STANDARD_FILE file1

DCI_STANDARD_FILE file2

3.3 Using Views
DCI allows the use of DBMaster views instead of a table. In this case DCI users must
manually create a view and know the following limitations:

• Only provided on a single table

• Only the Project column on the original table (without expression, aggregate,
UDF ...etc)

• No group by, no distinct, no union, no join

• Simple “Where” predicate (NO sub-query permitted)

3.4 Using DCI_SET_WHERE
This function is used to specify an additional WHERE condition for a succeeding START
operation.

 Example:

If you want to query city names that start with A, add the following to your codes:
WORKING-STORAGE SECTION.

01 dci_where_constraint pic x(4095).

...

PROCEDURE DIVISION.

...

* to pecify dci_where_constraint

move low-values to dci_where_constraint

 open i-o idx-1-file

 move "city_name = 'a%'" to dci_where_constraint

inspect dci_where_constraint replacing trailing spaces by low-values.

CALL "DCI_SET_WHERE" USING dci_where_constraint

 move spaces to idx-1-key

 start idx-1-file key is not less idx-1-key

 * to remove dci_where_constraint

 move low-values to dci_where_constraint

 move spaces to idx-1-key

 start idx-1-file key is not less idx-1-key

 ...

NOTE: There is a restriction for using DCI_SET_WHERE, you must CALL it before
executing the START operations. In addition, mfcall.obj must be included when building
COBOL (Refer to Chapter 7 for more information about mfcall.obj).

 DBMaker DCI MFCOBOL User’s Guide

4 Configuration File Variables

This section lists the acceptable ranges of data for DCI, as well as tables specifying how
COBOL data types are mapped to DBMaster data types. Configuration file variables are
used to modify the standard behavior of DCI and stored in a file called DCI_CONFIG.

4.1 Setting DCI_CONFIG Variables
It is possible to give a configuration file a different address by setting a value to an
environment variable called DCI_CONFIG. The value assignable to this environment
variable can be either a full pathname or simply the directory where the configuration file
resides. In this case, DCI will look for a file called DCI_CONFIG stored in the directory
specified in the environmental variable. If the file specified in the configuration variable
doesn't exist, DCI doesn't display an error and assumes that no configuration variable has
been assigned. This variable is set in the COBOL runtime configuration file.

 Syntax

In DCI runtime, the configuration file called DCI_CONFIG in the directory c:\etc\test can be
read.
set DCI_CONFIG=c:\etc\test\mfdcitest.cfg

DCI_CASE

File names in COBOL are case insensitive, but table names are case sensitive. This
configuration variable determines how file names are translated into table names. Setting
the configuration variable to lower means that file names are translated into table names
with all lowercase characters. Setting the configuration variable to upper means that file
names are translated into table names with all uppercase characters. Setting the
configuration variable to ignore means that file names will not be translated into table
names with all lowercase or uppercase characters. The default setting for DCI_CASE is
lower.

 Example

If your file name is DBCS words and you hope the table name is same, set DCI_CASE to
ignore.
DCI_CASE IGNORE

NOTE: The DCI_CASE key can work only when DB_IDCap=0 (case sensitive) in
dmconfig.ini, if DB_IDCap=1 (case insensitive) by default it’s meaningless to set
DCI_CASE.

DBMaster DCI MFCOBOL User’s Guide 15

 DBMaker DCI MFCOBOL User’s Guide

DCI_COMMIT_COUNT

The DCI_COMMIT_COUNT configuration variable indicates the conditions under which a
COMMIT WORK operation is issued. There are two possible values, 0 and <n>.

• DCI_COMMIT_COUNT=0

No automatic commit is done (default value).

• DCI_COMMIT_COUNT=<n>

Under this condition, DCI waits until the number of WRITE, REWRITE, AND DELETE
operations are equal to the value <n> before issuing a COMMIT WORK statement. This
rule is applied just if the file is open in “output” or “exclusive” mode.

DCI_DATABASE

DCI_DATABASE is used to specify the name of the database which established during the
setup of DBMaster, or created by users.

 Example 1

The following entry has to be included in the configuration file if the database used is
named DBMaster_Test.
DCI_DATABASE DBMaster_Test

 Example 2

Sometimes, the database name is not known in advance, and for this reason it is necessary
to set it dynamically during runtime. In cases like this, it is possible to write special code in
the COBOL program similar to the one listed below. The following code has to be executed
before the first OPEN statement has been executed.
CALL "DCI_SETENV" USING "DCI_DATABASE" , "DBMaster_Test"

 Example 3

Sometimes we want to access a table on a different database. You can use
DCI_DATABASE to connect to more than one database and dynamically switch between
databases.
* connect to DBSAMPLE5 to access idx-1-file

CALL "DCI_SETENV" USING z"DCI_DATABASE" z"DBSAMPLE5"

....

open output idx-1-file

....

* connect to DCIDB to access idx-2-file

CALL "DCI_SETENV" USING z"DCI_DATABASE" z"DCIDB"

....

open output idx-2-file

....

* to switch dynamically to DBSAMPLE5 connection

CALL "DCI_SETENV" USING z"DCI_DATABASE" z"DBSAMPLE5"

close idx-1-file

...

DBMaster DCI MFCOBOL User’s Guide 16

 DBMaker DCI MFCOBOL User’s Guide

DCI_DEFAULT_TABLESPACE

This variable is used to set the default tablespace where new tables are stored. The
specified tablespace must already exist in the database. If no tablespace is specified by this
variable, then new tables will be created in the default user tablespace.

 Example
DCI_DEFAULT_TABLESPACE ts4mfdci

DCI_DISCONNECT

This function is used to disconnect from a database.

 Example 1

If there is only one connection in the MF COBOL program, use the following code to
disconnect from the database.
 01 dci_opcode pic x(2).

 move space to dci_opcode

....

 CALL "DCI_DISCONNECT" USING dci_opcode

NOTE: Because internal code check char[0] and char[1] for space, and needs defining a
variable (dci_opcode) for CALL "DCI_DISCONNECT". Otherwise, Error-“access invalid
address” will occur.

 Example 2

If there is more than one connection in the MF COBOL program, use the following code to
disconnect from a specific database.
CALL "DCI_DISCONNECT" USING "DBSAMPLE5"

DCI_GETENV

The function is used to read the environment variable. Certainly, you can use ACCEPT to
get them.

 Syntax
ACCEPT variable FROM ENVIRONMENT "environment variable"

Equal to
CALL “DCI_GETENV” USING “environment variable”, variable

 Example
 01 dci_login pic x(256).

 move "SYSADM" to dci_login

 CALL "DCI_GETENV" USING z"DCI_LOGIN" dci_login

NOTE: If users define a variable (dci_login) for CALL "DCI_GETENV" USING ……, they
must use pic x(256) to define it for output buffer, and internal code will get 256 for
checking.

DCI_LOGFILE

This variable specifies the pathname of the DCI log file used to write all of the I/O
operations executed by the interface. The dci_trace.log log file stored in an appointed
directory is used for debugging purposes. The use of a log file slows down the performance

DBMaster DCI MFCOBOL User’s Guide 17

 DBMaker DCI MFCOBOL User’s Guide

of DCI. For this reason it is not recommended to add this variable in the configuration file
unless deemed absolutely necessary.

 Example

A sample log file entry into the Configure file:
DCI_LOGFILE c:\mfdcitest\dci_trace.log

DCI_LOGIN

DCI_LOGIN is a variable that allows specification of a username in order to connect to the
database system. It has no default value. Therefore, if no username is specified, no login
will be used.

The username specified by the DCI_LOGIN variable should have RESOURCE authority or
higher with the database. Additionally, the user should have permission with existing data
tables. New users may be created using the JDBA Tool, or dmSQL.
NOTE: For more detailed information on creating new users, refer to the JDBA Tool
User’s Guide or Database Administrator’s Guide.

 Example

A sample username entry, JOHNDOE, made in the Configure file:
 DCI_LOGIN JOHNDOE

DCI_LOGTRACE

This variable sets different levels for the trace log.

0: no trace

1: connect trace

2: record i/o trace

3: full trace

4: internal debug trace

DCI_MAPPING

This variable is used to associate particular filenames with a specific XFD dictionary in the
DCI system. In this way, one XFD dictionary can be used in conjunction with multiple files.
A “pattern” can be made up of any valid filename characters. It may include the wildcard “*”
symbol, which stands for any number of characters, or the question mark “?”, which stands
for a single occurrence of any one character and can be used multiple times.

 Syntax
DCI_MAPPING [pattern = base-xfd-name] ...

 Example 1

The pattern “CUST*1” and base-XFD-name “CUSTOMER” will cause filenames such as
“CUST01”, “CUST001”, “CUST0001” and “CUST00001” to be associated with the XFD
dictionary file “customer.xfd”.
DCI_MAPPING CUST*1=CUSTOMER ORD*=ORDER “ord cli*=ordcli”

 Example 2

DBMaster DCI MFCOBOL User’s Guide 18

 DBMaker DCI MFCOBOL User’s Guide

The pattern “CUST????” and base-XFD-name “CUST” will cause filenames such as
“CUSTOMER” and “CUST0001” to be associated with the XFD dictionary file “cust.xfd”.
DCI_MAPPING CUST????=CUST

DCI_MAX_ATTRS_PER_TABLE

A DBMaster table may only have up to 2000 columns (The max column of a table also
depends on the page size). A COBOL file with more than 2000 fields will not be able to map
all fields to columns in the table. DCI provides the DCI_MAX_ATTRS_PER_TABLE
configuration variable to define the number of fields at which the table will be split into two
or more distinct tables. The multiple resulting tables must have unique names, so DCI
appends the table name with an underscore (_) character followed by letters in consecutive
order (A, B, C, etc.).

 Example 1

A COBOL file has 300 fields, add the following statement:
SELECT FILENAME ASSIGN TO “customer”

 Syntax

The following line must be added in the Configure file:
DCI_MAX_ATTRS_PER_TABLE = 100.

 Example 2

Three tables will be created with the following names:
customer_a

customer_b

customer_c

DCI_MAX_BUFFER_LENGTH

DCI_MAX_BUFFER_LENGTH is used to split a COBOL data record into multiple database
tables, similar to the function performed by DCI_MAX_ATTRS_PER_ TABLE. However,
the cutoff value used to determine where a table will be split is determined by buffer length.
The default value is 4096.

 Example 1

A COBOL record size contains 9000 bytes of data, add the following statement:
SELECT FILENAME ASSIGN TO "customer"

 Syntax

The following line must be added in the Configure file:
DCI_MAX_BUFFER_LENGTH 3000

 Example 2

Three tables will be created with the following names:
customer_a

customer_b

customer_c

DCI_NULL_ON_ILLEGAL_DATA

DBMaster DCI MFCOBOL User’s Guide 19

 DBMaker DCI MFCOBOL User’s Guide

DCI_NULL_ON_ILLEGAL_DATA determines how COBOL data that is considered illegal by
the database will be converted before it is stored. The value 1 causes all illegal data (except
key fields) to be converted to null before it is stored. The value 0 (default value) causes the
following conversions to occur:

• Illegal LOW-VALUES: stored as the lowest possible value (0 or - 99999...).

• Illegal HIGH-VALUES: stored as the highest possible value (99999...).

• Illegal SPACES: stored as zero.

• Illegal data in key fields is always converted, regardless of the value of this
configuration variable.

DCI_PASSWD

Once a username has been specified via the DCI_LOGIN variable, a database account is
associated with it. A password needs designating to this database account. This can be
done with the variable DCI_PASSWD.

 Example 1

If the password you want to designate to the database account is SUPERVISOR, the
following must be specified in the configuration file:
DCI_PASSWD SUPERVISOR

 Example 2

A password can also be accepted from a user upon execution of the program. This allows
for greater reliability. To do this, the DCI_PASSWD variable must be set according to the
response.
ACCEPT RESPONSE NO-ECHO.
CALL “DCI_SETENV” USING "DCI_PASSWD" , RESPONSE.

In this case, however, you should furnish a native API to call in order to read and write
environment variables,

 Syntax 1

This statement can be used in the COBOL program to write or update the environment
variable.
 CALL “DCI_SETENV” USING “environment variable”, value.

 Syntax 2

This statement can be used in the COBOL program to read the environment variable.
 CALL “DCI_GETENV” USING “environment variable”, value.

DCI_STANDARD_FILE

This variable allows users to open files in their original MFCOBOL file system format.

 Example

If file1 and file2 are MFCOBOL files.
DCI_STANDARD_FILE file1

DCI_STANDARD_FILE file2

DBMaster DCI MFCOBOL User’s Guide 20

 DBMaker DCI MFCOBOL User’s Guide

DCI_SETENV

Before using this variable it is important to note that users need to add null terminate for a
character string before calling DCI_SETENV.

There are several ways to null terminate the string:

 Example 1
CALL "DCI_SETENV" USING z"DCI_DATABASE" z"DBSAMPLE5".

CALL "DCI_SETENV" USING z"DCI_LOGIN" z"SYSADM".

 Example 2
....

01 command-str1 pic x(50).

01 command-str2 pic x(50).

....

MOVE "DCI_DATABASE"&x"00" TO command-str1.

MOVE "DBSAMPLE5"&x"00" TO command-str2.

CALL "DCI_SETENV" USING command-str1 command-str2.

MOVE "DCI_LOGIN"&x"00" TO command-str1.

MOVE "SYSADM"&x"00" TO command-str2.

CALL "DCI_SETENV" USING command-str1 command-str2.

 example 3
....

01 command-str1 pic x(50).

01 command-str2 pic x(50).

....

move spaces to command-str1 command-str2

string "DCI_DATABASE" delimited by size

low-values delimited by size into command-str1

string "DBSAMPLE5" delimited by size

low-values delimited by size into command-str2

CALL "DCI_SETENV" USING command-str1 command-str2

move spaces to command-str1 command-str2

string "DCI_LOGIN" delimited by size

low-values delimited by size into command-str1

string "SYSADM" delimited by size

low-values delimited by size into command-str2

CALL "DCI_SETENV" USING command-str1 command-str2

DCI_SET_WHERE

This function is used to specify an additional WHERE condition for a succeeding START
operation.

 Example

If you want to query city names that start with A, add the following to your codes:
WORKING-STORAGE SECTION.

DBMaster DCI MFCOBOL User’s Guide 21

 DBMaker DCI MFCOBOL User’s Guide

DBMaster DCI MFCOBOL User’s Guide 22

01 dci_where_constraint pic x(4095).

...

PROCEDURE DIVISION.

...

* to pecify dci_where_constraint

move low-values to dci_where_constraint

 open i-o idx-1-file

 move "city_name = 'a%'" to dci_where_constraint

inspect dci_where_constraint replacing trailing spaces by low-values.

CALL "DCI_SET_WHERE" USING dci_where_constraint

 move spaces to idx-1-key

 start idx-1-file key is not less idx-1-key

 * to remove dci_where_constraint

 move low-values to dci_where_constraint

 move spaces to idx-1-key

 start idx-1-file key is not less idx-1-key

 ...

NOTE: There is a restriction for using DCI_SET_WHERE, you must CALL it before
executing the START operations. In addition, mfcall.obj must be included when building
COBOL (Refer to Chapter 7 for more information about mfcall.obj).

DCI_TABLESPACE

This allows you to define in which tablespace to create a table. It also works with wildcards.
It is important only when a table is first created. Once the table exists, DCI does not monitor
the value of this variable.

 Example 1

You want to create the customer table in tablespace tbs1:
DCI_TABLESPACE customer=tbs1

 Example 2

You want to create all tables that begin with cust in tablespace tbs1.
DCI_TABLESPACE cust*=tbs1

NOTE: Beside this variable, you can refer to DCI_DEFAULT_TABLESPACE which is also
related to Tablespace.

DCI_USEDIR_LEVEL

If this variable is set > 0, use the directory in addition to the name of the table.

1: The option is equal to C:\usr\test\01\clients ==> 01clients

2: The option is equal to; C:\usr\test\01\clients ==> test01clients

3: The option is equal to; C:\usr\test\01\clients ==> usrtest01clients

 Example (file name is 01clients with DCI_USEDIR_LEVEL 1)
 SELECT IDX-1-FILE
 ASSIGN TO DISK "C:\user\test\01\clients"

 ORGANIZATION IS INDEXED

 ACCESS IS DYNAMIC

 RECORD KEY IS IDX-1-KEY.

 DBMaker DCI MFCOBOL User’s Guide

DCI_USER_PATH

When DCI looks for a file or files, the variable DCI_USER_PATH allows for specification of
a username, or names. The user argument can be a period (.) with regard to the files, or the
name of a user on the system.

 Syntax
DCI_USER_PATH user1 [user2] [user3] .

The type of OPEN statement issued for a file will determine the results of this setting.

OPEN STATEMENT DCI_USER_
PATH

DCI SEARCH
SEQUENCE

RESULT

OPEN INPUT or
OPEN I/O

Yes 1-list of users in
USER_PATH
2-the current user

The first valid file will
be opened.

OPEN INPUT or
OPEN I/O

No The user associated
with DCI_LOGIN.

The first file with a
valid user/file- name
will be opened.

OPEN OUTPUT Yes or no Doesn’t search for a
user.

A new table will be
made for the name
associated with
DCI_LOGIN.

 Figure 4-1 Types of OPEN Statements

DCI_VARCHAR

With this variable set to 1 the following action occurs: When a COBOL program creates a
new table. (thought OPEN OUTPUT verb) all fields that were created as CHAR will become
VARCHAR.

DCI_XFDPATH

DCI_XFDPATH is used to specify the name of the directory where data dictionaries are
stored. The default value is the current directory.

 Example 1

Include the following entry in the configuration file in order to store data dictionaries in the
directory c:\mfdcitest\xfd.
DCI_XFDPATH c:\mfdcitest\xfd

 Example 2

If it is necessary to specify more than one path, different directories have to be separated
by spaces.
DCI_XFDPATH c:\mfdcitest\xfd1 c:\mfdcitest\xfd2

 Example 3

In a WIN-32 environment, “embedded spaces” can be specified with double-quotes.
DCI_XFDPATH c:\mfdcitest\xfd “c:\my folder with space\xfd”

4.2 DCI_SET_TABLE_CACHE Variables
By default, DCI pre-reads data into the client data buffer to reduce client/server network
traffic. The default maximum pre-read buffer is the smaller of 8kb/(record size) or 5 records.

DBMaster DCI MFCOBOL User’s Guide 23

 DBMaker DCI MFCOBOL User’s Guide

It is possible that user's application will read a small table and only read a few records
which are less than 8kb/(record size). For example, for a table with an average record size
of 20 bytes and a total of 1000 records, DBMaster will be able to read about 400 records
(8kb/20) but the user's applications may only read 4 or 5 records then call the START
statement again. In this case, set the following variable to reduce the cache size and
improve performance. Consider the application and data's behavior carefully when using
these variables or it may increase network traffic and cause reductions in performance.

The following are the three DCI_CACHE variables to set in the DCI_CONFIG file:

• DCI_DEFAULT_CACHE_START – sets the first read records to cache for START or
READ. The default is the maximum of 8kb/(record size) or 5 records.

• DCI_DEFAULT_CACHE_NEXT – sets the next read records after the first cached
record for START or READ have been read or discarded. The default is the maximum
of 8kb/(record size) or 5 records.

• DCI_DEFAULT_CACHE_PREV – sets the read records for caching the previous
records after the first cache record for START or READ have been read or discarded.

• The default is DCI_DEFAULT_CACHE_NEXT/2.

Setting these variables in the DCI_CONFIG will affect all the tables in the user's
applications.

 Example
DCI_DEFAULT_CACHE_START 10

DCI_DEFAULT_CACHE_NEXT 10

DCI_DEFAULT_CACHE_PREV 5

To dynamically change the cache for tables set these variables before START or READ
statements.

COBOL code fragment:
…

WORKING-STORAGE SECTION.

 01 CACHE-START PIC 9(5) VALUE 10.

 01 CACHE-NEXT PIC 9(5) VALUE 20.

 01 CACHE-PREV PIC 9(5) VALUE 30.

…

PROCEDURE DIVISION.

 OPEN INPUT IDX-1-FILE

 MOVE SPACES TO IDX-1-KEY

 CALL "DCI_SET_TABLE_CACHE" USING CACHE-START

 CACHE-NEXT

 CACHE-PREV

 START IDX-1-FILE KEY IS NOT LESS IDX-1-KEY.

 PERFORM VARYING IND FROM 1 BY 1 UNTIL IND = 10000

 READ IDX-1-FILE NEXT AT END EXIT PERFORM END-READ

 DISPLAY IND AT 0101

 END-PERFORM

 CLOSE IDX-1-FILE

DBMaster DCI MFCOBOL User’s Guide 24

 DBMaker DCI MFCOBOL User’s Guide

4.3 Mapping to Multiple Databases
It is possible to reference tables in different databases with DB_DCI_MAP by specifing
different files or COBOL file-prefix links to the DBMS. This scenario is illustrated through
the following example.

 Example

To reference table idx1 in the databases DBSAMPLE5 (as default), DBCED, and
DBMULTI, add the following settings in the DCI_CONFIG configuration file.
DCI_DB_MAP C:\mftest\CED DBCED
DCI_DB_MAP C:\mftest\MULTI DBMULTI

To create the idx1 table in these databases by specifying different files:
...
 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT IDX-1-FILE

 ASSIGN TO DISK " C:\mftest\CED\IDX1"

 ORGANIZATION IS INDEXED

 ACCESS IS DYNAMIC

 RECORD KEY IS IDX-1-KEY.

 SELECT IDX-2-FILE

 ASSIGN TO DISK " C:\mftest\MULTI\IDX1"

 ORGANIZATION IS INDEXED

 ACCESS IS DYNAMIC

 RECORD KEY IS IDX-2-KEY.

 SELECT IDX-3-FILE

 ASSIGN TO DISK "IDX1"

 ORGANIZATION IS INDEXED

 ACCESS IS DYNAMIC

 RECORD KEY IS IDX-3-KEY.

 DATA DIVISION.

 FILE SECTION.

 FD IDX-1-FILE.

 01 IDX-1-RECORD.

 03 IDX-1-KEY PIC X(10).

 03 IDX-1-ALT-KEY.

 05 IDX-1-ALT-KEY-A PIC X(30).

 05 IDX-1-ALT-KEY-B PIC X(10).

 03 IDX-1-BODY PIC X(50).

 FD IDX-2-FILE.

 01 IDX-2-RECORD.

 03 IDX-2-KEY PIC X(10).

 03 IDX-2-ALT-KEY.

 05 IDX-2-ALT-KEY-A PIC X(30).

 05 IDX-2-ALT-KEY-B PIC X(10).

 03 IDX-2-BODY PIC X(50).

DBMaster DCI MFCOBOL User’s Guide 25

 DBMaker DCI MFCOBOL User’s Guide

DBMaster DCI MFCOBOL User’s Guide 26

 FD IDX-3-FILE.

 01 IDX-3-RECORD.

 03 IDX-3-KEY PIC X(10).

 03 IDX-3-ALT-KEY.

 05 IDX-3-ALT-KEY-A PIC X(30).

 05 IDX-3-ALT-KEY-B PIC X(10).

 03 IDX-3-BODY PIC X(50).

 WORKING-STORAGE SECTION.

 PROCEDURE DIVISION.

 LEVEL-1 SECTION.

 MAIN-LOGIC.

 * make IDX1 table on DBCED

 OPEN OUTPUT IDX-1-FILE

 MOVE "IDX IN DBCED" TO IDX-1-BODY

 MOVE "A" TO IDX-1-KEY

 WRITE IDX-1-RECORD

 MOVE "B" TO IDX-1-KEY

 WRITE IDX-1-RECORD

 MOVE "C" TO IDX-1-KEY

 WRITE IDX-1-RECORD

 CLOSE IDX-1-FILE

 * make IDX1 table on DBMULTI

 OPEN INPUT IDX-1-FILE

 OPEN OUTPUT IDX-2-FILE

 PERFORM UNTIL 1 = 2

 READ IDX-1-FILE NEXT AT END EXIT PERFORM END-READ

 MOVE IDX-1-RECORD TO IDX-2-RECORD

 MOVE "IDX IN DBMULTI" TO IDX-2-BODY

 WRITE IDX-2-RECORD

 END-PERFORM

 CLOSE IDX-1-FILE IDX-2-FILE

 * make IDX1 table on DBSAMPLE5

 OPEN INPUT IDX-1-FILE

 OPEN OUTPUT IDX-3-FILE

 PERFORM UNTIL 1 = 2

 READ IDX-1-FILE NEXT AT END EXIT PERFORM END-READ

 MOVE IDX-1-RECORD TO IDX-3-RECORD

 MOVE "IDX IN DBSAMPLE5" TO IDX-3-BODY

 WRITE IDX-3-RECORD

 END-PERFORM

 CLOSE IDX-1-FILE IDX-3-FILE

 DBMaker DCI MFCOBOL User’s Guide

5 MFCobol Application with DCI

There are four ways to run a MF COBOL program, such as DLL, EXE, GNT and INT that is
similar as one of GNT usage (Use DCI Indirectly).Now we will detailed introduce these
ways

5.1 DLL
After setting DCI_CONFIG variables and preparing configuration file, users can build a
MFDCI program to DLL.

In Micro Focus NetExpress, create a new empty project, add COBOL file to the project,
select Dynamic link Library (DLL) type, and add DBMaster DCI Lib(dmdcic.lib, dmapi51.lib,
dmmfcbl.lib), Microsoft Visual Studio lib(oldnames.lib) to link, link with mfcall.obj if use
DCI_SETENV, DCI_GETENV in your COBOL program. Then, you can rebuild the project,
finishing building, one DLL file will be created under debug\ or release\ directory of current
work directory (Please refer to Chapter Building and Running program with IDE for detail
steps).

At last, you get a DCI DLL, and can call it in MF COBOL Programs. For the method of
calling the DCI DLL, users must prepare a calling program to call DLL. Calling DCI DLL has
no difference with calling ordinary MF COBOL DLL.

5.2 EXE
If users need to build EXE, all steps are same with building DLL except one part: when
building EXE in Micro Focus NetExpress project, users should select "Executable file
(EXE)”, not "Dynamic link Library (DLL)". In addition, EXE can directly run.

5.3 GNT
Generated Code files (GNT) are created by the Compiler's generate phase when
requested. These files are portable to the same chip-set, but are operating system
independent.

If you want to use DCI with GNT, please take the following two methods for reference.

Use DCI Indirectly

You can build your COBOL programs with DCI to Dynamic-link library (DLL) or System
Executable files (EXE), and call this DLL/EXE in your GNT.

For this usage, the GNT is similar as Intermediate code files (INT). It’s only a type of simple
proprietary executable files that need access to the run-time system provided with Object
COBOL

DBMaster DCI MFCOBOL User’s Guide
 Example For GNT: myprog.cbl

27

 DBMaker DCI MFCOBOL User’s Guide

To make use of the GNT, you must compile your programs to intermediate or Generated
Code at first. For example, typing:
cobol myprog.cbl gnt

myprog.cbl

 PROGRAM-ID. PInvoke.

 WORKING-STORAGE SECTION.

 01 messageBuffer PIC x(32).

 PROCEDURE DIVISION.

 display "Start Main - Pinvoke ..."

 move "Call Custchar Mode" to messageBuffer

 call "CUSTOMER" using messageBuffer

 display "Main - Pinvoke finished."

 *STOP RUN.

 EXIT.

 Example for DLL: custchar.cbl

You can build custchar.cbl to DLL in command line or in IDE (please refer to Chapter
Building and Running program with IDE for details), and call customer.dll by myprog.gnt.
cbllink -d -s -ocustomer.dll customer.cbl oldnames.lib dmmfcbl.lib dmdcic.lib dmapi51.lib

customer.cbl

 $SET CALLFH "DBMASTERINTF"

 IDENTIFICATION DIVISION.

 PROGRAM-ID. CUSTCHAR.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT CUSTOMER-FILE ASSIGN TO "customer"

 ORGANIZATION IS INDEXED

 RECORD KEY F-C-CODE

 ACCESS IS DYNAMIC

 LOCK MODE IS AUTOMATIC.

 DATA DIVISION.

 FILE SECTION.

 FD CUSTOMER-FILE.

 01 CUSTOMER-RECORD.

 03 F-C-CODE PIC X(5).

 03 F-C-NAME PIC X(15).

 03 F-C-EMAILID PIC X(25).

 03 F-C-TEL PIC X(20).

 03 F-C-ADDRESS1 PIC X(58).

 03 F-C-ADDRESS2 PIC X(58).

 03 F-C-LIMIT PIC 9(8).

 03 F-C-AREA PIC X.

 WORKING-STORAGE SECTION.

 PROCEDURE DIVISION.

 PROCEDURE-BODY.

 OPEN OUTPUT CUSTOMER-FILE.

 CLOSE CUSTOMER-FILE

 OPEN I-O CUSTOMER-FILE.

 MOVE "12" TO F-C-CODE

 MOVE "OK" TO F-C-NAME

DBMaster DCI MFCOBOL User’s Guide 28

 DBMaker DCI MFCOBOL User’s Guide

DBMaster DCI MFCOBOL User’s Guide 29

 MOVE "OK" TO F-C-EMAILID

 MOVE "OK" TO F-C-TEL

 MOVE "OK" TO F-C-ADDRESS1

 MOVE "OK" TO F-C-ADDRESS2

 MOVE 123 TO F-C-LIMIT

 MOVE "OK" TO F-C-AREA

 write CUSTOMER-RECORD.

 CLOSE CUSTOMER-FILE

 OPEN I-O CUSTOMER-FILE.

 READ CUSTOMER-FILE

 INVALID KEY

 DISPLAY "顧客コードが無効です"

 NOT INVALID KEY

 DISPLAY "OK" 00104000

 END-READ. 00105000

 CLOSE CUSTOMER-FILE.

 EXIT PROGRAM

 STOP RUN.

Use DCI Directly

If you want to use DCI in your GNT, you must compile your programs to Generated Code
with DBMASTERINTF.dll.

 Example for GNT: custchar.cbl
cobol custchar.cbl CALLFH "DBMASTERINTF.dll" gnt

Certainly, you can use “$SET CALLFH "DBMASTERINTF.dll" in first line of programs to
replace the “CALLFH "DBMASTERINTF.dll"” in compile commands.

For details about DBMASTERINTF.dll, please refer to Chapter 6.
 $SET CALLFH "DBMASTERINTF.dll"

 DBMaker DCI MFCOBOL User’s Guide

6 How to build DBMASTERINTF.DLL

If you want to use DBMaster with DCI in you Cobol Programs, you must add $SET CALLFH
"DBMASTERINTF" or $SET CALLFH "DBMASTERINTF.dll" in first line. Certainly, you
can replace them in command lines as the following sample:
cobol custchar.cbl CALLFH "DBMASTERINTF.dll" gnt

NOTE: DCI don’t support the usage of DBMASTERINTF.dll in old versions (before 5.1.1).

6.1 DBMASTERINTF and DBMASTERINTF.dll
The keyword DBMASTERINTF indicates using DCI with Static-link library (LIB), and the
keyword DBMASTERINTF.dll indicates using DCI with Dynamic-link library (DLL).
Dynamic-link library can be linked by any type of the Executable files, and Static-link library
can be only linked by EXE/DLL.

Usage of DBMASTERINTF

Add $SET CALLFH "DBMASTERINTF" in first line of programs.
$SET CALLFH "DBMASTERINTF"

Build custchar.cbl to DLL in command lines or in IDE
cbllink -d -s -ocustomer.dll customer.cbl oldnames.lib dmmfcbl.lib dmdcic.lib dmapi51.lib

Build custchar.cbl to EXE in command lines or in IDE
cbllink -s -ocustomer.exe customer.cbl oldnames.lib dmmfcbl.lib dmdcic.lib dmapi51.lib

Certainly, if you only want to build the program to GNT executable file, you can use the
following command and don’t need to add “$SET CALLFH "DBMASTERINTF "” in first line
of programs.
cobol custchar.cbl CALLFH "DBMASTERINTF" gnt

Usage of DBMASTERINTF.dll

Add $SET CALLFH "DBMASTERINTF.dll" in first line of programs.
 $SET CALLFH "DBMASTERINTF.dll"

Build custchar.cbl to EXE in command lines or in IDE
cbllink -s -ocustomer.dll customer.cbl

Certainly, if you only want to build the program to GNT executable file, you can use the
following command and don’t need to add “$SET CALLFH "DBMASTERINTF.dll"” in first
line of programs.
cobol custchar.cbl CALLFH "DBMASTERINTF.dll" gnt

 Note

DBMaster DCI MFCOBOL User’s Guide 30

 DBMaker DCI MFCOBOL User’s Guide

If you want to use "DBMASTERINTF.dll", and use DCI_SETENV, DCI_GETENV at the
same time in your COBOL programs, you must CALL "DBMASTERINTF.dll" at first (sample
as the following).
 WORKING-STORAGE SECTION.

 01 dci_login pic x(256).

 01 dci_opcode pic x(2).

 PROCEDURE DIVISION.

 TEST-1.

 move space to dci_opcode

 CALL "DBMAKERINTF.DLL" USING dci_opcode

 CALL "DCI_SETENV" USING z"DCI_DATABASE" z"dbsample5"

 * move "SYSADM" or spaces to dci_login

 if dci_login = spaces

 CALL "DCI_SETENV" USING z"DCI_LOGIN" z"SYSADM"

 else

 CALL "DCI_GETENV" USING z"DCI_LOGIN" dci_login

 end-if

6.2 Build Steps

Environment preparing

a). make sure the cl (compiling linking) is ready
x32: C:\Program Files\Microsoft Visual Studio 9.0"\VC\bin\vcvars32.bat

x64: C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\bin\amd64\vcvarsamd64.bat

b). set environment path
x32: set path=%path%;C:\Program Files\Micro Focus\Net Express 5.1\Base\Bin

x64: set path=%path%;C:\Program Files (x86)\Micro Focus\Net Express 5.1\Base\Bin\WIN64

c). set DCI_CONFIG variable
set DCI_CONFIG=D:\release\mfdci\resource\mfdci.cfg

mfdci.cfg
DCI_DATABASE dbsample5

DCI_LOGIN SYSADM

DCI_PASSWD

DCI_LOGFILE C:\mftest\mfdci.log

DCI_LOGTRACE 4

DCI_MAX_ATTRS_PER_TABLE 250

DCI_MAX_BUFFER_LENGTH 3970

DCI_XFDPATH C:\mftest\xfd

Related file preparing

a). The library of MFDCI and DBMaster 5.1

dmmfcbl.lib dmdcic.lib dmapi51.lib

b). The library from Microsoft Visual Studio 2008

oldnames.lib
c). The C source code mfcall.c (please refer to Chapter 7 for more information about
mfcall.c)

DBMaster DCI MFCOBOL User’s Guide 31

 DBMaker DCI MFCOBOL User’s Guide

DBMaster DCI MFCOBOL User’s Guide 32

int MF_DBMAKERINTF (unsigned char *opCode, unsigned char *parfd)

{

 return DBMAKERINTF(opCode, parfd);

}

int DCI_GETENV (char *key, char *val)

{

 return DCI_GETENV_MF (key, val);

}

int DCI_SETENV (char *key, char *val)

{

 return DCI_SETENV_MF (key, val);

}

int DCI_DISCONNECT (char *cdb)

{

 return DCI_DISCONNECT_MF (cdb);

}

int DCI_SET_TABLE_CACHE (char *cStart, char *cNext, char *cPrev)

{

 return DCI_SET_TABLE_CACHE_MF(cStart, cNext, cPrev);

}

int DCI_SET_WHERE (char *pWhere)

{

 return DCI_SET_WHERE_CONSTRAINT_MF(pWhere);

}

The bulid dll command

DBMKAERINTF.dll will output in current working directory with the following command
(Certainly, you can do it with IDE of Micro Focus Net Express):
cbllink -v -K -L -d -fm -oDBMASTERINTF.dll mfcall.c oldnames.lib dmmfcbl.lib dmdcic.lib dmapi51.lib

NOTE: The option “-fm” is only for “runmw”-style operation. If users only use the run or
runw, please don’t add the “-fm” option for building DBMKAERINTF.dll.

Reference DBMASTERINTF.dll in program

a). add "$SET CALLFH "DBMASTERINTF.DLL"” on your cobol programs in first line
cbllink -oxxxxxx.exe -s xxxxxx.cbl

b). use xfddll.cfg as your compiler option
cbllink -oxxxxxx.exe -uxfddll.cfg -s xxxxxx.cbl

 [xfddll.cfg]
CREATEXFD CALLFH "DBMASTERINTF.DLL"

c). use the following command
cobol xxxxxx.cbl CALLFH "DBMASTERINTF.dll" gnt

NOTE: One of above three options can be choose as your project work.

 DBMaker DCI MFCOBOL User’s Guide

7 Additions of DCI

The section will introduce additions of DCI, including DCI Features and DCI Functions. DCI
functions could be called in MF COBOL programs. To enable these functions, users only
need to link with mfcall.obj in their project.

7.1 Addition DCI Feature
We will provide mfcall.obj for users. We also provide mfcall as C source code (mfcall.c), so
users can build mfcall.obj by them. Compiling mfcall source code is not any special notice.

The following is source code (mfcall.c):
int MF_DBMAKERINTF (unsigned char *opCode, unsigned char *parfd)

{

 return DBMAKERINTF(opCode, parfd);

}

int DCI_GETENV (char *key, char *val)

{

 return DCI_GETENV_MF (key, val);

}

int DCI_SETENV (char *key, char *val)

{

 return DCI_SETENV_MF (key, val);

}

int DCI_DISCONNECT (char *cdb)

{

 return DCI_DISCONNECT_MF (cdb);

}

int DCI_SET_TABLE_CACHE (char *cStart, char *cNext, char *cPrev)

{

 return DCI_SET_TABLE_CACHE_MF(cStart, cNext, cPrev);

}

int DCI_SET_WHERE (char *pWhere)

{

 return DCI_SET_WHERE_CONSTRAINT_MF(pWhere);

}

7.2 Addition DCI Functions
At present, dmmfcbl.lib only supports the following four DCI functions. Your can call these
DCI Functions by writing the following code in your MFCOBOL programs.
CALL “dci_function_name” USING variable [, variable, …]

 Sample

DBMaster DCI MFCOBOL User’s Guide 33

 DBMaker DCI MFCOBOL User’s Guide

If you want to use "DBMASTERINTF.dll", and use DCI_SETENV, DCI_GETENV at the
same time in your COBOL programs, you must CALL "DBMASTERINTF.dll" at first (sample
as the following).
 WORKING-STORAGE SECTION.

 01 dci_login pic x(256).

 01 dci_opcode pic x(2).

 PROCEDURE DIVISION.

 TEST-1.

 move space to dci_opcode

 CALL "DBMAKERINTF.DLL" USING dci_opcode

 CALL "DCI_SETENV" USING z"DCI_DATABASE" z"dbsample5"

 * move "SYSADM" or spaces to dci_login

 if dci_login = spaces

 CALL "DCI_SETENV" USING z"DCI_LOGIN" z"SYSADM"

 else

 CALL "DCI_GETENV" USING z"DCI_LOGIN" dci_login

 end-if

NOTE: Please refer to Chapter 6 for more information about using “DBMASTERINTF.dll”.

DCI_SETENV

Before using this variable it is important to note that users need to add null terminate for a
character string before calling DCI_SETENV.

There are several ways to null terminate the string:

 Example 1
CALL "DCI_SETENV" USING z"DCI_DATABASE" z"DBSAMPLE5".

CALL "DCI_SETENV" USING z"DCI_LOGIN" z"SYSADM".

NOTE: Refer to the section on “DCI_DATABASE“in Chapter 4 for more information.

DCI_GETENV

The function is used to read the environment variable. Certainly, you can use ACCEPT to
get them.

 Syntax
ACCEPT variable FROM ENVIRONMENT "environment variable"

Equal to
CALL “DCI_GETENV” USING “environment variable”, variable

 Example
CALL “DCI_GETENV” USING “DCI_DATABASE”, mf_dci_database

DCI_DISCONNECT

This function is used to disconnect from a database.

DBMaster DCI MFCOBOL User’s Guide

 Example 1

If there is only one connection in the MF COBOL program, use the following code to
disconnect from the database.
 01 dci_opcode pic x(2).

 move space to dci_opcode

34

 DBMaker DCI MFCOBOL User’s Guide

DBMaster DCI MFCOBOL User’s Guide 35

....

 CALL "DCI_DISCONNECT" USING dci_opcode

 Example 2

If there is more than one connection in the COBOL program, use the following code to
disconnect from a specific database.
CALL "DCI_DISCONNECT" USING "DBSAMPLE5"

DCI_SET_TABLE_CACHE

By default, DCI pre-reads data into the client data buffer to reduce client/server network
traffic. The default maximum pre-read buffer is the smaller of 8kb/(record size) or 5 records.

It is possible that users’ applications will read a small table and only read a few records
which are less than 8kb/(record size). For example, for a table with an average record size
of 20 bytes and a total of 1000 records, DBMaster will be able to read about 400 records
(8kb/20) but the users' applications may only read 4 or 5 records and then call the START
statement again. In this case, set the following variable to reduce the cache size and
improve performance. Consider the application and data's behavior carefully when using
these variables or it may increase network traffic and cause reductions in performance.

The following are the three DCI_CACHE variables to set in the DCI_CONFIG file:

DCI_DEFAULT_CACHE_START – set the first read records to cache for START or READ.
The default is the maximum of 8 kb/(record size) or 5 records.

DCI_DEFAULT_CACHE_NEXT – set the next read records after the first cached record for
START or READ have been read or discarded. The default is the maximum of 8kb/(record
size) or 5 records.

DCI_DEFAULT_CACHE_PREV – set the read records for caching the previous records
after the first cache record for START or READ have been read or discarded.

The default is DCI_DEFAULT_CACHE_NEXT/2.

Setting these variables in the DCI_CONFIG will affect all the tables in the user's
applications.

 Example
DCI_DEFAULT_CACHE_START 10
DCI_DEFAULT_CACHE_NEXT 10

DCI_DEFAULT_CACHE_PREV 5

NOTE: Refer to the section on “DCI_DATABASE“in Chapter 4 for more information.

 DBMaker DCI MFCOBOL User’s Guide

8 COBOL Conversions

Transactions are enforced in DCI during conversions. All I/O operations are done with
transactions. DCI sets AUTOCOMMIT off and manages DBMaster transactions to make
record changed for users available. DCI fully supports COBOL transaction statements like
START TRANSACTION, COMMIT/ROLLBACK TRANSACTION.

DCI doesn’t support record encryption, record compression, or the alternate collating
sequence. If these options are included in code, they will be disregarded. DCI also doesn’t
support the “P” PICture edit function in the data dictionary definition and all file names are
converted to lowercase.

DBMASTER DATABASE SETTINGS RANGE LIMIT

Indexed key size. 4000

Number of columns per key. 32

Length for a CHAR field. 3992 bytes

Simultaneous RDBMS connections. 1200

Character for column names. 128

Database tables simultaneously open by a single
process.

256

 Figure 8-1 DBMaster Database Settings Range Limits table

8.1 Mapping COBOL Data Types
DCI establishes what it considers to be the best match for COBOL data types in the
creation of all columns in a DBMaster database table. Any data the COBOL date type can
contain can also be contained in the database column.
NOTE: DCI doesn’t support comp-1 and comp-2 type for current version.

DBMaster DCI MFCOBOL User’s Guide 36

 DBMaker DCI MFCOBOL User’s Guide

DBMaster DCI MFCOBOL User’s Guide 37

COBOL DBMASTER COBOL DBMASTER
9(1-4) SMALLINT s9(5-9) comp-3 INTEGER

9(5-9) INTEGER s9(10-18) comp-3 DECIMAL(10-18)

9(10-18) DECIMAL(10-18) 9(1-4) comp-4 SMALLINT

s9(1-4) SMALLINT 9(5-9) comp-4 INTEGER

s9(5-9) INTEGER 9(10-18) comp-4 DECIMAL(10-18)

s9(10-18 DECIMAL(10-18) 9(1-4) comp-5 SMALLINT

9(n) comp-1 n
(1-17)

Not Support 9(5-10) comp-5 DECIMAL(10)

s9(n) comp-1 n
(1-17)

Not Support s9(1-4) comp-5 SMALLINT

9(1-4) comp-2 Not Support s9(5-10) comp-5 DECIMAL(10)

9(5-9) comp-2 Not Support 9(1-4) comp-6 SMALLINT

9(10-18) comp-2 Not Support 9(5-9) comp-6 INTEGER

s9(1-4) comp-2 Not Support 9(10-18) comp-6 DECIMAL(10-18)

s9(5-9) comp-2 Not Support s9(1-4) comp-6 SMALLINT

s9(10-18)
comp-2

Not Support s9(5-9) comp-6 INTEGER

9(1-4) comp-3 SMALLINT s9(10-18) comp-6 DECIMAL(10-18)

9(5-9) comp-3 INTEGER comp-x

9(10-18) comp-3 DECIMAL(10-18) Z9 CHAR(2)

s9(1-4) comp-3 SMALLINT X(n) CHAR(n) n 1-max column
length

N(n) CHAR(n) n
1-max/2 column
length

 Figure 8-2 COBOL to DBMaster Data Type Conversion Chart

8.2 Mapping DBMaster Data Types
DCI reads data from the database by doing a COBOL-like MOVE from the native data
types to the COBOL data types (most of which have a CHAR representation so you can
display them by using dmSQL).

It is not necessary to worry about exactly matching the database data types to COBOL data
types. PIC X(nn) can be used for each column with regards to database types having a
CHAR representation. PIC 9(9) is a closer COBOL match for databases that have
INTEGER types. The more you know about a database type, the more flexible you can be
in finding a matching COBOL type. For example, if a column in a DBMaster database only
contains values between zero and 99 (0-99), PIC 99 would be a sufficient COBOL date
match.

Choosing COMP-types can be left to the discretion of the programmer since it has little
effect on the used COBOL data. BINARY data types will usually be re-written without
change, because they are foreign to COBOL. However, a closer analysis of BINARY
columns might allow you to find a different solution. The DECIMAL, NUMERIC, DATE and
TIMESTAMP types have no exact COBOL matches. They are returned from the database
in character form, so the best COBOL data type equivalent would be USAGE DISPLAY.

The following table illustrates the best matches for database data types and COBOL data
types:

 DBMaker DCI MFCOBOL User’s Guide

DBMaster DCI MFCOBOL User’s Guide 38

DBMASTER COBOL DBMASTER COBOL
SMALLINT 9(1-4) INTEGER 9(5-9) comp-4

INTEGER 9(5-9) DECIMAL(10-18) 9(10-18)
comp-4

DECIMAL(10-18) 9(10-18) SMALLINT 9(1-4) comp-5

SMALLINT s9(1-4) DECIMAL(10) 9(5-10)
comp-5

INTEGER s9(5-9) SMALLINT s9(1-4)
comp-5

DECIMAL(10-18) s9(10-18 DECIMAL(10) s9(5-10)
comp-5

SMALLINT 9(1-4) comp-3 SMALLINT 9(1-4) comp-6

INTEGER 9(5-9) comp-3 INTEGER 9(5-9) comp-6

DECIMAL(10-18) 9(10-18) comp-3 DECIMAL(10-18) 9(10-18)
comp-6

SMALLINT s9(1-4) comp-3 SMALLINT s9(1-4)
comp-6

INTEGER s9(5-9) comp-3 INTEGER s9(5-9)
comp-6

DECIMAL(10-18) s9(10-18)
comp-3

DECIMAL(10-18) s9(10-18)
comp-6

SMALLINT 9(1-4) comp-4 CHAR(n) n 1-max column
length

PIC x(n)

 Figure 8-3 DBMaster to COBOL Data Type Conversion Chart

 DBMaker DCI MFCOBOL User’s Guide

9 Limitations of DCI

There are some limitations or notice we need to paying attention to. These limitations or
notice are summarized in the following sections.

9.1 Table or Column Name Limitations
There are some restrictions when define table or column names in MFCOBOL programs.
The name which includes hyphen ‘-’ cannot be identified correctly. Users have to convert
them to other character or symbol. Otherwise, DCI will convert the hyphen ‘-’ to underline
‘_’ automatically.

 Example

If users want query some data which include hyphen ‘-’, maybe they cannot get the right
result, because of automatically converting the hyphen ‘-’ to underline ‘_’, or find the XFD
files.

9.2 Comp-1/comp-2 Type
If users use comp-1 (computational-1) or comp-2 (computational-2) type in their COBOL,
they must pay attention to the type of the previous field, because the comp-1/comp-2 may
be parsed wrongly by MF createxfd.

 Correct Case
 03 DT-FLD04.

 05 DT-FLD041 PIC X(03).

 05 DT-FLD042 PIC 9(07).

 03 DT-WK-24 COMP-1.

 03 DT-WK-26 COMP-2.

 Error Case
 FD invoice.

 01 inv-record-top.

 03 inv-key pic 9(5).

 03 WK-18 PIC s9(04) COMP.

 03 inv-filler PIC X(2).

 03 inv-comp1 COMP-1.

 03 WK-23 PIC 9(03)V9(02) COMPUTATIONAL.

 03 WK-24 COMP-1.

NOTE: In this case, the type of previous field is X(n), comp-1/comp-2 will be parsed as
length=55 or 255, and the exceptions occurs.
//native rc: 6529 errmsg: specified precision in column definition is out of range : 1 ~38 [cgtab.c
296],255,0,38

DBMaster DCI MFCOBOL User’s Guide 39

 DBMaker DCI MFCOBOL User’s Guide

9.3 Enough length for redefine one column
If users redefine one column as more sub columns, total size for all sub columns must
equal to or less than the length of this column.
Otherwise, DCI can’t get the correct XFD file for reading or creating tables, maybe create
a table which have more columns than it should be.

 For Sample
In the following FD code, column db_datetime is defined with pic x(14) wrongly, which
should be defined with pic x(19), it’s calculated from all columns of db_datetimer.
 01 DATETIME-REC.
 02 db_colkey pic x(10).
 02 db_typez9 pic z9.
 02 db_datetime pic x(14).
 02 db_datetimer redefines db_datetime.
 03 db_weekday pic x(3).
 03 pic x.
 03 db_month pic x(3).
 03 pic x.
 03 db_day pic z9.
 03 pic x.
 03 db_hour pic z9.
 03 pic x.
 03 db_minute pic 99.
 03 pic x.
 03 db_am_pm pic x(2).

9.4 Define a variable for Space
Because DCI (internal code) check char[0] and char[1] for space, and needs defining a
variable for CALL "DCI_DISCONNECT", CALL "DBMAKERINTF.DLL". Otherwise,
Error-“access invalid address” will occur.

 For Sample
 01 dci_opcode pic x(2).
 move space to dci_opcode

 CALL "DBMAKERINTF.DLL" USING dci_opcode
 ……
 CALL "DCI_DISCONNECT" USING dci_opcode

NOTE: Please refer to Chapter 4.1 for DCI_DISCONNECT and Chapter 6.1 for
DBMAKERINTF.DLL.

9.5 Execute with run/runw/runmw command
If users build their COBOL with DBMKAERINTF.dll, they must be aware the
DBMKAERINTF.dll can only be used for either multi-threaded or single-threaded mode.

 multi-threaded mode
If users want to use runmw command to run the COBOL program, DBMKAERINTF.dll
must be built by the following command (needs option “-fm”).
cbllink -v -K -L -d -fm -oDBMASTERINTF.dll mfcall.c oldnames.lib dmmfcbl.lib dmdcic.lib dmapi51.lib

DBMaster DCI MFCOBOL User’s Guide

 single-threaded mode
If users want to use run or runw command to run the COBOL program,
DBMKAERINTF.dll must be built by the following command.
cbllink -v -K -L -d -oDBMASTERINTF.dll mfcall.c oldnames.lib dmmfcbl.lib dmdcic.lib dmapi51.lib

40

 DBMaker DCI MFCOBOL User’s Guide

NOTE: Please refer to Chapter 6 for more information about building DBMKAERINTF.dll.

DBMaster DCI MFCOBOL User’s Guide 41

 DBMaker DCI MFCOBOL User’s Guide

10 Compatibility for Visual COBOL

In this manual, all the samples are based on Micro Focus Net Express 5.1. In this chapter,
we will introduce the compatibility for another product of Micro Focus - Visual COBOL. We
tested the same COBOL programs with Visual COBOL 2010 R4, besides the installed
directory (environment variables); we also found some other differences, listed as following.

• Environment Variables

• Microsoft Visual Studio

• Definement for N type

• FCD3 option for x32 platform

ENVIRONMENT VARIABLES

On 32 bit Windows
set path=%path%;C:\Program Files\Micro Focus\Visual COBOL 2010\bin

On 64 bit Windows
set path=%path%;C:\Program Files (x86)\Micro Focus\Visual COBOL 2010\bin64

MICROSOFT VISUAL STUDIO

In Net Express 5.1, VC version is 9.0, and for Visual COBOL 2010R4, the VC version is
10.0. So we must install the right version and set the right PATH to make them work.
For example:

On 32 bit Windows
call "C:\Program Files\Microsoft Visual Studio 10.0"\VC\bin\vcvars32.bat

copy "C:\Program Files\Microsoft Visual Studio 10.0"\VC\lib\oldnames.lib .

On 64 bit Windows
call "C:\Program Files (x86)\Microsoft Visual Studio 10.0"\VC\bin\amd64\vcvars64.bat

copy "C:\Program Files (x86)\Microsoft Visual Studio 10.0"\VC\lib\amd64\oldnames.lib .

N TYPE

03 WK-N PIC N(50).

03 WK-5 PIC N(01).

In Net Express 5.1, the N type is defined with 152, in Visual Cobol 2010R4, it’s defined with
168. We must add a new type in MFDCI to map it. So only the new version DCI can support
N type for Visual Cobol. Please contact with our Support Team if necessary.

FCD3 OPTION

The File Control Description (FCD) is a data area which contains information about the file
in use. There are two versions of the FCD, and which one is used depends on whether your

DBMaker DCI COBOL User’s Guide 42

 DBMaker DCI MFCOBOL User’s Guide

COBOL development environment is running in 32-bit or 64-bit, as shown in the following
table:

COBOL Development System FCD Used

Mainframe Express FCD2

32-bit Visual COBOL FCD2

64-bit Visual COBOL FCD3

.NET Support within Visual COBOL FCD3

32-bit Server Express FCD2 or FCD3

64-bit Server Express FCD3

Because "FCD3" is the default options for Visual Cobol on 32bit/64bit which not same as
Net express (use "FCD2" for 32bit and “FCD3 for 64bit). We need compiling with
“NOFCD3” option for Visual Cobol on 32 bit OS, otherwise the 114 Error will be faced.
Usage as following:

First, add following information in xfd.cfg (User can specify the path for xfd.cfg) file:
NOFCD3 CREATEXFD CALLFH “DBMAKETINTF”

Then execute cbllink command as below:
cbllink -oTEST.exe -uxfd.cfg -g -b TEST.cbl oldnames.lib dmmfcbl.lib dmdcic.lib dmapi52.lib

or
cbllink -oTEST.exe -u C:\test\xfd.cfg -g -b TEST.cbl oldnames.lib dmmfcbl.lib dmdcic.lib dmapi52.lib

In addition, we will provide a new DCI lib which uses the NOFCD3 as default option and
user don’t need add any options.
cbllink -oTEST.exe -uxfd.cfg -g -b TEST.cbl oldnames.lib dmmfcbl_fcd3.lib dmdcic.lib dmapi52.lib

Note 1:

The new lib is only for 32bit platform and it’s not compatible with Net Express version
(totally different data structure), so we rename the lib name to dmmfcbl_fcd3.lib.

Note 2:

If users want to build the COBOL programs to INT or GNT format, because COBOL
command cannot identify the NOFCD3 option, please use new lib dmmfcbl_fcd3.lib to
replace dmmfcbl.lib to build runtime to avoid the 114 Error (memory access violation).
Usage as following:

Build the DBMAKERINTF.dll
cbllink -v -K -L -d -oDBMAKERINTF.dll mfcall.obj oldnames.lib dmmfcbl_fcd3.lib dmdcic.lib dmapi52.lib

Build the GNT and execute it with DBMAKERINTF.dll.
cobol test.cbl CREATEXFD CALLFH "DBMAKERINTF.dll" gnt

DBMaker DCI COBOL User’s Guide 43

 DBMaker DCI MFCOBOL User’s Guide

11 Appendix – XML for old versions

DCI only support XML in old versions. So if users want to use old version (before 5.1.0)
with XML files, they must get to know DCIBench (the parser essential to the generation
of XML files).

Certainly, using XML is similar as using XFD described in above chapters.

11.1 Generate XML files with DCIBench
DCIBench – is a tool that is utilized to create XML files to map COBOL file fields and
DBMaster table columns. With the DCIBench generated XML files DCI can access the
DBMaster database using MF COLBOL commands. DCIBench also provides users with a
GUI (Graphical User Interface) to rapidly generate FD and SL data files. Within the
DCIBench environment a code editor is provided to facilitate modifications that might be
required to COBOL or XML source codes.
For more information of DCIBench, please refer to relevant chapter in other manual or
contact with our Support Team to get some instructional information for quick starting.

DCI_XMLPATH

DCI_XMLPATH is used to specify the name of the directory where data dictionaries are
stored. The default value is the current directory.

 Example 1

Include the following entry in the configuration file in order to store data dictionaries in the
directory c:\mfdcitest\xml.
DCI_XMLPATH c:\mfdcitest\xml

 Example 2

If it is necessary to specify more than one path, different directories have to be separated
by spaces.
DCI_XMLPATH c:\mfdcitest\xml1 c:\mfdcitest\xml2

 Example 3

In a WIN-32 environment, “embedded spaces” can be specified with double-quotes.

DCI_XMLPATH c:\mfdcitest\xml “c:\my folder with space\xml”

NOTE: If both DCI_XMLPATH and DCI_XFDPATH are set in Configuration file, only the
DCI_XFDPATH is available.

DBMaker DCI COBOL User’s Guide 44

 DBMaker DCI MFCOBOL User’s Guide

11.2 Using DCI with XML
If users want to use XML files as the database table description, they must use DCIBench
tool. However, the DCIBench is only a beta product, and there are some bugs or faults
which we cann’t get over. So we only recommend users to use the XFD as the description
files in new DCI versions.

Certainly, if users insist on using XML files, they should take the following notes to their
attention.

Type comp/comp-4/comp-5

If users use comp, comp-4 or comp-5 type in their COBOL, they must modify the XML
generated by DCIBench tool.

• Comp

Modify size from "8" to "5", type from NumUnsigned to BinaryUnsigned

• Comp-4

Modify size from "8" to "5"

• Comp-5

Modify size from "8" to "5"
NOTE: If the size of one column being modified, the offset of all following columns and the
total size for all fields must be modified correspondingly.

In addition, the above rules are not applicable to all instances, please base on XFD files.

DBMaker DCI COBOL User’s Guide

 For Sample
 FD MST-FILE

 LABEL RECORD IS STANDARD.

 01 MST-REC.

 03 DT_KEY PIC X(10).

 03 DT_FLD01 PIC X(10).

 03 DT-FLD02 PIC 9(10).

 03 DT-FLD03 PIC 9(10) USAGE IS COMP.

 03 DT-FLD04 PIC 9(10) USAGE IS COMP-3.

 03 DT-FLD05 PIC 9(08)V99 USAGE IS COMP.

 03 DT-FLD06 PIC 9(08)V99 USAGE IS COMP-3.

 03 DT-FLD07 PIC 9(08)V99 COMP-4.

 03 DT-FLD08 PIC 9(08)V99 COMP-5.

 03 DT-FLD09 PIC 9(08)V99 COMP-6.

The following XML is generated by DCIBench tool with above FD context. There are some
mistakes must be modified manually.
<!--xmlxfd creater="casemaker DciBench" version="1.0"-->

<table name="mstfile" type="idx" maxRecLen="79" minRecLen="79" keyCount="2">

 <key segCount="1" duplicate="false">

 <segment offset="0" size="10"/>

 <part name="DT_KEY"/>

 </key>

 <key segCount="2" duplicate="true">

 <segment offset="10" size="10"/>

 <part name="DT_FLD01"/>

 </key>

45

 DBMaker DCI MFCOBOL User’s Guide

DBMaker DCI COBOL User’s Guide 46

 <field name="MST-REC" offset="0" size="79" type="Alphanum">

 <field name="DT_KEY" offset="0" size="10" type="Alphanum" digits="10" scale="0"/>

 <field name="DT_FLD01" offset="10" size="10" type="Alphanum" digits="10" scale="0"/>

 <field name="DT-FLD02" offset="20" size="10" type="NumUnsigned" digits="10" scale="0"/>

 <field name="DT-FLD03" offset="30" size="8" type="NumUnsigned" digits="10" scale="0"/>

 <field name="DT-FLD04" offset="38" size="6" type="PackedPositive" digits="10" scale="0"/>

 <field name="DT-FLD05" offset="44" size="8" type="NumUnsigned" digits="10" scale="2"/>

 <field name="DT-FLD06" offset="52" size="6" type="PackedPositive" digits="10" scale="2"/>

 <field name="DT-FLD07" offset="58" size="8" type="BinaryUnsigned" digits="10" scale="2"/>

 <field name="DT-FLD08" offset="66" size="8" type="NativeUnsigned" digits="10" scale="2"/>

 <field name="DT-FLD09" offset="74" size="5" type="PackedUnsigned" digits="10" scale="2"/>

 </field>

</table>

The correct XML file as the following:
<!--xmlxfd creater="casemaker DciBench" version="1.0"-->

<table name="mstfile" type="idx" maxRecLen="67" minRecLen="67" keyCount="2">

 <key segCount="1" duplicate="false">

 <segment offset="0" size="10"/>

 <part name="DT-KEY"/>

 </key>

 <key segCount="2" duplicate="true">

 <segment offset="10" size="10"/>

 <part name="DT-FLD01"/>

 </key>

 <field name="MST-REC" offset="0" size="67" type="Alphanum">

 <field name="DT-KEY" offset="0" size="10" type="Alphanum" digits="10" scale="0"/>

 <field name="DT-FLD01" offset="10" size="10" type="Alphanum" digits="10" scale="0"/>

 <field name="DT-FLD02" offset="20" size="10" type="NumUnsigned" digits="10" scale="0"/>

 <field name="DT-FLD03" offset="30" size="5" type="BinaryUnsigned" digits="10" scale="0"/>

 <field name="DT-FLD04" offset="35" size="6" type="PackedPositive" digits="10" scale="0"/>

 <field name="DT-FLD05" offset="41" size="5" type="BinaryUnsigned" digits="10" scale="2"/>

 <field name="DT-FLD06" offset="46" size="6" type="PackedPositive" digits="10" scale="2"/>

 <field name="DT-FLD07" offset="52" size="5" type="BinaryUnsigned" digits="10" scale="2"/>

 <field name="DT-FLD08" offset="57" size="5" type="NativeUnsigned" digits="10" scale="2"/>

 <field name="DT-FLD09" offset="62" size="5" type="PackedUnsigned" digits="10" scale="2"/>

 </field>

</table>

Type comp-1/comp-2

If users use comp-1 or comp-2 type in their COBOL, they must modify the XML as the
following sample.
 03 DT-FLD04.

 05 DT-FLD041 PIC X(03).

 05 DT-FLD042 PIC 9(07).

 03 DT-WK-24 COMP-1.

 03 DT-WK-26 COMP-2.

 For Sample
<field name="DT-WK-24" offset="50" size="2" type="Alphanum"/>

<field name="DT-WK-26" offset="52" size="0" type="Alphanum"/>

 DBMaker DCI MFCOBOL User’s Guide

Modify type and size as the following:
<field name="DT-WK-24" offset="50" size="2" type="BinarySigned" digits="4" scale="0"/>

<field name="DT-WK-26" offset="52" size="4" type="BinarySigned" digits="9" scale="0"/>

Redefines statement in .cpy

If users use redefines statement in a .cpy file, they should modify the XML which generated
by DCIBench tool as the following sample.

 For Sample
 03 WK-DATA1 PIC X(03).

 03 WK-DATA1-R REDEFINES WK-DATA1 PIC 9(03).

 03 WK-DATA2.

 05 WK-DATA-21 PIC X(02).

 05 WK-DATA-22 PIC X(02).

The Red part should be removed and the Blue part (offset) should be modify one by one
sequently.
 <field name="WK-DATA1" offset="530" size="3" type="Alphanum" digits="3" scale="0"/>

 <field name="WK-DATA1-R" offset="533" size="3" type="NumUnsigned" digits="3" scale="0"/>

 <field name="WK-DATA2" offset="536" size="4" type="Alphanum">

 <field name="WK-DATA-21" offset="536" size="2" type="Alphanum" digits="2" scale="0"/>

 <field name="WK-DATA-22" offset="538" size="2" type="Alphanum" digits="2" scale="0"/>

 </field>

Type Z9

If users use Z9 type in their COBOL, they must modify the XML as the following sample.
<field name="db_typez9" offset="10" size="2" type="NumUnsigned" digits="2" scale="0"/>

Modify type from NumUnsigned to NumEdited.
<field name="db_typez9" offset="10" size="2" type="NumEdited" digits="2" scale="0"/>

NOTE: If you donn’t modify the XML for type Z9, and table columns are created with
smallint, not char(2), it also can work. We only make the rule as char(2) which
consistents with XFD.

Type N

When users use N type in their COBOL, they must modify the XML generated by DCIBench
tool, it’s easy to rebuild re-generate XML after modifying N type to X type and increase size
to double size in GUI.

If users want to modify the XML manually, they must modify the offset for all the following
fields additionally.
 03 COL_N10 PIC N(10).

 For Sample
<field name="COL_TypeN" offset="129" size="0" type="Alphanum" digits="10" scale="0"/>
<field name="COL_NEXT" offset="129"

Above part of XML context for N type is incorrect which is generated by default, and the
following part of XML is correct which is modified by hand and re-generated by DCIBench.
<field name="COL_TypeN" offset="129" size="20" type="Alphanum" digits="20" scale="0"/>
<field name="COL_NEXT" offset="149"

DBMaker DCI COBOL User’s Guide 47

 DBMaker DCI MFCOBOL User’s Guide

multi-01 Level

If there are multi 01 level FD in COBOL, which is not normal usage, users should modify
the XML to meet their requirements. Certainly, some cases maybe cannot get the right
answer.

We keep the 01 level which has max size in using DCI with XFD by default. Here, we
recommend following the same rules in using XML as using XFD.

 For Sample1

If first 01 level has max size (or same size with others), please simply get rid of all other 01
level.
 FD ser9.

 01 ser9-record-top.

 03 ser9-key.

 05 ser9-chk pic 9.

 05 ser9-no pic 99.

 05 ser9-comment pic x(50).

 03 ser9-f1 pic 9(5).

 01 ser9-record-details.

 03 ser9-key-d.

 05 ser9-chk-d pic 9.

 05 ser9-no-d pic 99.

 05 ser9-comment-d pic x(50).
 03 ser9-f2 pic 9(5).
 01 ser9-record-bottom.
 03 ser9-key-b.
 05 ser9-chk-b pic 9.
 05 ser9-no-b pic 99.
 05 ser9-comment-b pic x(50).
 03 ser9-f3 pic 9(5).

XML file as the following, and please get rid of Red Part.
<!--xmlxfd creater="casemaker DciBench" version="1.0"-->

<table name="s9" type="idx" maxRecLen="58" minRecLen="58" keyCount="1">

 <key segCount="1" duplicate="false">

 <segment offset="0" size="53"/>

 <part name="ser9-chk"/>

 <part name="ser9-no"/>

 <part name="ser9-comment"/>

 </key>

 <field name="ser9-record-top" offset="0" size="58" type="Alphanum">

 <field name="ser9-key" offset="0" size="53" type="Alphanum">

 <field name="ser9-chk" offset="0" size="1" type="NumUnsigned" digits="1" scale="0"/>

 <field name="ser9-no" offset="1" size="2" type="NumUnsigned" digits="2" scale="0"/>

 <field name="ser9-comment" offset="3" size="50" type="Alphanum" digits="50" scale="0"/>

 </field>

 <field name="ser9-f1" offset="53" size="5" type="NumUnsigned" digits="5" scale="0"/>

 </field>

 <field name="ser9-record-details" offset="0" size="58" type="Alphanum">

 <field name="ser9-f2" offset="53" size="5" type="NumUnsigned" digits="5" scale="0"/>

 </field>

DBMaker DCI COBOL User’s Guide 48

 DBMaker DCI MFCOBOL User’s Guide

DBMaker DCI COBOL User’s Guide 49

 <field name="ser9-record-bottom" offset="0" size="58" type="Alphanum">

 <field name="ser9-f3" offset="53" size="5" type="NumUnsigned" digits="5" scale="0"/>

 </field>

</table>

 For Sample2

If 01 level with max size is not the first one, please get rid of all other 01 level with
DCIBench (not same as editing by hand) and modify the column names to same name with
all index fields.

In addition, please use “as old-name” when querying after you modifying some column
names.
 FD invoice.

 01 inv-record-top.

 03 inv-key.

 05 inv-type pic x.

 05 inv-number pic 9(5).

 05 inv-id pic 999.

 03 inv-customer pic x(30).

 01 inv-record-details.

 03 inv-key-d.

 05 inv-type-d pic x.

 05 inv-number-d pic 9(5).

 05 inv-id-b pic 999.

 03 inv-articles pic x(30).

 03 inv-qta pic 9(5).

 03 inv-price pic 9(17).

 01 inv-record-bottom.

 03 inv-key-b.

 05 inv-type-b pic x.

 05 inv-number-b pic 9(5).

 05 inv-id-c pic 999.

 03 inv-ammount pic 9(17).

XML generated by DCIBench as the following, please get rid of the Red part and pay
attention to the Green and Blue part.
<!--xmlxfd creater="casemaker DciBench" version="1.0"-->
<table name="fn1" type="idx" maxRecLen="61" minRecLen="26" keyCount="1">
 <key segCount="1" duplicate="false">
 <segment offset="0" size="9"/>
 <part name="inv-type"/>
 <part name="inv-number"/>
 <part name="inv-id"/>
 </key>
 <field name="inv-record-top" offset="0" size="39" type="Alphanum">
 <field name="inv-key" offset="0" size="9" type="Alphanum">
 <field name="inv-type" offset="0" size="1" type="Alphanum" digits="1" scale="0"/>
 <field name="inv-number" offset="1" size="5" type="NumUnsigned" digits="5" scale="0"/>
 <field name="inv-id" offset="6" size="3" type="NumUnsigned" digits="3" scale="0"/>
 </field>
 <field name="inv-customer" offset="9" size="30" type="Alphanum" digits="30" scale="0"/>
 </field>
 <field name="inv-record-details" offset="0" size="61" type="Alphanum">
 <field name="inv-articles" offset="9" size="30" type="Alphanum" digits="30" scale="0"/>
 <field name="inv-qta" offset="39" size="5" type="NumUnsigned" digits="5" scale="0"/>

 DBMaker DCI MFCOBOL User’s Guide

DBMaker DCI COBOL User’s Guide 50

 <field name="inv-price" offset="44" size="17" type="NumUnsigned" digits="17" scale="0"/>
 </field>
 <field name="inv-record-bottom" offset="0" size="26" type="Alphanum">
 <field name="inv-ammount" offset="9" size="17" type="NumUnsigned" digits="17" scale="0"/>
 </field>
</table>

XML file is modified by hand as the following.
<!--xmlxfd creater="casemaker DciBench" version="1.0"-->
<table name="fn1" type="idx" maxRecLen="61" minRecLen="61" keyCount="1">
 <key segCount="1" duplicate="false">
 <segment offset="0" size="9"/>
 <part name="inv-type"/>
 <part name="inv-number"/>
 <part name="inv-id"/>
 </key>
 <field name="inv-record-details" offset="0" size="61" type="Alphanum">
 <field name="inv-key-d" offset="0" size="9" type="Alphanum">
 <field name="inv-type" offset="0" size="1" type="Alphanum" digits="1" scale="0"/>
 <field name="inv-number" offset="1" size="5" type="NumUnsigned" digits="5" scale="0"/>
 <field name="inv-id" offset="6" size="3" type="NumUnsigned" digits="3" scale="0"/>
 </field>
 <field name="inv-articles" offset="9" size="30" type="Alphanum" digits="30" scale="0"/>
 <field name="inv-qta" offset="39" size="5" type="NumUnsigned" digits="5" scale="0"/>
 <field name="inv-price" offset="44" size="17" type="NumUnsigned" digits="17" scale="0"/>
 </field>
</table>

Certainly, you can drop the other 01 level and add the index columns, then generate XML
files by DCIBench GUI with only one 01 level (max size). At last, don’t forget to modify all
the index-column names as same as old ones (get rid of “-d” or “-b” in Red part).
<!--xmlxfd creater="casemaker DciBench" version="1.0"-->
<table name="fn1" type="idx" maxRecLen="61" minRecLen="30" keyCount="1">
 <key segCount="1" duplicate="false">
 <segment offset="0" size="9"/>
 <part name="inv-type-d"/>
 <part name="inv-number-d"/>
 <part name="inv-id-b"/>
 </key>
 <field name="inv-record-details" offset="0" size="61" type="Alphanum">
 <field name="inv-key-d" offset="0" size="9" type="Alphanum">
 <field name="inv-type-d" offset="0" size="1" type="Alphanum" digits="1" scale="0"/>
 <field name="inv-number-d" offset="1" size="5" type="NumUnsigned" digits="5"
scale="0"/>
 <field name="inv-id-b" offset="6" size="3" type="NumUnsigned" digits="3" scale="0"/>
 </field>
 <field name="inv-articles" offset="9" size="30" type="Alphanum" digits="30" scale="0"/>
 <field name="inv-qta" offset="39" size="5" type="NumUnsigned" digits="5" scale="0"/>
 <field name="inv-price" offset="44" size="17" type="NumUnsigned" digits="17" scale="0"/>
 </field>
</table>

	Introduction
	Additional Resources
	Technical Support
	Document Conventions

	DCI for MFCOBOL
	DCI for MFCOBOL Overview
	File System and Databases
	Relation Chart
	System Requirements

	Setup Instructions
	Install Net Express 5.1
	Install DBMaster 5.1
	Obtain the DBMaster libraries for MFCOBOL
	Obtain the oldnames.lib from Visual Studio
	SET CALLFH "DBMAKERINTF"
	Building and Running program with IDE
	Building and Running program with Command Line

	Basic Configuration for DCI
	DCI_DATABASE
	DCI_LOGIN
	DCI_PASSWD

	Generate XFD files
	Generate XFD files with configure Option

	Compiler and Runtime Options
	Using DCI for MFCOBOL Systems
	Using the MFCOBOL Default System
	Using Views
	Using DCI_SET_WHERE

	Configuration File Variables
	Setting DCI_CONFIG Variables
	DCI_CASE
	DCI_COMMIT_COUNT
	DCI_DATABASE
	DCI_DEFAULT_TABLESPACE
	DCI_DISCONNECT
	DCI_GETENV
	DCI_LOGFILE
	DCI_LOGIN
	DCI_LOGTRACE
	DCI_MAPPING
	DCI_MAX_ATTRS_PER_TABLE
	DCI_MAX_BUFFER_LENGTH
	DCI_PASSWD
	DCI_STANDARD_FILE
	DCI_SETENV
	DCI_SET_WHERE
	DCI_TABLESPACE
	DCI_USEDIR_LEVEL
	DCI_USER_PATH
	DCI_VARCHAR
	DCI_XFDPATH

	DCI_SET_TABLE_CACHE Variables
	Mapping to Multiple Databases

	MFCobol Application with DCI
	DLL
	EXE
	GNT
	Use DCI Indirectly
	Use DCI Directly

	How to build DBMASTERINTF.DLL
	DBMASTERINTF and DBMASTERINTF.dll
	Usage of DBMASTERINTF
	Usage of DBMASTERINTF.dll

	Build Steps
	Environment preparing
	Related file preparing
	The bulid dll command
	Reference DBMASTERINTF.dll in program

	Additions of DCI
	Addition DCI Feature
	Addition DCI Functions
	DCI_SETENV
	DCI_GETENV
	DCI_DISCONNECT
	DCI_SET_TABLE_CACHE

	COBOL Conversions
	Mapping COBOL Data Types
	Mapping DBMaster Data Types

	Limitations of DCI
	Table or Column Name Limitations
	Comp-1/comp-2 Type
	Enough length for redefine one column
	Define a variable for Space
	Execute with run/runw/runmw command

	Compatibility for Visual COBOL
	Environment Variables
	Microsoft Visual Studio
	N type
	FCD3 OPTION

	Appendix – XML for old versions
	Generate XML files with DCIBench
	DCI_XMLPATH

	Using DCI with XML
	Type comp/comp-4/comp-5
	Type comp-1/comp-2
	Redefines statement in .cpy
	Type Z9
	Type N
	multi-01 Level

