

DBMaster
XML Solution Technique Document
P-E5002-XML Solution Technique Document
Version: 01.00

Document No: 50/DBM50-T02222008-01-XMLT
Author: DBMaster Production Team, Syscom Computer Engineering CO.
Publication Date: February 22, 2008

Content

Table of Content

1. Introduction.. 1-1

1.1 Additional Resources..1-1

1.2 Document Conventions ...1-2

2. Overview... 2-1

2.1 XML Language...2-1

2.2 XTT/XTM..2-1

2.3 XML Type Index and Predicate...............................2-1

2.4 XML Validate UDF ...2-1

2.5 JData Transfer Tool ..2-2

3. XML Learning ... 3-1

3.1 XML basic..3-1

3.1.1 WHAT IS XML.. 3-1
3.1.2 HOW CAN XML BE USED.. 3-1

3.2 XML Tree ...3-2

3.2.1 AN EXAMPLE XML DOCUMENT.. 3-2
3.2.2 XML DOCUMENTS FORM A TREE STRUCTURE 3-2

3.3 XML Syntax ...3-3

3.3.1 XML SYNTAX RULES.. 3-3
3.3.2 XML ELEMENTS .. 3-5
3.3.3 XML ATTRIBUTES .. 3-6

4. XML Transfer Template Tool 4-1

4.1 Getting to Know the XTT Tool4-2

4.1.1 OPENING THE XTT TOOL AND LOGGING INTO A DATABASE.... 4-2
4.1.2 THE MAIN CONSOLE... 4-2
4.1.3 THE MENU BAR ... 4-3
4.1.4 THE TOOLBAR ... 4-5
4.1.5 THE XTT EDITING PANEL ... 4-6
4.1.6 THE DATABASE SCHEMA PANEL .. 4-7
4.1.7 THE DETAILED EDITING PANEL.. 4-8
4.1.8 THE CUSTOMIZE DIALOG .. 4-11
4.1.9 THE USER PREFERENCES DIALOG................................... 4-11
4.1.10 THE TREE OPERATION OPTIONS DIALOG 4-11

©Copyright 1995-2012 CASEMaker Inc. i

 XML Solution Technique Document

4.2 Creating a New XTT..4-11

4.2.1 CREATING AN EMPTY XTT FILE.. 4-11
4.2.2 CREATING AN XTT FROM A DTD FILE 4-12
4.2.3 CREATING AN XTT FROM AN XSD FILE 4-13
4.2.4 CREATING AN XTT FROM AN XML FILE 4-13

4.3 Editing an XTT...4-14

4.3.1 ABOUT THE DESIGN VIEW ... 4-14
4.3.2 INSERTING A TABLE.. 4-14
4.3.3 ADDING NEW ELEMENTS AND ATTRIBUTES....................... 4-15
4.3.4 MAPPING DATA TO ELEMENTS AND ATTRIBUTES 4-16
4.3.5 SAVING AN XTT... 4-16

4.4 Generating a DTD..4-16

4.5 Generating an XSD..4-17

4.6 Generating XML data ..4-18

5. XTT API Functions ... 5-1

5.1 XTT API in Java...5-1

5.1.1 PUBLIC METHODS:.. 5-1
5.1.2 EXAMPLE: ... 5-4

5.2 XTT Stored Procedure...5-5

5.2.1 STORED PROCEDURE DEFINITION:...................................... 5-5
5.2.2 PRIVILEGE... 5-5
5.2.3 EXAMPLES... 5-5

6. XML Transfer Mapping Tool 6-1

6.1 Getting to know the XTM Tool................................6-1

6.1.1 THE MAIN CONSOLE... 6-1
6.1.2 THE MENU BAR ... 6-2

6.2 The Toolbar ...6-3

6.3 XTM Object Tree ...6-4

6.4 XML Schema Tree ...6-4

6.5 Database Schema Tree...6-4

6.6 Creating an XTM..6-4

6.6.1 ADDING A NEW JDBC DRIVER .. 6-5

6.7 Mapping xpath statements to XTM object nodes...6-6

6.8 Executing an XTM ...6-8

6.8.1 SAVING AN XTM AS AN SQL SCRIPT 6-8
6.8.2 SAVING AN XTM AS AN XSL FILE AND EXECUTING.............. 6-9

7. XTM API Functions... 7-1

©Copyright 1995-2012 CASEMaker Inc. ii

Content

7.1 XTM API in Java ..7-1

7.1.1 PUBLIC METHODS:.. 7-1
7.1.2 EXAMPLE: ... 7-4

7.2 XTM Stored Procedure ..7-4

7.2.1 STORED PROCEDURE DEFINITION:...................................... 7-4
7.2.2 PRIVILEGE... 7-4
7.2.3 EXAMPLE .. 7-5

8. XML Type Index and Predicate.......................... 8-1

8.1 Managing Index...8-1

8.2 Creating Indexes on XML column...........................8-1

9. XML Validate UDF .. 9-1

9.1 Create DTD/XML Validate UDF................................9-1

9.1.1 FLEXML... 9-1
9.1.2 DBMASTER DTD VALIDATION UDF GENERATOR 9-3
9.1.3 DEFAULT VALIDATOR.. 9-4

9.2 Add XMLType column ...9-4

9.3 Query XMLType column ..9-4

9.3.1 EXTRACT... 9-4
9.3.2 EXTRACTVALUE... 9-5
9.3.3 EXISTSNODE ... 9-6

9.4 Update XMLType column..9-6

9.4.1 INSERT-BEFORE ... 9-7
9.4.2 INSERT-AFTER ... 9-8
9.4.3 INSERT-ATTRIBUTE ... 9-8
9.4.4 INSERT-TEXT-BEFORE... 9-9
9.4.5 INSERT-TEXT-AFTER ... 9-9
9.4.6 APPEND-TEXT .. 9-9
9.4.7 APPEND... 9-9
9.4.8 UPDATE... 9-9
9.4.9 REMOVE .. 9-10
9.4.10 RENAME .. 9-10

10. JData Transfer Tool ... 10-1

10.1 Importing data from XML10-1

10.2 Exporting data to XML ..10-4

©Copyright 1995-2012 CASEMaker Inc. iii

 Introduction

1. Introduction

Welcome to XML solution technique document. XML is an extensible markup language and is
gradually becoming the standard in exchanging and representing data. Not surprisingly, effective
and efficient querying of XML data has become an increasingly important issue.

DBMaster includes two Java-based, platform-independent tools for passing data between a
database and XML documents. The XML Transfer Template tool and the XML Transfer Mapping
tool allow you to create custom templates that determine how data maps from a database to XML
files.

Once you have created a template, you can use one of the APIs provided by DBMaster to help
automate the process of synchronizing data between the database and XML files. DBMaster
provides stored procedures as well as APIs in Java to help you accomplish this task.

The XTT is designed for changing data template through xml format. The XTM maps the
relationship between XML and table. Actually is equal to through xml format importing/exporting
data, but the difference is that users can use XTT/XTM establishing xml data format. The follow
sections describe the tools and introduce how to create or edit XTT/XTM file etc. If you want to
know more information about how to use XTT /XTM Tools, please consult ‘XTT/XTM Tool user’s
Guide’.

1.1 Additional Resources
DBMaster provides a complete set of DBMS manuals in addition to this one. For more detailed
information on a particular subject, consult one of the books listed below:

• For an introduction to DBMaster’s capabilities and functions, refer to the DBMaster
Tutorial.

• For more information on designing, administering, and maintaining a DBMaster
database, refers to the Database Administrator's Guide.

• For more information on database management, refer to the JDBA Tool User’s
Guide.

• For more information on database server management, refer to the JServer
Manager User’s Guide.

• For more information on configuring DBMaster, refer to the JConfiguration Tool
Reference.

• For more information on the native ODBC API, refer to the ODBC Programmer’s
Guide.

©Copyright 1995-2012 CASEMaker Inc. 1-1

 XML Solution Technique Document

• For more information on the dmSQL interface tool, refer to the dmSQL User’s
Guide.

• For more information on the SQL language used in dmSQL, refer to the SQL
Command and Function Reference.

• For more information on error and warning messages, refer to the Error and
Message Reference.

• For more information on the DBMaster COBOL Interface, refer to the DCI User’s
Guide.

1.2 Document Conventions
This book uses a standard set of typographical conventions for clarity and ease of use. The NOTE,
Procedure, Example, and Command Line conventions also have a second setting used with
indentation.

CONVENTION DESCRIPTION

Italics

Italics indicate placeholders for information that must be
supplied, such as user and table names. The word in
italics should not be typed, but is replaced by the actual
name. Italics also introduce new words, and are
occasionally used for emphasis in text.

Boldface

Boldface indicates filenames, database names, table
names, column names, user names, and other database
schema objects. It is also used to emphasize menu
commands in procedural steps.

KEYWORDS

All keywords used by the SQL language appear in
uppercase when used in normal paragraph text.

SMALL CAPS

Small capital letters indicate keys on the keyboard. A plus
sign (+) between two key names indicates to hold down
the first key while pressing the second. A comma (,)
between two key names indicates to release the first key
before pressing the second key.

NOTE Contains important information.

©Copyright 1995-2012 CASEMaker Inc. 1-2

 Introduction

CONVENTION DESCRIPTION
 Procedure

Indicates that procedural steps or sequential items will
follow. Many tasks are described using this format to
provide a logical sequence of steps for the user to follow

 Example

Examples are given to clarify descriptions, and commonly
include text, as it will appear on the screen. Other forms
of this convention include Prototype and Syntax.

CommandLine

Indicates text, as it should appear on a text-delimited
screen. This format is commonly used to show input and
output for dmSQL commands or the content in the
dmconfig.ini file

Table 1-1Document Conventions

©Copyright 1995-2012 CASEMaker Inc. 1-3

 Overview

2. Overview

This chapter is a summarizer of this manual basic knowledge. It will help your to get the xml
relatively description listed faster.

2.1 XML Language
If you do not quite understand xml language, you can refer to chapter 3 to get xml concept,
grammar, and other related knowledge, it will let you easily understand xml.

2.2 XTT/XTM
The XML transfer mapping (XTM) tool allows you to pass XML data to a database using XSL
transformations. The XML Transfer mapping tool consists of three parts: an XML schema part,
which displays the schema of the XML file(s) that you are using as source data; an SQL database
part, which displays the database tables; and an XTM part, which displays the mapping from the
XML schema to the database tables.

The purpose of the XML Transfer Template (XTT) tool is to provide a customizable bridge
between database data and XML documents. The bridge takes the form of a template file, the
XML Transfer Template (XTT). The XTT file determines which database tables and columns to
map to which XML elements and attributes. You determine the mapping using drag-and-drop
operations in the XTT tool. The XTT tool ensures that XTT syntax is correct, and also aids in
performing tasks such as generating schema documents (XSD) or document type definitions
(DTD).

2.3 XML Type Index and Predicate
To improve XML queries performance, we can create special XML index on XML columns. The
XML index supports XML UDF: extract() and extractvalue(). The chapter 8 will introduction
extract() and extractvalue() UDF and show how to create an index on an XML column using
dmSQL.

2.4 XML Validate UDF
XML has become a key technology of today’s Internet. Its self-description and extensibility have
offered the flexibility for data exchange. DBMaster will support this new data type ‘xmltype’ and
some XML related functions for user to store and manage XML data. The chapter 9 will provide
some example of how to create, add, query and update xml validate udf.

©Copyright 1995-2012 CASEMaker Inc. 2-1

 XML Solution Technique Document

2.5 JData Transfer Tool
The Data Transfer Tool provides a user-friendly interface for transferring data in and out of the
database. It is another way to import\export xml file. The tool performs the following types of data
transformation:

• Importing from text

• Importing from XML

• Importing from ODBC

• Exporting to text

• Exporting to XML

Each type of data transformation is performed through a wizard. Each wizard guides the user
through every step in the data transformation process, and gives descriptive information on the
purpose of each step and the effect of different choices on the result. The chapter 10, we only
provide detail information description about importing from XML and exporting to XML wizard.

©Copyright 1995-2012 CASEMaker Inc. 2-2

 XML Learning

3. XML Learning

XML（Extensible Markup Language）has become a key technology of today’s Internet. Its self-
description and extensibility have offered the flexibility for data exchange.

3.1 XML basic

3.1.1 WHAT IS XML
• XML is a stands for Extensible Markup Language

• XML is a markup language much like HTML

• XML was designed to carry data, not to display data

• XML tags are not predefined. You must define your own tags

• XML is designed to be self-descriptive

• XML is a W3C Recommendation

3.1.2 HOW CAN XML BE USED

XML is used in many aspects of web development, often to simplify data storage and sharing.

XML Separates Data from HTML
If you need to display dynamic data in your HTML document, it will take a lot of work to edit the
HTML each time the data changes. With XML, data can be stored in separate XML files. This way
you can concentrate on using HTML for layout and display, and be sure that changes in the
underlying data will not require any changes to the HTML.

XML Simplifies Data Sharing
In the real world, computer systems and databases contain data in incompatible formats.

XML data is stored in plain text format. This provides a software- and hardware-independent way
of storing data. This makes it much easier to create data that different applications can share.

XML Simplifies Data Transport
With XML, data can easily be exchanged between incompatible systems.

One of the most time-consuming challenges for developers is to exchange data between
incompatible systems over the Internet.

©Copyright 1995-2012 CASEMaker Inc. 3-1

 XML Solution Technique Document

Exchanging data as XML greatly reduces this complexity, since the data can be read by different
incompatible applications.

XML Simplifies Platform Changes
Upgrading to new systems (hardware or software platforms), is always very time consuming.
Large amounts of data must be converted and incompatible data is often lost.

XML data is stored in text format. This makes it easier to expand or upgrade to new operating
systems, new applications, or new browsers, without losing data.

XML Makes Your Data More Available
Since XML is independent of hardware, software and application, XML can make your data more
available and useful.

Different applications can access your data, not only in HTML pages, but also from XML data
sources.

3.2 XML Tree
XML documents form a tree structure that starts at "the root" and branches to "the leaves".

3.2.1 AN EXAMPLE XML DOCUMENT

XML documents use a self-describing and simple syntax:
<?xml version="1.0" encoding="ISO-8859-1"?>

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

The first line is the XML declaration. It defines the XML version (1.0) and the encoding used (ISO-
8859-1 = Latin-1/West European character set).

The next line describes the root element of the document (like saying: "this document is a note"):
<note>

The next 4 lines describe 4 child elements of the root (to, from, heading, and body):
<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

And finally the last line defines the end of the root element:
</note>

3.2.2 XML DOCUMENTS FORM A TREE STRUCTURE

XML documents must contain a root element. This element is "the parent" of all other elements.

©Copyright 1995-2012 CASEMaker Inc. 3-2

 XML Learning

The elements in an XML document form a document tree. The tree starts at the root and branches
to the lowest level of the tree.

All elements can have sub elements (child elements):
<root>

 <child>

 <subchild>.....</subchild>

 </child>

</root>

The terms parent, child, and sibling are used to describe the relationships between elements.
Parent elements have children. Children on the same level are called siblings (brothers or sisters).

All elements can have text content and attributes (just like in HTML).

3.3 XML Syntax
The syntax rules of XML are very simple and logical. The rules are easy to learn, and easy to use.

3.3.1 XML SYNTAX RULES

All XML Elements Must Have a Closing Tag
In HTML, you will often see elements that don't have a closing tag:

<p>This is a paragraph

<p>This is another paragraph

In XML, it is illegal to omit the closing tag. All elements must have a closing tag:
<p>This is a paragraph</p>

<p>This is another paragraph</p>

NOTE You might have noticed from the previous example that the XML declaration
did not have a closing tag. This is not an error. The declaration is not a part
of the XML document itself, and it has no closing tag.

XML Tags are Case Sensitive
XML elements are defined using XML tags.

XML tags are case sensitive. With XML, the tag <Letter> is different from the tag <letter>.

Opening and closing tags must be written with the same case:
<Message>This is incorrect</message>

<message>This is correct</message>

XML Elements Must be Properly Nested
In HTML, you will often see improperly nested elements:

<i>This text is bold and italic</i>

In XML, all elements must be properly nested within each other:
<i>This text is bold and italic</i>

In the example above, "Properly nested" simply means that since the <i> element is opened inside
the element, it must be closed inside the element.

©Copyright 1995-2012 CASEMaker Inc. 3-3

 XML Solution Technique Document

XML Documents Must Have a Root Element
XML documents must contain one element that is the parent of all other elements. This element is
called the root element.

<root>

 <child>

 <subchild>.....</subchild>

 </child>

</root>

XML Attribute Values Must be Quoted
XML elements can have attributes in name/value pairs just like in HTML.

In XML the attribute value must always be quoted. Study the two XML documents below. The first
one is incorrect, the second is correct:

<note date=12/11/2007>

<to>Tove</to>

<from>Jani</from>

</note>

<note date="12/11/2007">

<to>Tove</to>

<from>Jani</from>

</note>

The error in the first document is that the date attribute in the note element is not quoted.

Entity References
Some characters have a special meaning in XML.

If you place a character like "<" inside an XML element, it will generate an error because the
parser interprets it as the start of a new element.

This will generate an XML error:
<message>if salary < 1000 then</message>

To avoid this error, replace the "<" character with an entity reference:
<message>if salary < 1000 then</message>

There are 5 predefined entity references in XML:

< < less than

> > greater than

& & ampersand

' ' apostrophe

" " quotation mark

NOTE Only the characters "<" and "&" are strictly illegal in XML. The greater than character is
legal, but it is a good habit to replace it.

©Copyright 1995-2012 CASEMaker Inc. 3-4

 XML Learning

Comments in XML
The syntax for writing comments in XML is similar to that of HTML.

<!-- This is a comment -->

With XML, White Space is Preserved
HTML reduces multiple white space characters to a single white space:

HTML: Hello my name is Tove

Output: Hello my name is Tove.

With XML, the white space in your document is not truncated.

XML Stores New Line as LF
In Windows applications, a new line is normally stored as a pair of characters: carriage return (CR)
and line feed (LF). The character pair bears some resemblance to the typewriter actions of setting
a new line. In Unix applications, a new line is normally stored as a LF character. Macintosh
applications use only a CR character to store a new line.

3.3.2 XML ELEMENTS

What is an XML Element
An XML element is everything from (including) the element's start tag to (including) the element's
end tag.

An element can contain other elements, simple text or a mixture of both. Elements can also have
attributes.

<bookstore>

<book category="CHILDREN">

 <title>Harry Potter</title>

 <author>J K. Rowling</author>

 <year>2005</year>

 <price>29.99</price>

</book>

<book category="WEB">

 <title>Learning XML</title>

 <author>Erik T. Ray</author>

 <year>2003</year>

 <price>39.95</price>

</book>

</bookstore>

In the example above, <bookstore> and <book> have element contents, because they contain
other elements. <author> has text content because it contains text.

In the example above only <book> has an attribute (category="CHILDREN").

©Copyright 1995-2012 CASEMaker Inc. 3-5

 XML Solution Technique Document

XML Naming Rules
XML elements must follow these naming rules:

• Names can contain letters, numbers, and other characters

• Names must not start with a number or punctuation character

• Names must not start with the letters xml (or XML, or Xml, etc)

• Names cannot contain spaces

Any name can be used, no word are reserved.

3.3.3 XML ATTRIBUTES

XML elements can have attributes in the start tag, just like HTML.Attributes provide additional
information about elements.

XML Attributes
From HTML you will remember this: . The "src" attribute provides
additional information about the element.

In HTML (and in XML) attributes provide additional information about elements:

Attributes often provide information that is not a part of the data. In the example below, the file
type is irrelevant to the data, but important to the software that wants to manipulate the element:

<file type="gif">computer.gif</file>

XML Attributes Must be Quoted
Attribute values must always be enclosed in quotes, but either single or double quotes can be
used. For a person's sex, the person tag can be written like this:

<person sex="female">

or like this:
<person sex='female'>

If the attribute value itself contains double quotes you can use single quotes, like in this example:
<gangster name='George "Shotgun" Ziegler'>

or you can use character entities:
<gangster name="George "Shotgun" Ziegler">

XML Elements vs. Attributes
Take a look at these examples:

<person sex="female">

 <firstname>Anna</firstname>

 <lastname>Smith</lastname>

</person>

<person>

©Copyright 1995-2012 CASEMaker Inc. 3-6

 XML Learning

 <sex>female</sex>

 <firstname>Anna</firstname>

 <lastname>Smith</lastname>

</person>

In the first example sex is an attribute. In the last, sex is an element. Both examples provide the
same information.

©Copyright 1995-2012 CASEMaker Inc. 3-7

XML Transfer Template Tool

4. XML Transfer Template Tool

XML Transfer Template Tool is XTT for short. The purpose of the XML Transfer Template (XTT)
tool is to provide a customizable bridge between database data and XML documents. The bridge
takes the form of a template file, the XML Transfer Template (XTT). The XTT file determines
which database tables and columns to map to which XML elements and attributes. You determine
the mapping using drag-and-drop operations in the XTT tool. The XTT tool ensures that XTT
syntax is correct, and also aids in performing tasks such as generating schema documents (XSD)
or document type definitions (DTD).

Using The XTT tool to transform data is a four-phase process － creating or importing the XTT
structure, linking XTT objects to the database with SQL queries, generating DTD or XSD files if
necessary, and finally generating the XML document.

Usually, linking XTT objects will only be necessary if you are importing an existing XML structure
from an XML file, XSD, or DTD. Likewise, linking will not be necessary if you are creating an XTT
based on the database. Hybrid situations may exist, however; for example, where you have an
existing XML structure but need to add new elements for new data.

XTT files define a map from database tables and columns to the elements and attributes of an
XML file. An XTT file is a document with syntax similar to a valid XML document. Elements define
tables and columns, and attributes define SQL queries, attribute names and values, and element
values for XML documents generated using the XTT.

So if you want to backup a database or a table, first you must know the tool and then you can
create an xtt file or import an excised file.

 Example:

The following is a complete XTT file that maps data from the table CARD. It maps the columns
FIRSTNAME, LASTNAME, and TITLE as attributes of the element CARD, and the column NUM
as a child element:

<?xml version="1.0" encoding="UTF-8"?>

<xtt:template xmlns:xtt="urn:schema-dbmaster-com:xml-template">

 <root>

 <CARD xtt:query="CARD_SQL0" xtt:command="select NUM, FIRSTNAME, LASTNAME,
TITLE, BMP from SYSADM.CARD">

 <xtt:attribute name="FIRSTNAME" value="$CARD_SQL0.FIRSTNAME"/>

 <xtt:attribute name="LASTNAME" value="$CARD_SQL0.LASTNAME"/>

 <xtt:attribute name="TITLE" value="$CARD_SQL0.TITLE"/>

 <NUM xtt:textvalue="$CARD_SQL0.NUM" />

 </CARD>

 </root>

</xtt:template>

©Copyright 1995-2012 CASEMaker Inc. 4-1

 XML Solution Technique Document

If the XTT in the above example is run, the following XML file is generated:
<?xml version="1.0" encoding="US-ASCII" ?>

 <root>

 <CARD FIRSTNAME="Eddie" LASTNAME="Brown" TITLE="Manager">

 <NUM>1</NUM>

 </CARD>

 </root>

The XTT tool provides a simple user interface for scripting, validating and running XTT files. The
following sections describe the user interface, and give procedures to help you quickly learn to
start creating your own XTT files.

4.1 Getting to Know the XTT Tool
This section describes the elements of the XTT Tool user interface and how to log onto the
database.

4.1.1 OPENING THE XTT TOOL AND LOGGING INTO A DATABASE

When you open the XTT tool from the Windows start menu you will automatically be prompted to
log into the database. Select the database from which you want to export information. You must
have an account on the database in order to log in. Be sure to use an account that has access to
all the tables that you will need information from.

Figure 4-1: The login dialog

 To open the XTT tool and log into a database:

1. From the Windows Start menu, click Start > Programs > DBMaster 5.0>
XML Transfer Template.

2. In the Login dialog, select a database and enter a user name and password
3. Click Ok. The XTT tool will display database tables in the Database Schema

Panel.

4.1.2 THE MAIN CONSOLE

The Main Console can be divided into five logical areas. Refer to figure below.

©Copyright 1995-2012 CASEMaker Inc. 4-2

XML Transfer Template Tool

Figure 4-2: Elements of the Main Console

4.1.3 THE MENU BAR

The Menu Bar consists of five menus: File, Database, Operation, Options, and Help. Menu item
are disabled if they cannot be used. Refer to the following sections for each menu item’s function.

File

The File menu consists of the following items:

• New XTT > Empty XTT: Creates a new empty XTT. Refer to Creating an empty
XTT file for more information.

• New XTT > With imported DTD: Creates a new XTT based on a DTD file. Refer
to Creating an XTT from a DTD file for more information.

• New XTT > With imported XSD: Creates a new XTT based on an XSD file. Refer
to Creating an XTT from an XSD file for more information.

• New XTT > With imported XML: Creates a new XTT based on an XML file. Refer
to Creating an XTT from an XML file for more information.

• Open XTT: opens the Open dialog with .XTT as the default file extension filter.

• Close: closes the XTT currently open in the XTT editing panel. If the XTT has
been modified a confirmation dialog will ask to save changes.

• Save: saves the XTT currently open in the XTT editing panel. If the XTT has not
been saved before, the Save as dialog will open.

• Save as: Opens the Save as dialog with .XTT as the default file extension.

• Generate DTD: Opens the Save as dialog with .DTD as the default file extension.
Refer to Generating a DTD for more information.

©Copyright 1995-2012 CASEMaker Inc. 4-3

 XML Solution Technique Document

• Generate XSD: Opens the Save as dialog with .XSD as the default file extension.
Refer to Generating an XSD for more information

• Recent files: displays the most recently opened files

• Exit: exits the XML Transfer Template tool

Database

The Database menu consists of the following items:

• Connect: Opens the Login dialog. A list of running databases appears in the drop
down menu.

• Disconnect: stops the session with the database. The content in the database
schema panel is cleared.

• Refresh: refreshes the database schema panel if a session is active.

Operation

The Operation menu consists of the following items:

• Insert > Element: inserts a new empty element into the XTT object tree. Refer to
Adding New Elements and Attributes for more information

• Insert > Attribute: inserts a new empty attribute into the XTT object tree. Refer to
Adding New Elements and Attributes for more information

• Undo: returns the XTT object tree to the state it was in before the last modification

• Copy: copies the selected node of the XTT object tree and all descendants

• Cut: cuts the selected node of the XTT object tree and all descendants

• Paste: Pastes the last cut or copied node of the XTT object tree and all
descendants.

• Remove: removes the selected node of the XTT object tree and all descendants

• Run: executes the XTT file.

• Validate: checks if variable references for elements exist in the parent element,
and checks if SQL commands in elements are valid in the database

Options

The Options menu consists of the following items:

• Preferences: opens the user preferences dialog

• Tree operation options: opens the tree operation options dialog

Help

The Help menu consists of the following items:

• Help: opens the online help.

• Web site: opens a browser window to the web site www.dbmaker.com.

©Copyright 1995-2012 CASEMaker Inc. 4-4

XML Transfer Template Tool

• About: displays information about the XML transfer template including the build
date and number, the CASEMaker technical support e-mail address, and a link to
www.dbmaker.com.

4.1.4 THE TOOLBAR

This section shows the toolbar items with their equivalent menu bar operations.

File Operations

• New empty XTT= menubar > File > New XTT > Empty XTT

• Open XTT= menubar > File > Open XTT

• Save= menubar > File > Save

• Close= menubar > File > Close

XTT Tree Operations

• Add Attribute Object = menubar > Operation > Insert > Attribute

• Add Element Object = menubar > Operation > Insert > Element

• Remove Tree Node = menubar > Operation > Remove

• Move Up = Move current selected node before its previous sibling node. The
element can be moved before another element but cannot be moved before an
attribute.

• Move Down = Move current selected node after its next sibling node. The
attribute can only be moved after another attribute but can’t be moved after an
element.

Opened Files

•

The combo box displays all open XTT filenames. If the file has been edited, then
there will be an asterisk (*) after the filename. When you choose a different filename,
the XTT edit panel will reload and show the XTT tree of the newly selected file.

Operation Options

• Run Transfer = menubar > Operations > Run

• Help = menubar > Help > Help

• Insert as Child = Insert elements as child elements (when performing drag-
and-drop operations)

• Inset as Sibling = Insert elements as sibling elements (when performing drag-
and-drop operations)

• = Add a new node (when performing drag-and-drop operations)

• = Link by source structure (when performing drag-and-drop operations)

• = Add a new element below the selected element (follows Insert as … rule)

©Copyright 1995-2012 CASEMaker Inc. 4-5

 XML Solution Technique Document

• = Add a new attribute within the selected element

• = Operation options – when selected, causes Customize dialog to appear
when performing drag-and-drop operations on tables or views.

4.1.5 THE XTT EDITING PANEL

The XTT editing panel consists of two views: the design view and the source view. The design
view contains the XTT object tree and is displayed by default when an XTT is created or opened.
The XTT object tree is a logical representation of the XTT file itself, which is a well-formed XML
document. The XTT object tree consists of five types of elements, described in the following table.

XTT object type Tree node name Content description

<xtt:template> xtt:template (none)

<root> root (none)

<xtt:attribute> value of attribute ‘name’ value of attribute ‘value’

user-defined
element without
query or text value

element’s tag name (none)

user-defined
element with query

element’s tag name value of attribute ‘xtt:query’ +
‘=’

+ value of attribute
‘xtt:command’

user-defined
element with text
value

element’s tag name value of attribute ‘textvalue’

Table 4-3: Element types in the XTT object tree.

The five XTT element types as they appear in the design view are illustrated in the following table.

e <root> user-defined element with query

To select
the design
clicking on
menu con

4-6
<xtt:templat

<xtt:attribute> User-defined element with text value

Table 4-4: Design view of element types in the XTT object tree

an XTT tree object, left-click on it and it will be highlighted in blue. If you right click on
 view, a pop-up menu will appear depending on the object that is highlighted. Right-
 an object will not cause it to be selected. The following table summarizes the pop-up

tents for different selected elements.

©Copyright 1995-2012 CASEMaker Inc.

XML Transfer Template Tool

Node type Pop-up menu

<xtt:template> N/A

attribute ‘Change to ELEMENT’ - the selected attribute
node will be replaced by an element with the
same name. The data in the value attribute will
be copied to the textvalue attribute of the new
element

 Cut – same as ctrl-X

 Copy – same as ctrl-C

 ‘Remove’ - removes the current selected node
from the tree

user-defined
element

 Element – creates a new element below the
selected element. Whether the new element is
inserted as a sibling or child element depends on
whether the Insert as Child or Insert as Sibling
option has been selected

 Attribute – creates a new attribute for the
selected element

 ‘Change to ATTRIBUTE’ – only provided if the
object has no sub node (either attribute or
element). The selected element will be replaced
by an attribute with the same name. The data in
text value will be copied to the value attribute of
the new attribute

 Cut – same as ctrl-X

 Copy – same as ctrl-C

 Paste – same as ctrl-V

 ‘Remove’ - to remove the current selected node
from the tree

Table 4-5: pop-up menus available in the XTT editing panel design view
4. The Source tab displays the source code for the XTT file.

4.1.6 THE DATABASE SCHEMA PANEL

The database schema panel shows the table/views of the connected database as a schema tree.
By expanding the table/view node, it will show each column as its sub node. The nodes in the
schema tree can be dragged into the XTT tree panel. It will then add a new node or link the
schema information into XTT tree depending on he settings selected.

©Copyright 1995-2012 CASEMaker Inc. 4-7

 XML Solution Technique Document

4.1.7 THE DETAILED EDITING PANEL

Detail editing panel shows the detailed properties of the selected node in the XTT tree. The
general rule for text fields in the editing panel is that when an object outside the text field or area is
selected the value is set. For example, the name field will be set after the next field is selected or
the XTT tree selection is changed. The change can be seen on the XTT tree.

xtt:template

Figure 4-6: The language encoding menu of the detailed editing panel

Encoding – The Encoding menu specifies the text encoding for any output XML file. The choices
are database local (the text encoding specified in the database), UTF-8, UTF-16LE and UTF-
16BE. The default is database local. If database local is Big5 and the encoding setting is database
local, then the output XML will be encoded in Big5.

Header – The header box it is where you add information like a schema file or applicable XSL in
the output XML file. The XTT engine will print the content in this block to the output XML file after
<?xml version=”1.0”…?> . Be sure to type valid XML content in this header block.

Parameters – you may add as many parameters as you want. The parameter name must be
unique. Press the ‘delete’ key to remove a selected row. The last empty row cannot be removed.
The parameter default can be empty.

There are a few display settings available for the output XML file. The default value for each
setting is ‘system default’. The display settings will apply to all XTT objects unless specified
otherwise.

Empty abbreviation –

0 – always show start and end tags for an element, even if its content is empty.

©Copyright 1995-2012 CASEMaker Inc. 4-8

XML Transfer Template Tool

1 – to use the abbreviated form of the end tag if no sub element is produced. For example,
<Department id=”1001” />.

2 – hide the start and end tags if the element content is empty; no text, no attribute, no child
element. If the element only has attributes, it will use type 1 abbreviation.

Indent – the number of indent spaces in the source document for each sub level as displayed in a
text editor. For example, if the number is 2, then the start tag of the root will be indented 2 spaces,
and a sub node of the root will be indented 4 spaces.

Line break –

0 – do not add any line break.

1 – add a line break after an end tag.

2 – add a line break after every start and end tag.

Line break char – the character(s) to be added as line break.

0 – {CR}

1– {LF}

2 – {CR} {LF}.

Display mode – the way to display text data. Generally, the text character ‘<’ will be replaced with
‘<’ in the text content. But ‘<’ can be used if it is enclosed in the CDATA section, or the text
content itself is already an XML fragment and can be added into the output XML as a part of the
XML content. There are 3 different ways to display text data.

0 – Display XML text content with the escape character.

1 – Use a CDATA section to enclose the text value.

2 – Make the content native XML text.

Null handling – specify how to handle null data.

0 – skip null data. If it’s an attribute, then do nothing.

1 – Show empty content. For example,,<NAME></NAME>.

2 – Display ‘NULL’. For example, <NAME>NULL</NAME>.

LO mode – specify how to handle large objects.

0 – dump large object data directly into the XML file. Print a string if it is CLOB type data or print in
hexadecimal format if it is BLOB type data.

1 – To store large object data in external file.

User-defined element

The following represents the properties of a user-defined element in the XTT object tree.

©Copyright 1995-2012 CASEMaker Inc. 4-9

 XML Solution Technique Document

Figure 4-7: The detailed editing panel for a user-defined element

Name – the element name. It is case-sensitive and cannot be empty.

Value – the text value. This is a text expression, which can have both constant text and a variable
reference. For example, you might want to add the country code to all phone number data, such
as "886 - $SQL1.PHONE", where "886 –" is the constant text and "$SQL1.PHONE" is the variable
reference. The XTT engine will concatenate both into the output XML file as the text value of the
element.

Browse button – the browse button will list all the available parameters and variable references at
the current level. You can choose the variable name(s) and insert them into the text expression
field next to the browse button.

Figure 4-8: The query view for a user-defined element in the detailed editing panel

An element can have embedded query properties in it. A valid XTT element will have both fields
(name and command) specified or both left as empty.

Name – the query name. It will be used as a variable reference in the sub nodes.

Command – SQL query statement. The statement must be able to generate a result set. For
example, you cannot type a delete table statement here.

The display settings are similar to the ones in xtt:template, But the default is ‘follow template
setting’.

Null handling – there are only two choices instead of three. If ‘follow template setting’ is selected
and the template has the null handling setting as ‘0 - skip null data’, then it will be treated as ‘1
show empty content’.

1 – Show empty content. For example, <NAME></NAME>.

2 – Display ‘NULL’. For example, <NAME>NULL</NAME>.

Attribute Node

©Copyright 1995-2012 CASEMaker Inc. 4-10

XML Transfer Template Tool

Figure 4-9: An attribute viewed in the detailed editing panel

Name – attribute name. The Name field cannot be empty. Multiple attributes must have names
unique to the same parent element.

Value – the attribute value; a text expression field.

There are only two display settings for an attribute node; null handling and LO mode. The default
for both is ‘follow template setting’.

4.1.8 THE CUSTOMIZE DIALOG

The customize dialog appears when performing drag-and-drop operations if you have selected
show customize dialog. The appearance of the customize dialog depends on the settings
selected in the tree operation options dialog. There are two main views for the customize dialog
depending on whether you have selected Link by source structure or Add a new node.

4.1.9 THE USER PREFERENCES DIALOG

The user preferences dialog is where you select the user interface language, and the method by
which you wish to view the results. You may select English, Chinese, or Japanese as the user
interface language. You may also choose to select your default XML browser or your default text
editor to view the output when running the XTT.

4.1.10 THE TREE OPERATION OPTIONS DIALOG

The tree operation options dialog is where you select the behavior of drag-and-drop operations.
You may select to add database objects as elements or attributes; add objects as child nodes or
sibling nodes; and to add objects as new trees, or to link data to existing elements or attributes.

4.2 Creating a New XTT
An XTT is the map by which XML data files are produced. An XTT may be created in one of four
ways: from an empty XTT file, from a DTD file, From an XSD file, and from an XML file.

4.2.1 CREATING AN EMPTY XTT FILE

Creating an empty XTT file is useful if you have data in a database that you want to display in
XML form, but have no preconditions for how the XML data must be formatted. An empty XTT file
consists only of the root node. After creating an empty XTT file, you may add elements and
attributes. To learn about adding elements and attributes refer to Editing an XTT.

©Copyright 1995-2012 CASEMaker Inc. 4-11

 XML Solution Technique Document

 To create an empty XTT file:
1. Open the XTT tool and log in to the database that you want to use.
2. Click File > New XTT > Empty XTT. The root node will appear in the XTT

object tree.

4.2.2 CREATING AN XTT FROM A DTD FILE

You may want to define the structure of your XML documents based on an existing Document
Type Definition (DTD) file. If you have an existing XML document based on an external DTD and
want to produce XML files from database data that conforms to that DTD, then you can create an
XTT from a DTD file.

A root element must be specified for an XTT. During the import process a dialog allows you to
select any valid element definition as the root for the XTT.

After creating the XTT, all the elements and attributes under the selected root node of the DTD will
appear in the XTT object tree, however, none of the element or attribute definitions contain
values – there is no method to pass SQL data to an XML file using the XTT. This may be
accomplished by editing element nodes in the XTT object tree. For details on how to modify nodes
in the XTT object tree, refer to Mapping Data to Elements and Attributes.

 To create an XTT from a DTD:

1. Open the XTT tool and log in to the database that you want to use.
2. Click File > New XTT > With imported DTD.
3. In the Import from DTD dialog, select the DTD file to import and click Import

from DTD.

4. In the Choose a DTD dom tree node as root dialog, select an element

definition to be the root element in the XTT object tree and click Ok.

©Copyright 1995-2012 CASEMaker Inc. 4-12

XML Transfer Template Tool

4.2.3 CREATING AN XTT FROM AN XSD FILE

It is also possible to base the XTT object tree structure on an XML schema defined by an XML
Schema Definition (XSD) document file. As with DTD files, a root element must be specified, you
may select any valid element definition as the root for the XTT. Also, none of the newly created
attribute or element definitions in the XTT object tree has a value; you must modify the element
and attribute definitions in order to get SQL data into an XML file. For details on how to modify
nodes in the XTT object tree, refer to Editing an XTT.

 To create an XTT from an XSD file:
1. Open the XTT tool and log in to the database that you want to use.
2. Click File > New XTT > With imported XSD.
3. In the Import from XSD dialog, select the DTD file to import and click Import

from XSD.

4. In the Choose an XSD Dom tree node as root dialog, select an element

definition to be the root element in the XTT object tree and click Ok.

4.2.4 CREATING AN XTT FROM AN XML FILE

If you do not have a DTD or XSD file to base your XTT structure on, but need to maintain
consistency with an existing XML structure, then you may create an XTT directly from an XML file.
The XTT tool will parse the structure of your XML document to generate an XTT object tree. The
primary difference between this method of creating an XTT versus using a DTD or XSD is that you
are not given an option as to which element will constitute the root node of the XTT object tree.

©Copyright 1995-2012 CASEMaker Inc. 4-13

 XML Solution Technique Document

 To create an XTT from an XML file:
1. Open the XTT tool and log in to the database that you want to use.
2. Click File > New XTT > With imported XML.
3. In the Import from XML dialog, select the DTD file to import and click Import

from XML.

4.3 Editing an XTT
After you have created the root node and structure (if creating an XTT from XML, DTD, or XSD),
you will want to provide content for the generated XML file. For blank XTT, this is primarily a drag-
and-drop operation from the tables in the database schema panel into the XTT object tree. The
sections Inserting a Table and Adding New Elements and Attributes, describe the primary tasks
you will need to accomplish if creating a new XTT.

For XTT based on an XML, DTD, or XSD file, you will need to add query statements and values to
the attribute and element definitions in the XTT object tree. These tasks are described the section
Mapping Data to Elements and Attributes.

These tasks are not mutually exclusive and the above guidelines are only provided to enable you
to quickly understand how to create a valid XTT document. At times you may find it useful to
modify an element definition in a new XTT – one example being if you only wish to select values
from an SQL table that meet some conditions. Or you may not need to conform precisely to the
XML schema that your XTT is based on – in which case it is possible to use drag-and-drop
operations to build your XTT object tree.

4.3.1 ABOUT THE DESIGN VIEW

The design view of the XTT editing panel displays the XTT object tree. For a new, blank XTT, the
XTT object tree contains only the XTT template node and an empty root node. An XTT object tree
that has been created from an XML, XSD, or DTD will have a different root. Refer to The XTT
Editing Panel for detailed information on the objects and functions available in the design view.

4.3.2 INSERTING A TABLE

You can insert a table as a child or sibling. The first table you insert must be a child of the root
node; attempting to add an element to the xtt:template node will return an error.

Before a table is added to the XTT object tree, you can choose which columns are to be added as
elements, which columns to add as attributes, which columns to select but not add to the XTT
object tree, and which columns not to select. This is accomplished in the customize dialog. Click
the show customize dialog button if you want the customize dialog to appear when adding
object to the XTT object tree.

When inserting a table, the customize dialog will display a query object name, and the structure of
the database object as it will appear after it is entered into the XTT object tree. By default both
parent and child objects are inserted as elements. You may also choose to insert child objects as
attributes, to select database objects without inserting them as attribute objects or element objects,
or to not select the database objects.

After you have inserted the first table, subsequent tables may be added as children or siblings of
the first table. Tables must always be represented as elements in the XTT object tree. If you have

©Copyright 1995-2012 CASEMaker Inc. 4-14

XML Transfer Template Tool

created in the XTT an existing file, any tables you insert can be children or siblings of any of the
existing XTT elements.

 To insert a table as a child node:
1. Click Option > Tree Operation Options.
2. In the Tree Operation Options dialog click Add as element, Insert as a child,

and Add mode.

3. Select a table from the database schema panel.
4. Drag the table from the database schema panel to the XTT object tree node

that is to be the parent of the new node.
5. In the customize dialog, select any columns that you do not want to include

and click remove. Select any columns that you wish to select in the SQL
command, but do not want to export to the XML file and click hidden. Select
any columns that you wish to add as attributes and click attribute. Select any
columns that you wish to add as elements and click element.

6. Click Ok. The table will appear as a new element in the XTT object tree.
Columns will appear as elements and attributes, depending on how they were
selected in the customize dialog.

4.3.3 ADDING NEW ELEMENTS AND ATTRIBUTES

You may need to add elements or attributes to the XTT object tree in order to create the desired
data structure. Note that the following procedure only describes how to add empty elements and
attributes. Refer to defining elements and defining attributes for information on how to map data
from the database to empty elements in the XTT object tree.

 To add new elements or attributes:
1. Select the element to which you will add a new element or attribute.
2. Determine the relationship between the selected element and your new object:

click insert as sibling to make the new object a sibling of the selected
element, click insert as child to make the new object a child of the selected
element.

3. Click add attribute object to add an attribute. Click add element object to
add a new element.

4. Type a name for the new object in the name box of the detailed editing panel
and press Enter.

©Copyright 1995-2012 CASEMaker Inc. 4-15

 XML Solution Technique Document

4.3.4 MAPPING DATA TO ELEMENTS AND ATTRIBUTES

Elements should be associated with data. To associate an element object with data, the parent
element object must contain an SQL query. The SQL query must select the table and column that
will map to the child element object. After associating the parent element with an SQL query, you
must associate a child element with the column.

Use the link by source structure tree operation option to associate elements with SQL queries.
When you associate an element with an SQL query, use the customize dialog to associate child
elements or attributes with the selected columns of the SQL query. Dragging a table from the
database schema panel into a parent element in the XTT object tree will cause the customize
dialog to open.

When linking element objects by source structure, the customize dialog will show the query object
name, and two columns: the XTT object column, and the mapping column. The XTT object
column displays all child elements and attributes of the element that you have dragged the table
into. The mapping column displays any existing content, and is where you select the column
content that you want to map from. Click a row in the mapping column to select an SQL data
source for the corresponding XTT object.

 To map data to an empty XTT element object:
1. Click a table in the database schema panel.
2. Drag the table to an element object in the XTT object tree. The element you

dragged the table into will be the parent element.
3. In the Customize dialog, select the mapping that you wish to perform. For

each element and attribute object:
4. Click the Mapping column that corresponds to the XTT object that you wish to

map database data to.
5. Select the value for the XTT object from the drop-down menu. The value is the

equivalent of the column data in the database. It appears in the format of the
name of the SQL query followed by a dot, and then the column name.

6. Click OK when you have completed selecting mapping values for all the XTT
object nodes that you wish to map to database columns.

4.3.5 SAVING aN XTT

After you have completed editing the XTT object tree, you should save the XTT file. The saved
XTT file can be later recalled for modification, or called in a stored procedure to automatically
pass database data to XML files.

To save an XTT click the Save icon, or click File > Save from the menu bar.

4.4 Generating a DTD
If your development requirements determine that you will need to create a Document Type
Definition (DTD) file to describe the structure of generated XML files, then you can use the
Generate DTD function in the XML Transfer Template tool.

The DTD file structure will be consistent with the structure of the source XTT.

 Example:

Given the following XTT file:

©Copyright 1995-2012 CASEMaker Inc. 4-16

XML Transfer Template Tool

<?xml version="1.0" encoding="US-ASCII"?>

<xtt:template xmlns:xtt="urn:schema-dbmaster-com:xml-template">

 <root>

 <CARD xtt:query="CARD_SQL0" xtt:command="select NUM, FIRSTNAME, LASTNAME,
TITLE, BMP from SYSADM.CARD">

 <NUM xtt:textvalue="$CARD_SQL0.NUM" />

 <FIRSTNAME xtt:textvalue="$CARD_SQL0.FIRSTNAME" />

 <LASTNAME xtt:textvalue="$CARD_SQL0.LASTNAME" />

 <TITLE xtt:textvalue="$CARD_SQL0.TITLE" />

 <BMP xtt:textvalue="$CARD_SQL0.BMP" />

 </CARD>

 </root>

</xtt:template>

The resultant DTD file will be:
<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT root (CARD*) >

<!ELEMENT CARD (NUM, FIRSTNAME, LASTNAME, TITLE, BMP) >

<!ELEMENT NUM (#PCDATA) >

<!ELEMENT FIRSTNAME (#PCDATA) >

<!ELEMENT LASTNAME (#PCDATA) >

<!ELEMENT TITLE (#PCDATA) >

<!ELEMENT BMP (#PCDATA) >
 To generate a DTD file from an XTT object tree:

1. Ensure that the XTT that you want to convert to a DTD is open.
2. Click File > Generate DTD.
3. In the Generate DTD dialog, select an output path and specify a file name and

encoding type. Possible encoding types include: UTF-8, UTF-6LE, UTF-16BE,
and Local Code.

4. Click Generate DTD, a DTD file will be created in the selected folder.

4.5 Generating an XSD
You may wish to generate an XML schema file from the logical structure represented in the XTT
file. Some tools may require a schema file to be able to parse XML data. The schema file structure
is consistent with the XTT object tree structure. In the example below, a small XTT file is used to
generate a schema file.

 Example

Given an XTT file with the following object tree structure:
<?xml version="1.0" encoding="US-ASCII"?>

<xtt:template xmlns:xtt="urn:schema-dbmaster-com:xml-template">

 <root>

 <CARD xtt:query="CARD_SQL0" xtt:command="select NUM, FIRSTNAME, LASTNAME,
TITLE, BMP from SYSADM.CARD">

 <xtt:attribute name="NUM" value="$CARD_SQL0.NUM"/>

 <xtt:attribute name="FIRSTNAME" value="$CARD_SQL0.FIRSTNAME"/>

 <xtt:attribute name="LASTNAME" value="$CARD_SQL0.LASTNAME"/>

 <xtt:attribute name="TITLE" value="$CARD_SQL0.TITLE"/>

 <BMP xtt:textvalue="$CARD_SQL0.BMP" />

©Copyright 1995-2012 CASEMaker Inc. 4-17

 XML Solution Technique Document

 </CARD>

 </root>

</xtt:template>

The resultant schema file structure will be:
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="root">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="CARD" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

</xsd:element>

<xsd:element name="CARD">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="BMP" />

 </xsd:sequence>

 <xsd:attribute name="NUM" type="xsd:int"/>

 <xsd:attribute name="FIRSTNAME" type="xsd:string"/>

 <xsd:attribute name="LASTNAME" type="xsd:string"/>

 <xsd:attribute name="TITLE" type="xsd:string"/>

 </xsd:complexType>

</xsd:element>

<xsd:element name="BMP" type="xsd:string"/>

</xsd:schema>

 To generate an XSD file from an XTT object tree:
1. Ensure that the XTT that you want to convert to an XSD is open.
2. Click File > Generate XSD.
3. In the Generate XSD dialog, select an output path and specify a file name and

encoding type. Possible encoding types include: UTF-8, UTF-6LE, UTF-16BE,
and Local Code.

4. Click Generate XSD, an XSD file will be created in the selected folder.

4.6 Generating XML data
After creating the required transfer template and optional DTD or XSD file, you are ready to
generate an XML file using the data stored in the database.

The Run transfer function is most useful for testing the XTT. After you have created an XTT, you
can use it to generate XML documents on demand and pass data to your XML application.

The following example shows a completed XTT template file and corresponding output file.
<?xml version="1.0" encoding="US-ASCII"?>

<xtt:template xmlns:xtt="urn:schema-dbmaster-com:xml-template">

 <root>

 <CARD xtt:query="CARD_SQL0" xtt:command="select NUM, FIRSTNAME, LASTNAME,
TITLE, BMP from SYSADM.CARD">

 <NUM xtt:textvalue="$CARD_SQL0.NUM" />

©Copyright 1995-2012 CASEMaker Inc. 4-18

XML Transfer Template Tool

 <FIRSTNAME xtt:textvalue="$CARD_SQL0.FIRSTNAME" />

 <LASTNAME xtt:textvalue="$CARD_SQL0.LASTNAME" />

 <TITLE xtt:textvalue="$CARD_SQL0.TITLE" />

 <BMP xtt:textvalue="$CARD_SQL0.BMP" />

 </CARD>

 </root>

</xtt:template>

The corresponding output file for the preceding XTT file:
 <?xml version="1.0" encoding="US-ASCII" ?>

- <root>

- <CARD>

 <NUM>1</NUM>

 <FIRSTNAME>Eddie</FIRSTNAME>

 <LASTNAME>Chang</LASTNAME>

 <TITLE>Manager</TITLE>

 <BMP>lobdir5\blobfile0.tmp</BMP>

 </CARD>

- <CARD>

 <NUM>2</NUM>

 <FIRSTNAME>Hook</FIRSTNAME>

 <LASTNAME>Hu</LASTNAME>

 <TITLE>Software Engineer</TITLE>

 <BMP>lobdir5\blobfile1.tmp</BMP>

 </CARD>

 </CARD>

- <CARD>

 <NUM>7</NUM>

 <FIRSTNAME>Oscar</FIRSTNAME>

 <LASTNAME>Tseng</LASTNAME>

 <TITLE>Software Engineer</TITLE>

 <BMP>lobdir5\blobfile6.tmp</BMP>

 </CARD>

- <CARD>

 <NUM>8</NUM>

 <FIRSTNAME>Jerry</FIRSTNAME>

 <LASTNAME>Liu</LASTNAME>

 <TITLE>Manager</TITLE>

 <BMP>lobdir5\blobfile7.tmp</BMP>

 </CARD>

 </root>

©Copyright 1995-2012 CASEMaker Inc. 4-19

 XTT API Functions

5. XTT API Functions

The XTT API is provided by DBMaster for automating the output of XML data from the database to
files or a location in memory. APIs is provided in Java, and also in the form of a stored procedure.
A few common properties are required for XTT to process:

• Database connection - either with a connection string or pre-connected handle.

• XTT - either the XTT filename or XTT content in memory buffer.

• Output XML - either the XML filename or a pre-allocated buffer for output XML
content.

• Parameters - a string with the parameter values for the template file. The string
might contain several pairs of parameter names and values. Each pair is
separated by comma. The text on the left of the equal sign is the name of
parameter, on the right is the value. The values may be enclosed by doubles quote
or single quotes. For example, "student_id='10012',class_id='103'".

5.1 XTT API in Java

5.1.1 PUBLIC METHODS:

Constructor and destructor:
XTT()

Constructs a XTT object.
finalize ()

Before destroying a XTT object.

setDatabaseConnection
This function sets the database connection.

Syntax
int setDatabaseConnection(dbmaster.sql.JdbcOdbcConnection handle)

ARGUMENT INPUT/OUTPUT DESCRIPTION

conn Input DBMaster jdbc connection object
(cannot be null).

©Copyright 1995-2012 CASEMaker Inc. 5-1

 XML Solution Technique Document

RETURNS

SUCCESS Setting the database connection with
hdbc will always return SUCCESS. If
setting the database connection with a
connection string, it will try to connect
using the connection specified, and
will return SUCCESS if successful.

SQLConnect Error The function will return this string if
setting the database connection with a
connection string fails.

setXtt
Sets the XTT filename or content.

Syntax
void setXtt(String xttFileName);

ARGUMENT INPUT/OUTPUT DESCRIPTION

xttFileName Input XTT filename

void setXtt(byte [] xttValue);

ARGUMENT INPUT/OUTPUT DESCRIPTION

xttValue Input Byte array with XTT content.

setOutputXml
Sets the output XML filename or a memory buffer for output content.

Syntax
void setOutputXml(String xmlFileName);

ARGUMENT INPUT/OUTPUT DESCRIPTION

xmlFileName Input Output XML filename

void setOutputXml(byte [] xmlValue);

The output buffer is null terminated.
ARGUMENT INPUT/OUTPUT DESCRIPTION

xmlValue Input Byte array with output XML content.

setParameters
Sets parameter values for the template file.

©Copyright 1995-2012 CASEMaker Inc. 5-2

 XTT API Functions

Syntax
void setParameters (String parameters);

ARGUMENT INPUT/OUTPUT DESCRIPTION

parameters Input The parameters for the template file, in
the format of:

[param_name="value"
[,param_name="value"]...]

getError
If the return code from run() is not SUCCESS, then use this method to get the error message. If
no error is returned, then this method will return NULL.

Syntax
String getError();

run
Starts the XML transformation.

Syntax
int run ();

RETURNS DESCRIPTION

SUCCESS Transformation successful.

ERR_XTT_INV_ARG Missing required arguments/properties
for XTT engine to process. For
example, no XTT filename or XTT
content is set.

ERR_XTT_XERCES_PARSER Error returned by apache xerces
parser. XTT is not in valid XML format.

ERR_XTT_INV_SYNTAX Invalid XTT syntax. Possible causes:

No recognized xtt element or attribute.

Not exactly one user-defined element in
xtt:template element.

<xtt:attribute> is declared after any
user-defined element in its parent.

<xtt:parameter> is declared after a
user-defined element under
<xtt:template>

Missing required attribute.

ERR_XTT_PROCESS XTT process errors:

Failed to create folder or file.

©Copyright 1995-2012 CASEMaker Inc. 5-3

 XML Solution Technique Document

Invalid variable references.

SQL Error An SQL error occurred during
processing.

5.1.2 EXAMPLE:
 String xtt = "c:\\temp\\case1.xtt";

 String xml = "c:\\temp\\case1.xml";

 String error = "c:\\temp\\case1.log";

 String param = null;

 String dbname = "DBSAMPLE";

 String user = "SYSADM";

 String password = "";

 try

 {

 /* connect to dbmaster database via dbmaster jdbc bridge */

 Class.forName("dbmaster.sql.JdbcOdbcDriver");

 System.setProperty("DM_DRIVER_MODE", "CLIENT_SERVER");

 System.setProperty("DM_CONNECT_MODE", "CONNECT_DB");

 Connection conn = DriverManager.getConnection("jdbc:dbmaster:"+dbname,

user, password);

 /* new XTT object */

 XTT transfer = new XTT();

 /* set database connection with previous connected Jdbc connection. */

 transfer.setDatabaseConnection((dbmaster.sql.JdbcOdbcConnection)conn);

 /* set XTT filename */

 transfer.setXtt(xtt);

 /* set output XML filename */

 transfer.setOutputXml(xml);

 /* set parameter values for XTT template file */

 transfer.setParameters(param);

 /* start XML transformation */

 int rc = transfer.run();

 if(rc != 0)

 {

 /* print out error message */

 System.out.println(transfer.getError());

 }

 conn.close();

 }

©Copyright 1995-2012 CASEMaker Inc. 5-4

 XTT API Functions

 catch(ClassNotFoundException e)

 {

 e.printStackTrace();

 }

 catch(SQLException sqle)

 {

 sqle.printStackTrace();

 }

5.2 XTT Stored Procedure
The XTT stored procedure provides XML transformation functionality similar to the APIs in Java.
The major differences are:

• It only accepts XTT and output XML filenames.

• The filenames specified are on the server site.

5.2.1 STORED PROCEDURE DEFINITION:
CREATE PROCEDURE XTT(

 VARCHAR(257) XTTFILE INPUT,

 VARCHAR(257) OUTPUTFILE INPUT,

 VARCHAR(257) PARAMETERS INPUT);

ARGUMENT INPUT/OUTPUT DESCRIPTION

XTTFILE Input XTT filename

OUTPUTFILE Input Output XML filename

PARAMETERS Input Parameter values for XTT template.

5.2.2 PRIVILEGE

The owner of this stored procedure is SYSTEM. The privileges of the stored procedure are the
same as the user executing the stored procedure. For example, if there is a query in an XTM file
to a table on which the currently logged on user does not have the privilege to select, then an SQL
error will be returned.

5.2.3 EXAMPLES
dmSQL> call XTT('d:\document\test\xtt\case1.xml','c:\temp\case1.xml',NULL);

dmSQL> call XTT('d:\document\test\xtt\case1.xml',NULL,NULL);

ERROR (5612): [DBMaster] xtt invalid argument :

 xml filename or xml destination buffer is required.

©Copyright 1995-2012 CASEMaker Inc. 5-5

 XML Transfer Mapping Tool

6. XML Transfer Mapping Tool

The XML transfer mapping (XTM) tool allows you to pass XML data to a database using XSL
transformations. The XML Transfer mapping tool consists of three parts: an XML schema part,
which displays the schema of the XML file(s) that you are using as source data; an SQL database
part, which displays the database tables; and an XTM part, which displays the mapping from the
XML schema to the database tables.

Using the tool can be summarized in five basic steps: opening a source XML or XSD file to create
a source XML schema, connecting to a database, creating an XTM structure from the database
table, mapping elements and attributes from the source XML schema, and finally storing the XTM
structure as an XSL file.

Once the XSL file is created, it can be used to transform any XML file that conforms to the source
schema to database data.

6.1 Getting to know the XTM Tool
Unlike the XTT tool, the XTM tool does not require a connection to the database when it is opened.
The tool creates a database connection when you create or open an XTM, and is used to display
the database schema tree, described in XML Schema Tree.

This chapter describes all of the major screen elements in the XTM tool.

6.1.1 THE MAIN CONSOLE

The main console of the XTM tool can be broken down into five major areas as illustrated in the
following figure.

©Copyright 1995-2012 CASEMaker Inc. 6-1

 XML Solution Technique Document

Figure 6-1: Elements of the XTM main console

Menu Bar XML Schema Panel Toolbar

XTM Editing Panel Database Schema Panel

6.1.2 THE MENU BAR

The menu bar consists of four menus: File, Operations, Options, and Help. Menu item are
disabled if they cannot be used. Refer to the following sections for each menu item’s function

The File menu consists of the following items:

• New: opens the New XTM dialog, which prompts you to enter source schema and
database information

• Open: opens the Open dialog with .XSL as the default file extension filter.

• Save: saves the XTM currently open in the XTM editing panel as an XSL file. If the
XTM has not been saved before, the Save as dialog will open.

• Save as: Opens the Save as dialog with .XSL as the default file extension.

• Close: closes the XTM currently open in the XTM editing panel. If the XTM has
been modified a confirmation dialog will ask to save changes

• Recent files: Lists the XSL files opened during the current session

• Exit: Exits the XTM tool. Opens the Save as dialog with .XSL as the default file
extension if the current XTM has not been saved

©Copyright 1995-2012 CASEMaker Inc. 6-2

 XML Transfer Mapping Tool

Operation
The Operation menu consists of the following items:

• Undo: returns the XTT object tree to the state it was in before the last modification

• Redo: Executes the last performed action again

• Insert: Inserts a new XTM control node. Opens the New XTM Control Node
dialog

• Remove: Removes the selected node of the XTM object tree and all descendants

• Run: Opens the Execute XTM dialog. The XTM dialog offers the option to
immediately execute the XTM and send data to the database or to generate an SQL
script for later use

• Refresh: Queries the database to refresh database schema

Options
The Options menu consists of the following items:

• Preferences: opens the Preferences dialog, which allows you to choose the
language that the UI is displayed in, and to specify different syntax for the connect
section of the XSL file

• JDBC Drivers: opens the JDBC Drivers dialog, which allows you to connect to
other data sources

Help
The Help menu consists of the following items:

• Help: opens the online help.

• web site: opens a browser window to the web site www.dbmaker.com.

• about: displays information about the XML transfer template including the build
date and number, the CASEMaker technical support e-mail address, and a link to
www.dbmaker.com.

6.2 The Toolbar
• New File: Menu bar > File > New

• Open File: Menu bar > File > Open

• Save File: Menu bar > File > Save

• Close File: Menu bar > File > Close

• Add new Table/Statement Node: Menu bar > Operations > Insert

• Delete Node: Menu bar > Operations > Remove

• Undo: Menu bar > Operations > Undo {command}

• Redo: Menu bar > Operations > Redo

©Copyright 1995-2012 CASEMaker Inc. 6-3

 XML Solution Technique Document

• Run: Menu bar > Operations > run

• Refresh Database: Menu bar > Operations > Refresh

6.3 XTM Object Tree
The XTM Object Tree is a logical representation of the structure of the XTM file. It contains two
columns: the XTM column and the xpath column. The XTM column contains a graphical tree
representation of objects that have been inserted from the Database Schema Tree. The xpath
column contains a path to address the corresponding location in the XML schema tree.

6.4 XML Schema Tree
The XML Schema Tree provides a graphical representation of the schema of the XML, DTD, or
XSD file from which the XTD will create addresses. Any XML file that conforms to the schema
represented in the XML Schema Tree can be used as a data source after the XTM has been
created and saves as an XSL.

6.5 Database Schema Tree
The Database Schema Tree displays a logical representation of database tables within the
selected database.

6.6 Creating an XTM
Creating an XTM requires selecting a data source and connecting to a database.

The data source must be an XML, XSD, or DTD file. You must choose one of the elements in the
source file to be the root. Only child elements and attributes of the selected element will be visible
in the XML schema panel after you create the XTM file. If you want to include other elements or
attributes, you will need to create a new XTM file.

Connecting to a database requires a driver and a connection to the database. The standard driver
for DBMaster databases is dbmaster.sql.JdbcOdbcDriver. For more information about drivers
refer to Adding a New JDBC Driver.The connection to the database requires that the database is
started, that a channel of communications over TCP/IP is open, and that a username and
password for an account with privileges on the tables you wish to display is available.

 To create a new XTM:

1. Select File > New from the menu bar. The New XTM file dialog opens.

©Copyright 1995-2012 CASEMaker Inc. 6-4

 XML Transfer Mapping Tool

2. In the File path box, type a file path or select the browse button to locate a

source schema file (XML, XSD or DTD).
3. To select a root element different from the one indicated in the Root element

box, click the browse button to the right. The Choose root element dialog
appears.

4. Select the element you want to be the root from the tree. Double-click an
element in the tree to expand the node and see its child elements.

5. Click Ok.
6. In the Database box, select a JDBC driver and a data source from the menus.
7. Enter the User name and password of an account on the database.
8. Click Ok. The selected XML schema and database tables will appear in the

XML Schema Panel and Database Schema panel, respectively.

 To open an existing XTM:
1. Select File > Open from the menu bar.
2. Select the XSL file that you want to open using the file chooser.
3. In the File path box, type a file path or select the browse button to locate a

source schema file (XML, XSD or DTD).
4. To select a root element different from the one indicated in the Root element

box, click the browse button to the right. The Choose root element dialog
appears.

5. Select the element you want to be the root from the tree. Double-click an
element in the tree to expand the node and see its child elements.

6. Click Ok.
7. In the Database box, select a JDBC driver and a data source from the menus.
8. Enter the User name and password of an account on the database.
9. Click Ok. The selected XML schema and database tables will appear in the

XML Schema Panel and Database Schema panel, respectively.

6.6.1 ADDING A NEW JDBC DRIVER

It may be necessary to use a different JDBC driver than the ones provided. It is possible to
connect to databases provided by different vendors as long as the JDBC driver is present. The
XTM tool provides this function through the Options menu. It is not necessary to have an XTM
open to add a new driver.

You may also edit or remove drivers that you have added. The default drivers cannot be removed
or edited.

©Copyright 1995-2012 CASEMaker Inc. 6-5

 XML Solution Technique Document

 To add a new JDBC driver
1. Select Options > JDBC Drivers from the menu bar. The JDBC Drivers

window opens.

2. Click Add. The JDBC driver detail dialog opens.

3. Type a class name and prefix for data source into the appropriate text boxes.
4. Type a class path or click the browse button to navigate to the location of the

driver.
5. Click Ok.
6. The new driver will appear in the list of JDBC drivers. Click Ok.

6.7 Mapping xpath statements to XTM object nodes
After creating a new XTM, the next step is to create a map between the nodes in the XML schema
and the database tables. First you will need to add database tables to the XTM object tree, and
then you will need to add XML schema paths to properly map from the address in the XML
schema where the data is located.

To create the structure of the XTM object tree, drag-and-drop tables from the database into the
desired location in the XTM object tree. The first node must be dropped onto the root node;
subsequent nodes can be dropped into the root node or any other node that represents a table.
Tables cannot be dropped into a node representing a column. When you drop a table, it will
appear in the XTM column with all of the columns visible.

After the XTM object tree structure is complete, drag-and-drop nodes from the XML schema panel
onto the desired node in the XTM object tree. A statement will appear in the xpath column that
corresponds to the xpath representation of the element or attribute address in the XML schema.
Furthermore, xpath statements will be preceded by a data property if the are numerical or binary
data types. A data property statement will not precede character data types. The xpath data
property and corresponding data types are summarized in the following table.

©Copyright 1995-2012 CASEMaker Inc. 6-6

 XML Transfer Mapping Tool

XPATH DATA PROPERTY SQL DATA TYPE

Char

Varchar

Longvarchar

Longvarbinary

File

Nchar

Nvarchar

Character data

Nclob

Serial

Smallint

Int

Float

Double

Numerical data

Decimal

Binary

Date

Time

Normalize-space (binary) data

Timestamp

Table 6-2: xpath data properties and corresponding SQL data types

 To build the structure of an XTM:

1. Create a new XTM or open an existing XTM:
2. Drag the table that you want to import data from the Database schema panel

and drop to the xtm column of the XTM editing panel.

©Copyright 1995-2012 CASEMaker Inc. 6-7

 XML Solution Technique Document

3. Drag-and drop the elements or attributes to the XTM nodes that you want to

map the data to. The xpath statement appears in the xpath column.
4. When you are finished, click File > Save.
5. Browse to the folder where you want to store the XTM and type a file name.

The file will automatically be saved with the extension .XSL.

6.8 Executing an XTM
After creating the XTM and saving it as an XSL file, you can pass data from the source XML file to
the database by executing the XTM. When executing the XTM, you can choose to save the data
as an XSL file and run the XTM, or save the transformation as an SQL script. Saving as an SQL
script will not enter any data into the database. You must execute the script to enter the data into
the database.

If you are trying to automate data transfer using a data transfer API or stored procedure, then you
should save the transformation as an XSL file.

6.8.1 SAVING AN XTM AS AN SQL SCRIPT

Saving an XTM as an SQL script allows you to create an SQL script that will perform the same
operation on the database as executing the XTM file, only it stores the equivalent SQL commands
in a script file. This method will not actually store any data in the database. Be sure to save the
XTM as an XSL file before performing this operation, as it will not save either XML data or the
transformation other than in the form of the SQL script.

 To execute an XTM and save output as an SQL script:

1. Click Operations > Run. The Execute XTM window will appear.
2. Click Save as SQL Script.
3. In the Save as SQL Script box, enter the full path and file name for the XSL

file, or select a file and path by clicking the browse button.
4. In the Source XML box, enter a full path and file name for the XML file to

import data from, or select a file and path by clicking the browse button.

©Copyright 1995-2012 CASEMaker Inc. 6-8

 XML Transfer Mapping Tool

5. Click OK. The XTM Tool will create an SQL script. You can run the SQL script
from the dmSQL prompt or using the JDBA tool to enter data into the
database.

 Example:

SQL script output:
INSERT INTO DELPHI.CHINESE (ID,TEXT) VALUES (?,?);

1,'lobdir1\clobfile0.txt';

2,'lobdir1\clobfile1.txt';

3,'lobdir1\clobfile2.txt';

4,'lobdir1\clobfile3.txt';

5,'lobdir1\clobfile4.txt';

…

6.8.2 SAVING AN XTM AS AN XSL FILE AND EXECUTING

Saving the XTM as an XSL file and executing performs the same operation as the XTM API or
stored procedure. Executing the XTM file allows you to find errors in a transformation before you
have automated it, and allows you to test the output for a given transformation to ensure that it
produces the desired result.

 To execute an XTM and save output as an XSL file:

1. Click Operations > Run. The Execute XTM window will appear.
2. Click Save as XTM and run.
3. In the Save as XTM and Run box, enter the full path and file name for the XSL

file, or select a file and path by clicking the browse button.
4. In the Source XML box, enter a full path and file name for the XML file to

import data from, or select a file and path by clicking the browse button.
5. Click OK. The XTM Tool will create an XSL file and add new data to the

selected tables in the database.

 Example:

XSL output:
<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0"

xmlns:xtm="dbmaster.xml.xtm.XMLTransferMap"

extension-element-prefixes="xtm">

<xsl:template match="/">

<xtm:connect driver="dbmaster.sql.JdbcOdbcDriver"
datasource="jdbc:dbmaster:DBSAMPLE4">

<xtm:table owner="DELPHI" name="CHINESE" select="/root/CHINESE">

<xtm:column name="ID" select="number(@ID)"/>

<xtm:column name="TEXT" select="@TEXT"/>

</xtm:table>

</xtm:connect>

</xsl:template>

</xsl:stylesheet>

se1.xsl ','c:\temp\case1.xml');

©Copyright 1995-2012 CASEMaker Inc. 6-9

 XTM API Functions

7. XTM API Functions

After you have created an XTM file you are ready to automate the transfer process. The XTM API
allows you to automate the process. DBMaster provides Java XTM transfer API and the XTM API
stored procedure.

The XTM API requires a few common objects to process:

• Source XML file – the data source for XTM is kept in an XML file.

• XTM file – the file specifies how to retrieve data from source XML and save into the
database.

In addition, the following properties may be requires depending on how you choose to implement
the API:

• Database connection – you may optionally pass the JDBC/ODBC connection to the
XTM engine. If specified, then it will use this connection and ignore the element
‘xtm:connect’ in the XTM file. A JDBC connection can be established using a JDBC
driver provided by one of several vendors, but an ODBC connection should use the
DBMaster ODBC connection handle.

• User name – the user name for database connection. In some cases, you might not
want to add the user name to ‘xtm:connect’. Alternatively, you may pass the user
name when processing XTM file. If specified, then the user name in the XTM file be
used instead of the one in ‘xtm:connect’.

• Password – the password used to log into the database. Like the user name, you
may pass the password to the XTM engine in an API argument.

The search rule for a database connection in XTM processing is:
1. The connection details are passed in the setConnection method.
2. Connection with the user/password passed in the setUser / setPassword

method.
3. Connection information is specified in <xtm:connect> in the XTM file.

If the same property is set more than once before calling the run method, then only the last input
value will be used.

7.1 XTM API in Java
The XTM processor also provides the Java class dbmaster.xml.XTM.

7.1.1 PUBLIC METHODS:

Constructor :
Constructs a XTM object.

©Copyright 1995-2012 CASEMaker Inc. 7-1

 XML Solution Technique Document

Syntax
XTM()

setConnection
Sets the database connection. This functions accepts the java.sql.Connection object as an
argument. The connection can be established via the DBMaster JDBC driver or a JDBC driver from
other vender.

Syntax
void setConnection(Connection conn);

ARGUMENT INPUT/OUTPUT DESCRIPTION

conn Input Object of Class
java.sql.Connection (cannot be
null).

setUser
Sets the user for a database connection.

Syntax
void setUser (String user);

ARGUMENT INPUT/OUTPUT DESCRIPTION

user Input User name

setPassword
Sets the user’s password for a database connection.

Syntax
void setPassword (String password);

ARGUMENT INPUT/OUTPUT DESCRIPTION

password Input Password used for database
connection

setParameter
Set parameter for XSL processor. Parameter value will be available during XTM processing. It can
be referenced in the syntax as $parameter_name.

Syntax
void setParameters (String name, Object value);

ARGUMENT INPUT/OUTPUT DESCRIPTION

name Input Parameter name. Parameter
name is a qualified name as a
two-part string, the namespace
URI enclosed in curly braces
({}), followed by the local name.

©Copyright 1995-2012 CASEMaker Inc. 7-2

 XTM API Functions

If the name has a null URL, the
String only contain the local
name. An application can safely
check for a non-null URI by
testing to see if the first
character of the name is a '{'
character. For example, if a URI
and local name were obtained
from an element defined with
<xyz:foo
xmlns:xyz="http://xyz.foo.com/y
ada/baz.html"/>, then the
qualified name would be
"{http://xyz.foo.com/yada/baz.ht
ml}foo". Note that no prefix is
used.

value Input The parameter value.

getError
If return code from run() is not SUCCESS, then use this method to get the error message. If no
error, then this method will return NULL.

Syntax
String getError();

run
The method run() will transform the XTM content. The XTM itself is actually an XSL file. The XTM
engine is an extension of the Apache Xalan XSLT processor. The transformer will transform the
source XML file according to the specification in the XTM file.

Syntax
int run (String xtmfile,

 String xmlfile);

ARGUMENT INPUT/OUTPUT DESCRIPTION

xtmfile Input XTM filename. It cannot be
null.

xmlfile Input Source XML filename. It
cannot be null.

RETURNS DESCRIPTION

SUCCESS Engine successfully processed source
XML file with XTM specification.

©Copyright 1995-2012 CASEMaker Inc. 7-3

 XML Solution Technique Document

RETURNS DESCRIPTION

ERR_XTM_PROCESS Possible reasons for XTM process errors
include:

XSTL process error – XTM or source
XML file is not valid XML, or the XTM is
not a valid XSL file.

XTM syntax error.

SQL Error The SQL command produced an error.

7.1.2 EXAMPLE:
/* create new XTM object */

XTM transfer = new XTM();

/* start transformation */

int rc = transfer.run(xtm, xml);

/* check if process fails.

 if so, getError for error detail. */

if (rc != 0)

{

 System.out.println(transfer.getError()+"\n");

}

7.2 XTM Stored Procedure
The XTM stored procedure provides an XTM transformation function similar to the Java APIs. The
main differences are

• It only accepts XTM and source XML filenames.

• It only uses a current database connection.

• The filenames specified will be on the server site.

7.2.1 STORED PROCEDURE DEFINITION:

Syntax
CREATE PROCEDURE XTM(

 VARCHAR(257) XTMFILE INPUT,

 VARCHAR(257) XMLFILE INPUT);

ARGUMENT INPUT/OUTPUT DESCRIPTION

XTMFILE Input XTM filename

XMLFILE Input Source XML filename

7.2.2 PRIVILEGE

The owner of this stored procedure is SYSTEM. The privileges of the stored procedure are the
same as the user executing the stored procedure. For example, if there is an insert statement in an

©Copyright 1995-2012 CASEMaker Inc. 7-4

 XTM API Functions

XTM file to a table on which the user does not have the privilege to insert, then an SQL error will be
returned.

7.2.3 EXAMPLE
dmSQL> call XTM('c:\temp\case1.xsl ','c:\temp\case1.xml');

©Copyright 1995-2012 CASEMaker Inc. 7-5

 XML Type Index and Predicate

8. XML Type Index and Predicate

8.1 Managing Index
An index is a mechanism that provides fast access to specific rows in a table based on the values
of one or more columns from the table (known as the key). Indexes contain the same data as the
key columns, but the data is structured and sorted to make retrieval much faster. Once an index is
created on a table, its operation is transparent to users of the database. The DBMS uses the index
to improve query performance whenever possible.

An index can be composed of more than one column, up to a maximum of 32. All the columns in a
table can be used in an index.

8.2 Creating Indexes on XML column
The CREATE INDEX command creates a new index on an existing table. Use indexes to increase
the performance of queries by quickly locating specific rows in a table without examining the entire
table.

The following figure is creating index syntax.

CREATE index_nameINDEX
UNIQUE

FILLFACTOR numberIN tablespace_name

ON table_name

,

()

DESC
ASC

column_name

expression

Figure 8-1 CREATE INDEX syntax

When creating an index specify the index name, the name of the table creating the index on, and
the name of the key columns in the table. Create an index on one or more columns, up to a
maximum of 32 columns. Any column in a table can be used in an index. DBMaster limits indexes
to a maximum record size of 4000 bytes.

©Copyright 1995-2012 CASEMaker Inc. 8-1

 XML Solution Technique Document

Creating indexes for frequently used expressions will improve query performance. For XML
columns, create the index on XML UDF: extract() and extractvalue() to speed up xpath queries.
Please note the primary differences between extract() and extractvalue(). Extract() allows multi-
value, one value, or zero value results, however, asc/desc and unique index are not allowed.
Extractvalue() only allows UDF results having one value or zero values. If the UDF result is multi-
value, then the create index fails for the existing tuple and the insert data fails for the newly
inserted tuple, however, asc/desc and unique index are allowed with Extractvalue().

The following example shows how to create an index on an XML column using dmSQL. Please see
the SQL Command and Function Reference for additional details on the syntax and usage of the
SQL command CREATE INDEX.

 Example 1

To create an index use the Extract XML UDF:
CREATE TABLE tb(id int primary key, name char(20),c1 XMLTYPE);

Create index idx1 on tb (extract(c1, '/personnel/person/@id', NULL));

 Example 2

To create an index use the ExtractValue XML UDF:
Create index idx_extrV on tb_extract (extractValue(id, '/order/items/item/@product', NULL)
asc);

The primary difference between Extract() and Extractvalue() are:

Extract()

EXTRACT ()

Figure 8-2 EXTRACT syntax

• allows a multi-value, a single value or zero value result.

• asc / desc are not allowed.

• unique index is not allowed.

ExtractValue()

EXTRACTVALUE ()

Figure 8-3 EXTRACTVALUE syntax

• allows a single value or a zero value of the UDF results (when the UDF result is a
multi-value result then the create index fails for existing tuple and the insert data
fails for newly inserted tuple).

• allows asc / desc.

• allows unique index.

©Copyright 1995-2012 CASEMaker Inc. 8-2

 XML Validate UDF

9. XML Validate UDF

XML has become a key technology of today’s Internet. Its self-description and extensibility have
offered the flexibility for data exchange. DBMaster will support this new data type ‘xmltype’ and
some XML related functions for user to store and manage XML data.

XML Type is a subset of media type. Large object columns may also be specified as media types
to aid in media process functions.

We will provide some examples of how to create xml validate udf and how to plug-in udf for media
type validation clause in the following chapter.

DBMaster will support a new data type XMLTYPE and provides the feature as following:

• Well-formed XML checking: inserted/updated xml content must be well-formed.

• XML validation: User might specify validation udf when create xmltype column.
DBMaster will validate xml content with it.

• XML data will be stored in its original format.

• Query with XPath search: User might specify xpath and use extract functions to
query/locate nodes in an XML data.

• Update XML content specified by XPath.

Build index on XPath extract: To speed up xpath query, user could build index on frequent query
xpath expression.

9.1 Create DTD/XML Validate UDF
There are two ways to define the legal building blocks of an XML document. One is DTD and
another is XML Schema. There are several parser generators or XML binding class generators on
the market. For example, flexml is XML processor generator, which would process DTD and
generate flex file. Then user can build XML processor base on the flex file. There are also a few
commercial products such as Liquid XML 2006, which can build XML binding classes in different
coding language (java).

9.1.1 FLEXML

Kristoffer Rose’s flexml distributed under the GNU General Public License, is an XML process
generator. It takes a DTD file and generates a LEX file. Flexml is available at
http://flexml.sourceforge.net.

Generating the LEXFile
$ flexml name.dtd

©Copyright 1995-2012 CASEMaker Inc. 9-1

http://flexml.sourceforge.net/

 XML Solution Technique Document

Adding Customized YY_INPUT
The original LEX input is a FILE input stream. The LEX file must be modified to use. UDF Blob as
an input source. The following example demonstrates this modification by adding customized
YY_INPUT.

 Example

Modify the definition section of the LEX file by adding YY_INPUT as shown below. The definition
section is located at the beginning of the file and between the “%{“ and “}%” markers

#include "libudf.h"

typedef struct udf_file

 {

 VAL *args;

 i31 handle;

 i31 rc;

 i31 left;

 i31 rlen;

 } UDF_FILE;

#undef YY_INPUT

#define YY_INPUT(buf,result,max_size) {\

 UDF_FILE * uf =(UDF_FILE *)yyin; \

 errno=0; \

 if (uf->left <= 0)\

 {\

 result = (uf->rlen=0);\

 }\

 if ((uf->rc = _UDFBbRead(uf->args, uf->handle, max_size, &(uf->rlen),
buf))!=0) \

 { \

 errno = uf->rc; \

 result = 0;\

 }\

 else\

 {\

 uf->left -= uf->rlen;\

 result = uf->rlen;\

 }\

}\

Next, add the UDF function to the end of the LEX file as shown below:
#ifdef WIN32

__declspec(dllexport)

#endif

int XXX_VALIDATE(int nArg, VAL args[])

{

 BBObj bbin;

 UDF_FILE uf;

 int rc = 0;

 int rc2 = 0;

 memset(&uf, 0, sizeof(UDF_FILE));

 memcpy((char *)(&bbin), args[0].u.xval, BBOBJ_SIZE);

©Copyright 1995-2012 CASEMaker Inc. 9-2

 XML Validate UDF

 uf.args = args;

 rc = _UDFBbOpen(args, bbin, &(uf.handle));

 if(rc != 0)

 goto EXIT;

 if (rc = _UDFBbSize(args, bbin, &(uf.left)))

 {

 goto EXIT;

 }

 yyin = (void *)&uf;

 rc = validdtd00udf();

 rc2 = _UDFBbClose(args, uf.handle);

EXIT:

 if(args[0].type != NULL_TYP) // null column data

 {

 args[0].type = INT_TYP;

 args[0].len = 4;

 args[0].u.ival = (rc == 0? 1:0);

 }

 return _RetVal(args, args[0]);

}

Build dll/so
flex name.l

cc –c –DBUILD_DLL lex.name.c –Idbmaster-installed-dir/include

Create UDF
CREATE FUNCTION dllname.udfname(BLOB) returns int;

Create column with check constraint
CREATE TABLE table-name(c1 XMLTYPE CHECK udfname(value) = 1);

9.1.2 DBMASTER DTD VALIDATION UDF GENERATOR

A command line tool will generate a validation UDF for the specified DTD.
$ dmxmludfmk –dtd dtd-file-name [–o output-directory] [–p prefix]

• DTD file name is required input. If not specified, an error is generated.

• Output directory is optional. If not specified, the files would be created under current
working directory.

• The prefix is optional. If specified, the generated file uses the prefix in the filename.
If not specified, the DTD filename without a file extension is used.

Several files are generated as follows;

• Lex file:< user-specified-prefix.l>

• Yacc file:<user-specified-prefix.y>

• UDF function file: <user-specified-prefix> udf.c and <user-specified-prefix> udf.h

• The UDF function is named as <user-specified-prefix>_VALIDATE

• hash.c and hash.h provide hash functions

• Makefile on UNIX platformsx or Makefile.msvc on Windows platforms

©Copyright 1995-2012 CASEMaker Inc. 9-3

 XML Solution Technique Document

On UNIX, type ‘make’ to compile/link [user-specified-prefix].so. On windows, do ‘nmake /f
Makefile.msvc’ to compile/link user-specified-prefix.dll.

The difference between dmxmludfmk and flexml are

• dmxmludfmk support not only ascii but also big5, gb, shiftJIS and utf8.

• flexml support content replacement for internal defined entity in DTD.

NOTE dmxmludfmk supports only DTD but no XMLSchema in current version.

 Example 1
Make <user-specified-prefix>.so ;for UNIX

 Example 2
Nmake /f Makefile.msvc ;for Windows

NOTE Please note that dmxmludfmk supports ASCII, and BIG5, gb, shiftJIS, and
utf8 while flexml supports content replacement for internally defined DTD
only entities.

9.1.3 DEFAULT VALIDATOR

I_VALIDATE is provided as a default validator for checking the XML’s syntax. I_VALIDATE does
not provide validation against the DTD or the XMLSchema. I_VALIDATE is part of libmedia library.

9.2 Add XMLType column
Currently, user can add a new XMLType column, but can’t alter an existing xmltype column from
one schema to another, or from no schema specified to one. In this version, DBMaster not support
alter xmltype column or alter other data type to xmltype.

column-definition ::=

 column-identifier data-type [NULL | NOT NULL]

 [default-clause]

 | [col-key-definition]

 | [check-column-constraint]

column-identifier xmltype [CHECK VALIDATE_FUNCTION_NAME (value)=1]

9.3 Query XMLType column
DBMaster provides several extract functions, which allow user to use XPath to retrieve/query
xmltype column data.

The result of XPath might be one of the four types: nodeset, boolean, number, and string. But can’t
have various returned type for extract function. For easy access to the XPath query result,
DBMaster support three XPath query functions: extract, extractValue and existsNode.

9.3.1 EXTRACT

Function extract is the most general one, which will serialize result into NCLOB.
create function libmedia.EXTRACT(long varbinary, varchar(512), varchar(512)) return
NCLOB;

Input argument
• args[0]: xmldata is the xml content to be queried.

©Copyright 1995-2012 CASEMaker Inc. 9-4

 XML Validate UDF

• args[1]: xpath-expression is the xpath user will use to query xmldata.

• args[2]: namespaces is used to specify the namespace(s) used in xpath-
expression. It is optional.

The syntax in namespaces field;
prefix=”namespace-URI” prefix=”namespace=URI”…

XPath specification has no default namespace. All the namespaces must be associated with
prefixes. Therefore, if there is a namespace even it’s default namespae in XML, we need to have a
pair of prefix and namespace in XPath expression in order to properly point out and retrieve xml
content.

Return Value
The result will be serialized into NCLOB. A nodeset might have nodes in various node types
(element, attribute, text, comment…). To serialize such a nodeset into NCLOB will be an issue.
Therefore, we won’t support XPath which would generate nodes in various node types.

The rules to serialize nodeset into NCLOB

• element node traverse all the element nodes in the nodeset, print these element
nodes and their sub nodes into NCLOB in the format of <tag
attr1=value …> …</tag>. Add new line when finish each element node in the
nodeset.

• attribute node loop through all attribute nodes in the nodeset, print each attribute
in the format of att1=value1. Add new line when finish each attribute node.

• text node loop through all text nodes in the nodeset, print each text in the format
text_value. Add new line after each text_value.

• comment node loop through all comment nodes in the nodset, print comment in
the format of <!—comment content -->.

Index on extract function
In order to speed up query, user can create index on frequent used xpath-expression.

CREATE [UNIQUE] INDEX index-name ON (extract(xmldata, xpath-expression,
namespaces))

To build acceptable useful index, there are some rules for XPath used in extract:.

• The XPath shouldn’t have any predicate.

• The XPath shouldn’t have any function in it.

• The XPath should have absolute location path.

• Only allow ‘child’ axis.

• All the nodes in the result nodeset should be the leaf. It can be simple type element
node or attribute node.

• If it’s element node, the name of each node must be the same.

• If it’s attribute node, the name of each attribute must be the same.

9.3.2 EXTRACTVALUE

Function extractValue is used if the result has only one value.
create function libmedia.EXTRACTVALUE(long varbinary, varchar(512), varchar(512))
return nstring;

©Copyright 1995-2012 CASEMaker Inc. 9-5

 XML Solution Technique Document

Function extractValue is similar with extract. But it will return just the value of a node in the nodeset.
Here are some rules for acceptable xpath for extractValue():

• If the result of XPath is a nodeset, it must have only one node.

• This node can be element, text, attribute or comment.

• If it’s element node, it must have no sub element. The returned value is its text.

• If it’s text node, the returned value is the text.

• If it’s attribute node, the returned value is the attribute value.

• If it’s comment node, the returned value is the comment text.

• If the result of XPath is boolean value, it would either return “TRUE” or “FALSE”.

• If the result of XPath is string value, it would simply return the string value.

• If the result of XPath is numeric value, it would return in string form.

• The returned type is NCHAR_TYP.

9.3.3 EXISTSNODE

Function existsNode is used to check if specified node is found.
create function libmedia.EXITSNODE(long varbinary, varchar(512), varchar(512))
return int;

The function’s return value is true or false.

• If the result of XPath is boolean, number or string, return true.

• If the result of XPath is a nodeset, then return true if it has at least one node.
Otherwise, return false.

NOTE We always process xml data in space-normalized mode. So any xml
fragment retrieved might not be exact same as the original xml data. Those
exceeding spaces will be ignored.

9.4 Update XMLType column
Use XPath to locate the part of xml data to be updated.

create function libmedia.XMLUPDATE(long varbinary, varchar(20), varchar(512),
varchar(512), string) return long varbinary;

Input argument

• args[0]: xmldata is the xml content to be updated.

• args[1]: modification-type

• args[2]: xpath-expression is used to locate the part in xmldata to be updated.

• args[3]: namespaces is used to specify the namespace(s) used in xpath-
expression. It is optional.

• args[4]: value is the value to replace the content located by xpath.

Return Value

The xpath evaluated result must be a nodeset. XMLUpdate() will return the whole xml document
after updated.

©Copyright 1995-2012 CASEMaker Inc. 9-6

 XML Validate UDF

9.4.1 INSERT-BEFORE
• All the nodes in the result nodeset can be any node type but attribute.

• The input parameter ‘value’ should be an element fragment.

• Insert the element fragment before each node in the result nodeset.

 Example ：
dmSQL> create table xmltb(c1 int,c2 xmltype);

dmSQL> insert into xmltb values(?,?);

dmSQL/Val> 1,&'card.xml';

1 rows inserted

dmSQL/Val> 2,&'card.xml';

1 rows inserted

dmSQL/Val> END;

The following is card.xml template：
<?xml version="1.0" encoding="US-ASCII"?>

<!DOCTYPE DBSAMPLE5 SYSTEM "DBSAMPLE5.dtd">

<!--

 Generated by DBMaster2XML V1.0

 Database: DBSAMPLE5

-->

<DBSAMPLE5>

<!-- Query string : select ID, FNAME, LNAME, TITLE, PHOTO from "SAMPLE"."CARD"
-->

 <CARD>

 <ID>1</ID>

 <FNAME>Eddie</FNAME>

 <LNAME>Chang</LNAME>

 <TITLE>Manager</TITLE>

 <PHOTO>&BLBTMP_TMP0;</PHOTO>

 </CARD>

 <CARD>

 <ID>2</ID>

 <FNAME>Hook</FNAME>

 <LNAME>Hu</LNAME>

 <TITLE>Software Engineer</TITLE>

 <PHOTO>&BLBTMP_TMP1;</PHOTO>

 </CARD>

 <CARD>

 <ID>3</ID>

 <FNAME>Jackie</FNAME>

 <LNAME>Yu</LNAME>

 <TITLE>Software Engineer</TITLE>

 <PHOTO>&BLBTMP_TMP2;</PHOTO>

 </CARD>

 <CARD>

 <ID>4</ID>

 <FNAME>Ray</FNAME>

 <LNAME>Sung</LNAME>

 <TITLE>Software Engineer</TITLE>

 <PHOTO>&BLBTMP_TMP3;</PHOTO>

©Copyright 1995-2012 CASEMaker Inc. 9-7

 XML Solution Technique Document

 </CARD>

 <CARD>

 <ID>5</ID>

 <FNAME>Louis</FNAME>

 <LNAME>Liu</LNAME>

 <TITLE>Software Engineer</TITLE>

 <PHOTO>&BLBTMP_TMP4;</PHOTO>

 </CARD>

 <CARD>

 <ID>6</ID>

 <FNAME>Trent</FNAME>

 <LNAME>Clowater</LNAME>

 <TITLE>Software Engineer</TITLE>

 <PHOTO>&BLBTMP_TMP5;</PHOTO>

 </CARD>

 <CARD>

 <ID>7</ID>

 <FNAME>Oscar</FNAME>

 <LNAME>Tseng</LNAME>

 <TITLE>Software Engineer</TITLE>

 <PHOTO>&BLBTMP_TMP6;</PHOTO>

 </CARD>

 <CARD>

 <ID>8</ID>

 <FNAME>Jerry</FNAME>

 <LNAME>Liu</LNAME>

 <TITLE>Manager</TITLE>

 <PHOTO>&BLBTMP_TMP7;</PHOTO>

 </CARD>

<

/DBSAMPLE5>

update XMLTB set c2 = xmlupdate(c2, 'insert-before', '/DBSAMPLE5/CARD[1]/ID', NULL,
'<NEWID>11</NEWID>') where c1 = 2;

9.4.2 INSERT-AFTER
• All the nodes in the result nodeset can be any node type but attribute.

• The input parameter ‘value’ should be an element fragment.

• Insert the element fragment after each node in the result nodeset.

 Example ：
update XMLTB set c2 = xmlupdate(c2, 'insert-after', '/DBSAMPLE5/CARD[2]/TITLE', NULL,
'<NEWNODE>123-4567</NEWNODE>') where c1 = 2;

9.4.3 INSERT-ATTRIBUTE
• All the nodes in the result nodeset must be element nodes.

• The input parameter ‘value should contain a pair of name and value in the syntax;
attribute-name=attribute-value.

• Insert attribute for each of the element nodes in the result nodeset. Attribute name
should be unique for an element. And there shouldn’t be any sequence issue.

©Copyright 1995-2012 CASEMaker Inc. 9-8

 XML Validate UDF

 Example ：
update XMLTB set c2 = xmlupdate(c2, 'insert-attribute', '/DBSAMPLE5/CARD/NULLID',
NULL, '<NULLID>') where c1 = 2;

9.4.4 INSERT-TEXT-BEFORE
• All the nodes in the result nodeset can be any node type but attribute.

• The input parameter ‘value’ should be text node value.

• Insert text node before each node in the result nodeset.

 Example ：
update XMLTB set c2 = xmlupdate(c2, 'insert-text-before',
'/DBSAMPLE5/CARD[3]/FNAME/text()', NULL, '<insert-text-before>') where c1 = 2;

9.4.5 INSERT-TEXT-AFTER
• All the nodes in the result nodeset can be any node type but attribute.

• The input parameter ‘value’ should be text node value.

• Insert text node after each node in the result nodeset.

 Example ：
update XMLTB set c2 = xmlupdate(c2, 'insert-text-after',
'/DBSAMPLE5/CARD[4]/FNAME/text()', NULL, 'insert-text-after') where c1 = 2;

9.4.6 APPEND-TEXT
• All the nodes in the result nodeset must be element nodes.

• The input parameter ‘value’ should be the text node value.

• Append the text node as sub node of each of the element nodes in the result
nodeset.

 Example ：
update XMLTB set c2 = xmlupdate(c2, 'append-text', '/DBSAMPLE5/CARD[2]/FNAME', NULL,
'<append-text>') where c1 = 2;

9.4.7 APPEND
• All the nodes in the result nodeset must be element nodes.

• The input parameter ‘value’ should be an element fragment.

• Append the element fragment as sub element of each of the element nodes in the
result nodeset.

 Example ：
update XMLTB set c2 = xmlupdate(c2, 'append', '/DBSAMPLE5/CARD[1]', NULL, '<append/>')
where c1 = 2;

9.4.8 UPDATE
• All the nodes in the result nodeset must be in the same node type. The acceptable

node types are element, text and attribute node.

• If node type is element, the input parameter ‘value’ should have an element
fragment <tag>…</tag>. The value can’t be multiple nodes. Value must be either

©Copyright 1995-2012 CASEMaker Inc. 9-9

 XML Solution Technique Document

NULL or a valid XML fragment. NULL value will make the element become an
empty one.

• If node type is text, the input parameter ‘value’ should have text value only. Any ‘<’
and ‘>’ will be replaced as ‘<’ and ‘>’. NULL value will remove the text value
from the element.

• If node type is attribute, the input parameter ‘value’ should have the attribute value
only. Any ‘<’ and ‘>’ will be replaced as ‘<’ and ‘>’. NULL value will set the
attribute value to empty string.

 Example ：
update XMLTB set c2 = xmlupdate(c2, 'update', '/DBSAMPLE5/CARD[5]/FNAME/text()', NULL,
'update') where c1 = 2;

9.4.9 REMOVE
• Remove all the nodes in the result nodeset.

 Example ：
update XMLTB set c2 = xmlupdate(c2, 'remove', '/DBSAMPLE5/CARD/FNAME', NULL,NULL)
where c1 = 2;

9.4.10 RENAME
• All the nodes in the result nodeset must be in the same node type. The possible

node types are element and attribute node.

• The input parameter ‘value’ should be XML qualified name.

• Rename nodes in the result nodeset.

 Example ：
update XMLTB set c2 = xmlupdate(c2, 'rename', '/DBSAMPLE5/CARD/ID', NULL,'RENAME-ID')
where c1 = 2;

NOTE To simplify interface, DBMaster only support insert/append element, text,
and attribute node. All other node types like comment, processing-
instruction, are not supported in current design.

©Copyright 1995-2012 CASEMaker Inc. 9-10

 JData Transfer Tool

10. JData Transfer Tool

The Data Transfer Tool is a separate application, you can view it as extension to import\export xml
text; it may be opened from windows start>programs>DBMaster 5.0>JData Transfer, or opened
from within JDBA Tool. It consists of a main console and a menu bar, as illustrated in Figure. The
main console provides five options: import from text, import from XML, and import from ODBC,
export to text, and export to XML. The Menu Bar consists of three menus: the Transfer menu, the
Option menu, and the Help menu. The Transfer menu provides the same transfer functions as the
main console, with the addition of the batch transfer function. The option menu can be used to
change the language that the UI is displayed in; currently English, Japanese, and Chinese
(traditional) are the supported languages. The help menu provides access to the help system for
JDBA Tool.

 To open the Data Transfer Tool:

1. Start JDBA Tool and connect to the database that data is to be transferred to or from.
2. Select Data Transfer from the Tool menu. The Data Transfer tool window will open

10.1 Importing data from XML
XML files may also be imported into the database. XML tags may first be defined in a Document
Type Definition (DTD) file before being imported into the database. Furthermore, the DTD may
define the schema in a way that is acceptable to the database.

It is important to consider the structure of the XML file you wish to import. To ensure that the
structure of the XML file and associated DTD have compatible structure, examine the structure of
XML files produced by the Data Transfer Tool: Export to XML File wizard. Files produced using the
Export to XML wizard always can be imported; however, the extent to which a table’s schema is
reproduced varies. The setting that influences table schema the most is the Column as Element /
Attribute setting. Make sure the destination database is started.

• Column as Element: Stores data items in elements. If table schema information
exists as element attributes (data type, column name, length, etc.) in the DTD, then

©Copyright 1995-2012 CASEMaker Inc. 10-1

 XML Solution Technique Document

columns will be created with names and of the appropriate data type and length.
Columns are child elements, and the table is represented as the parent element.
File objects must be referenced as entities in the DTD file if Column as Element is
chosen.

• Column as Attribute: Stores data in an attribute of an element. Each element is a
record. If column names are represented as attributes of the root element (the
table) in the DTD, and each tag in the XML file represents one record, then Column
as Attribute should be chosen.

 To import data from an XML file:

1. Open the Data Transfer Tool.
2. Select Import XML File from the main console or the Transfer menu. The

Welcome to Import from XML File Wizard window will open, displaying a
summary of the steps to be taken in the wizard.

3. Click Next. The Choose a Source XML File window will open.

4. Enter the full path of a text file to import or click the browse button to search for

a text file.
5. Click Next. If the XML file has a structure acceptable to DBMaster’s parser, the

Specify Base Element window will open.

©Copyright 1995-2012 CASEMaker Inc. 10-2

 JData Transfer Tool

6. The nodes of the tree structure represent the elements in the XML file. Click the

nodes on the tree until they are fully expanded. Select a parent element to be
the table name. The child elements will become the columns of the table. Check
Column as attribute if appropriate.

7. Click Next. The Choose a Destination Data Source window will open.

8. Select the database to import data to from the Database menu.
9. Enter a user name and password into the appropriate fields.

NOTE DBA authority or higher is required to import a text file.
10. Click Next. The Transfer Setting window will open.

11. Enter a new table name into the Table Name field, or select a table from the

menu. Selecting a table from the menu will allow you to choose to replace the

©Copyright 1995-2012 CASEMaker Inc. 10-3

 XML Solution Technique Document

destination table, delete rows in the destination table, or append new rows to
the destination table. Click Execute to import the XML file. A confirmation dialog
box will appear.

12. Click OK

10.2 Exporting data to XML
DBMaster supports the export of data from a table to an XML file. Columns may be stored as
individual elements, or as attributes of the table element. When an XML file is created, an
associated DTD file is created. The DTD contains information necessary for defining the elements
and attributes of the XML file. The structure of both the DTD and XML file will vary depending on
whether the columns are stored as attributes or elements.

Consider how the following settings affect the XML file produced by the Export to XML wizard.

• Column as Element: If columns are represented as elements in the resultant files,
then schema information will be retained as element attributes (data type, column
name, length, etc.) in the DTD. Columns are child elements, and the table is
represented as the parent element. If the XML file is later imported back into the
database, then the table’s structure will be exactly replicated. File objects are
referenced as entities in the DTD file if Column as Element is chosen.

• Column as Attribute: Columns are represented as attributes of the table element in
the DTD. There is no record of the table’s schema. An element in the XML file
represents each record.

• Export file link name for FILE type data: The original full path will reference system
and user file objects if this option is selected. If this option is not selected, file type
data will be treated as Long Varbinary.

• Translate all tag names to uppercase: All tag names are converted to uppercase
characters.

• Build temp file to store LONGVARCHAR and LONGVARBINARY data type column
constant: If this option is chosen, BLOB data will be stored in a temporary directory
under the directory the XML file resides in. If this option is not selected, BLOB data
is stored directly in the XML file.

• XML file cannot include DTD file reference: if this option is selected, no DTD is
created. No information about the elements will be preserved in the DTD if this
option is selected.

 Example 1

Assume the table ‘supportqueries’ with columns ‘LOGINID’ CHAR(10); ‘REQUEST’
SQL_LONGVARCHAR; ‘REQUESTTIME’ SQL_TIMESTAMP; ‘ATTACHMENT’ ‘SQL_FILE;
‘BINARY_C‘ SQL_BINARY(10); ‘DECIMAL_C’ SQL_DECIMAL(10, 3). The table has two records.
The entire table is exported to an XML file with columns as elements. File link names are exported,
temp files are built to store BLOB data, and the DTD is included. The resulting XML file follows:

<?xml version="1.0" encoding="BIG5"?>

<!DOCTYPE WEBDB SYSTEM "Support.dtd">

<WEBDB>

 <SUPPORTQUERIES>

 <LOGINID>A_HOWARD </LOGINID>

 <REQUEST>&BLBTMP_TXT0;</REQUEST>

 <REQUESTTIME>2001-09-09 12:47:05.000</REQUESTTIME>

©Copyright 1995-2012 CASEMaker Inc. 10-4

 JData Transfer Tool

 <ATTACHMENT>&DBMASTER_FO_0;</ATTACHMENT>

 <BINARY_C>10000000000000000000</BINARY_C>

 <DECIMAL_C>10.250</DECIMAL_C>

 </SUPPORTQUERIES>

 <SUPPORTQUERIES>

 <LOGINID>A_HOWARD </LOGINID>

 <REQUEST>&BLBTMP_TXT1;</REQUEST>

 <REQUESTTIME>2001-09-22 10:14:21.000</REQUESTTIME>

 <ATTACHMENT>&DBMASTER FO_1;</ATTACHMENT>

 <BINARY_C>20000000000000000000</BINARY_C>

 <DECIMAL_C>13.550</DECIMAL_C>

 </SUPPORTQUERIES>

</WEBDB>

The associated DTD follows:
<!ELEMENT SUPPORTQUERIES (LOGINID, REQUEST, REQUESTTIME, ATTACHMENT, BINARY_C,
DECIMAL_C)>

<!ELEMENT LOGINID (#PCDATA)>

 <!ATTLIST LOGINID

 TYPE CDATA #FIXED "SQL_CHAR"

 NAME CDATA #FIXED "LOGINID"

 LENGTH CDATA #FIXED "20"

 ISNULL (true|false) 'true'

 xml:space (default|preserve) 'preserve'

 >

<!ELEMENT REQUEST (#PCDATA)>

 <!ATTLIST REQUEST

 TYPE CDATA #FIXED "SQL_LONGVARCHAR"

 NAME CDATA #FIXED "REQUEST"

 ISNULL (true|false) 'true'

 xml:space (default|preserve) 'preserve'

 >

<!ELEMENT REQUESTTIME (#PCDATA)>

 <!ATTLIST REQUESTTIME

 TYPE CDATA #FIXED "SQL_TIMESTAMP"

 NAME CDATA #FIXED "REQUESTTIME"

 STORAGE CDATA #FIXED "29"

 ISNULL (true|false) 'true'

 xml:space (default|preserve) 'preserve'

 >

<!ELEMENT ATTACHMENT (#PCDATA)>

 <!ATTLIST ATTACHMENT

 TYPE CDATA #FIXED "SQL_FILE"

 NAME CDATA #FIXED "ATTACHMENT"

 ISNULL (true|false) 'true'

 xml:space (default|preserve) 'preserve'

 >

<!ELEMENT BINARY_C (#PCDATA)>

 <!ATTLIST BINARY_C

 TYPE CDATA #FIXED "SQL_BINARY"

 NAME CDATA #FIXED "BINARY_C"

 LENGTH CDATA #FIXED "10"

 ISNULL (true|false) 'true'

©Copyright 1995-2012 CASEMaker Inc. 10-5

 XML Solution Technique Document

 xml:space (default|preserve) 'preserve'

 >

<!ELEMENT DECIMAL_C (#PCDATA)>

 <!ATTLIST DECIMAL_C

 TYPE CDATA #FIXED "SQL_DECIMAL"

 NAME CDATA #FIXED "DECIMAL_C"

 LENGTH CDATA #FIXED "(10, 3)"

 ISNULL (true|false) 'true'

 xml:space (default|preserve) 'preserve'

 >

<!ENTITY BLBTMP_TXT0 SYSTEM "blobtmpdir0\blbtmpf0.txt">

<!ENTITY DBMASTER_FO_0 SYSTEM "C:\DBMASTER\5.0\BIN\WEBDB\FO\ZZ000000.GIF">

<!ENTITY BLBTMP_TXT1 SYSTEM "blobtmpdir0\blbtmpf1.txt">

<!ENTITY DBMASTER_FO_1 SYSTEM "C:\DBMASTER\5.0\BIN\WEBDB\FO\ZZ000001.GIF">

<!ENTITY BLBTMP_TXT2 SYSTEM "blobtmpdir0\blbtmpf2.txt">

<!ELEMENT WEBDB (SUPPORTQUERIES*)>

 Example 2

Given the same table as example 1, but with the entire table exported with columns as attributes.
The resulting XML file follows:

<?xml version="1.0" encoding="BIG5"?>

<!DOCTYPE WEBDB SYSTEM "Support.dtd">

<WEBDB>

 <SUPPORTQUERIES
LOGINID="A_HOWARD &#x
20;" REQUESTTIME="2001-09-09 12:47:05.000"
ATTACHMENT="C:\DBMASTER\5.0\BIN\WEBDB\FO\ZZ000000.GIF" BINARY_C="10000000000000000000"
DECIMAL_C="10.250"/>

 <SUPPORTQUERIES
LOGINID="A_HOWARD &#x
20;" REQUESTTIME="2001-09-22 10:14:21.000"
ATTACHMENT="C:\DBMASTER\5.0\BIN\WEBDB\FO\ZZ000001.GIF" BINARY_C="20000000000000000000"
DECIMAL_C="13.550"/>

The associated DTD follows:
<!ELEMENT SUPPORTQUERIES EMPTY>

 <!ATTLIST SUPPORTQUERIES

 LOGINID CDATA #IMPLIED

 REQUESTTIME CDATA #IMPLIED

 ATTACHMENT ENTITY #IMPLIED

 BINARY_C CDATA #IMPLIED

 DECIMAL_C CDATA #IMPLIED

 >

<!ELEMENT WEBDB (SUPPORTQUERIES*)>

 To export a table to an XML file:

1. Open the Data Transfer Tool.
2. Select Export to XML from the main console or the Transfer menu. The

Welcome to Export to XML File Wizard window will appear.

©Copyright 1995-2012 CASEMaker Inc. 10-6

 JData Transfer Tool

3. Click Next. The Choose a Data Source window will open.

4. Select a database from the Database menu. Enter a user name and password

into the appropriate fields.
5. Click Next. The Table or Query Export window will appear.

6. If you selected Table from the Table or Query Export window, the Table

Export window will open. If you selected SQL query, then proceed to step 13.
7. Click Next, the Table Export window will open.

©Copyright 1995-2012 CASEMaker Inc. 10-7

 XML Solution Technique Document

8. Select a table to export from the Table name menu. A list of columns in the

table will appear in the Select columns to export field.
9. Select columns by clicking on the column name and clicking Add, or select all

columns by clicking Add All. Selected column names will appear in the right
hand field.

10. Click Next. The Name The XML File window will appear (proceed to step 16).
11. If you selected SQL query from the Table or Query Export window, the Query

Export window will open.
12. Enter a valid SQL select statement into the SQL query field.

13. Click Next. The Name The XML File window will appear.

©Copyright 1995-2012 CASEMaker Inc. 10-8

 JData Transfer Tool

14. Enter the full path of an XML file to export to, or select one by using the browse

button.
15. Click Next. The XML File Format Setting window will open.

16. Select the appropriate settings for the format of the XML file you will create.
17. Click Next. The Customized XML Header window will open.

18. Enter appropriate information, such as namespace and style sheet definitions, if

relevant.
19. Click Next. The Customized Element Name window will appear.

©Copyright 1995-2012 CASEMaker Inc. 10-9

 XML Solution Technique Document

20. It is possible to modify the tag definitions. Enter new tag definitions into the

Replace Tag Name column. The name of the corresponding column will be
changed in the resulting XML file.

21. Click Execute to export the table to the XML file. A confirmation window will
appear.

22. Click OK.

©Copyright 1995-2012 CASEMaker Inc. 10-10

	Introduction
	Additional Resources
	Document Conventions

	Overview
	XML Language
	XTT/XTM
	XML Type Index and Predicate
	XML Validate UDF
	JData Transfer Tool

	XML Learning
	XML basic
	What is XML
	How Can XML be Used

	XML Tree
	An Example XML Document
	XML Documents Form a Tree Structure

	XML Syntax
	XML Syntax Rules
	XML Elements
	XML Attributes

	XML Transfer Template Tool
	Getting to Know the XTT Tool
	Opening the XTT tool and logging into a database
	The Main Console
	The Menu Bar
	The Toolbar
	The XTT Editing Panel
	The Database Schema Panel
	The Detailed Editing Panel
	The Customize Dialog
	The User Preferences Dialog
	The Tree Operation Options Dialog

	Creating a New XTT
	Creating an empty XTT file
	Creating an XTT from a DTD file
	Creating an XTT from an XSD file
	Creating an XTT from an XML file

	Editing an XTT
	About the Design View
	Inserting a Table
	Adding New Elements and Attributes
	Mapping Data to Elements and Attributes
	Saving an XTT

	Generating a DTD
	Generating an XSD
	Generating XML data

	XTT API Functions
	XTT API in Java
	Public methods:
	Example:

	XTT Stored Procedure
	Stored procedure definition:
	Privilege
	Examples

	XML Transfer Mapping Tool
	Getting to know the XTM Tool
	The Main Console
	The Menu Bar

	The Toolbar
	XTM Object Tree
	XML Schema Tree
	Database Schema Tree
	Creating an XTM
	Adding a New JDBC Driver

	Mapping xpath statements to XTM object nodes
	Executing an XTM
	Saving an XTM as an SQL Script
	Saving an XTM as an XSL File and Executing

	XTM API Functions
	XTM API in Java
	Public methods:
	Example:

	XTM Stored Procedure
	Stored procedure definition:
	Privilege
	Example

	XML Type Index and Predicate
	Managing Index
	Creating Indexes on XML column

	XML Validate UDF
	Create DTD/XML Validate UDF
	Flexml
	DBmaster DTD Validation UDF Generator
	Default Validator

	Add XMLType column
	Query XMLType column
	Extract
	ExtractValue
	ExistsNode

	Update XMLType column
	insert-before
	insert-after
	insert-attribute
	insert-text-before
	insert-text-after
	append-text
	append
	update
	remove
	rename

	JData Transfer Tool
	Importing data from XML
	Exporting data to XML

