

DBMaker

DCI User's Guide

CASEMaker Inc./Corporate Headquarters 1680 Civic Center Drive

Santa Clara, CA 95050, U.S.A.

www.casemaker.com

www.casemaker.com/support

© Copyright 1995-2025 by CASEMaker Inc.

Document No. 645049-243140/DBM547-M07172025-DCIU

Publication Date: 2025-07-17

All rights reserved. No part of this manual may be reproduced, stored in a retrieval system, or transmitted in any
form, without the prior written permission of the manufacturer.

For a description of updated functions that do not appear in this manual, read the file named README.TXT
after installing the CASEMaker DBMaker software.

Trademarks

CASEMaker, the CASEMaker logo, and DBMaker are registered trademarks of CASEMaker Inc. Microsoft, MS-
DOS, Windows, and Windows NT are registered trademarks of Microsoft Corp. UNIX is a registered trademark
of The Open Group. ANSI is a registered trademark of American National Standards Institute, Inc.

Other product names mentioned herein may be trademarks of their respective holders and are mentioned only
form information purposes. SQL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

Notices

The software described in this manual is covered by the license agreement supplied with the software.

Contact your dealer for warranty details. Your dealer makes no representations or warranties with respect to the
merchantability or fitness of this computer product for any particular purpose. Your dealer is not responsible for
any damage caused to this computer product by external forces including sudden shock, excess heat, cold, or
humidity, nor for any loss or damage caused by incorrect voltage or incompatible hardware and/or software.

Information in this manual has been carefully checked for reliability; however, no responsibility is assumed for
inaccuracies. This manual is subject to change without notice.

http://www.casemaker.com/
http://www.casemaker.com/support

1 Contents

© Copyright 1995-2025 CASEMaker Inc. i

Contents

1 Introduction ... 1-1

1.1 Additional Resources ... 1-3

1.2 Technical Support... 1-4

1.3 Document Conventions ... 1-5

2 DCI Basics ... 2-1

2.1 DCI Overview ... 2-2
File System and Databases .. 2-2
Accessing Data .. 2-3

2.2 System Requirements .. 2-5

2.3 Setup Instructions .. 2-6
Windows Setup ... 2-6
UNIX Setup... 2-11
Shared Libraries .. 2-15

2.4 Basic Configuration .. 2-16
DCI_DATABASE ... 2-16
DCI_LOGIN .. 2-17
DCI_PASSWD ... 2-17
DCI_XFDPATH .. 2-17

2.5 Runsql Utility ... 2-19

2.6 Invalid Data .. 2-20

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. ii

2.7 Sample Application .. 2-22
Setting up the Application... 2-22
Adding Records .. 2-25
Accessing Data .. 2-26

3 Data Dictionaries ... 3-1

3.1 Assigning Table Names ... 3-2

3.2 Mapping Columns and Records................................ 3-6
Identical Field Names .. 3-8
Long Field Names .. 3-9

3.3 Using Multiple Record Formats 3-10

3.4 Using XFD File Defaults ... 3-13
REDEFINES Clause ... 3-13
KEY IS Phrase .. 3-13
FILLER Data Items ... 3-14
OCCURS Clauses ... 3-14

3.5 Mapping Multiple Files ... 3-16

3.6 Mapping to Multiple Databases 3-18

3.7 Using Triggers ... 3-22

3.8 Using Views ... 3-25

3.9 Using Synonyms ... 3-28

3.10 Open Tables in Remote Databases 3-29

3.11 Using DCI_WHERE_CONSTRAINT 3-32

4 XFD Directives ... 4-1

4.1 Using Directive Syntax ... 4-2

4.2 Using XFD Directives ... 4-3
$XFD ALPHA Directive .. 4-3
$XFD BINARY Directive .. 4-4
$XFD COMMENT DCI BIGINT Directive 4-5
$XFD COMMENT DCI SERIAL n Directive 4-5
$XFD COMMENT DCI COBTRIGGER Directive 4-6

1 Contents

© Copyright 1995-2025 CASEMaker Inc. iii

$XFD COMMENT Directive .. 4-6
$XFD DATE Directive ... 4-7
$XFD DCI SPLIT .. 4-10
$XFD FILE Directive ... 4-11
$XFD HIDDEN Directive... 4-11
$XFD NAME Directive .. 4-12
$XFD NUMERIC Directive .. 4-12
$XFD USE GROUP Directive .. 4-13
$XFD VAR-LENGTH Directive .. 4-14
$XFD WHEN Directive for File Names 4-14

5 Compiler and Runtime Options 5-1

5.1 Using ACUCOBOL-GT Default File System 5-2

5.2 Using DCI Default File System 5-3

5.3 Using Multiple File Systems 5-4

5.4 Using the Environment Variable 5-5

6 Configuration File Variables 6-1

6.1 Setting DCI_CONFIG Variables 6-2
<filename>_RULES... 6-2
DCI_AUTO_CREATE_FOR_INVALID_TABLE 6-3
DCI_AUTOMATIC_SCHEMA_ADJUST 6-3
DCI_CASE .. 6-4
DCI_COLUMNS_MAPPING .. 6-4
DCI_COMMIT_COUNT .. 6-5
DCI_CONNECTION_ID .. 6-5
DCI_CREATE_ALTERNATE_KEY .. 6-5
DCI_DATABASE ... 6-6
DCI_DATE_CUTOFF .. 6-7
DCI_DB_MAP ... 6-8
DCI_DEFAULT_CACHE Variables ... 6-8
DCI_DEFAULT_USER .. 6-9
DCI_DUPLICATE_CONNECTION .. 6-9

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. iv

DCI_GET_EDGE_DATES ... 6-13
DCI_GRANT_ON_OUTPUT ... 6-13
DCI_IGNORE_MAX_BUFFER_LENGTH 6-14
DCI_INCLUDE .. 6-14
DCI_INV_DATE .. 6-14
DCI_LOGFILE ... 6-14
DCI_LOGIN .. 6-15
DCI_JULIAN_BASE_DATE ... 6-15
DCI_LOGTRACE .. 6-16
DCI_MAPPING .. 6-16
DCI_MAX_ATTRS_PER_TABLE ... 6-17
DCI_MAX_BUFFER_LENGTH .. 6-17
DCI_MAX_DATE .. 6-18
DCI_MIN_DATE ... 6-18
DCI_NULL_DATE .. 6-18
DCI_NULL_ON_ILLEGAL_DATE 6-18
DCI_NULL_ON_MIN_DATE ... 6-19
DCI_NULL_ON_ZERO_NUMBER 6-19
DCI_NULL_ON_SPACE_CHAR .. 6-20
DCI_PASSWD ... 6-20
DCI_RESET_CHARTOBLOB_LENGTH 6-21
DCI_STORAGE_CONVENTION .. 6-22
DCI_TABLE_CACHE ... 6-23
DCI_TABLE_FILLFACTOR ... 6-23
DCI_TABLESPACE... 6-23
DCI_TABLESPACE_IDX .. 6-24
DCI_USER_TABLESPACE ... 6-24
DCI_USEDIR_LEVEL.. 6-25
DCI_USER_PATH ... 6-25
DCI_XFD_INFO_OFF ... 6-26
DCI_XFDPATH ... 6-26
DCI_XML_XFD ... 6-27
DCI_VARCHAR ... 6-27

1 Contents

© Copyright 1995-2025 CASEMaker Inc. v

7 DCI Functions ... 7-1

7.1 Calling DCI functions ... 7-2
DCI_SETENV ... 7-2
DCI_GETENV .. 7-2
DCI_DISCONNECT ... 7-2
DCI_GET_TABLE_NAME ... 7-3
DCI_SET_TABLE_CACHE... 7-3
DCI_BLOB_ERROR .. 7-4
DCI_BLOB_GET ... 7-4
DCI_BLOB_PUT .. 7-6
DCI_GET_TABLE_SERIAL_VALUE 7-7
DCI_FREE_XFD .. 7-8
DCI_UNLOAD_CONFIG ... 7-8

8 COBOL Conversions .. 8-1

8.1 Using Special Directives .. 8-2

8.2 Mapping COBOL Data Types 8-3

8.3 Mapping DBMaker Data Types 8-5

8.4 Troubleshooting Runtime Errors 8-7

8.5 Troubleshooting Native SQL Errors 8-9

8.6 Converting Vision Files .. 8-12
Using DCI_Migrate .. 8-12

Glossary ... 1

Index ... 1

1 Introduction 1

© Copyright 1995-2025 CASEMaker Inc. 1-1

1 Introduction

This manual is intended for software developers who want to combine the

reliability of COBOL programs with the flexibility and efficiency of a relational

database management system (RDBMS). The manual gives systematic

instructions on using the DBMaker COBOL Interface (DCI), a program

designed to allow for efficient management and integration of data with

COBOL using DBMaker’s database engine.

DCI provides a communication channel between COBOL programs and

DBMaker. DBMaker COBOL Interface (DCI) allows COBOL programs to

efficiently access information stored in the DBMaker relational database.

COBOL programs usually store data in standard B-TREE files. Information

stored in B-TREE files are traditionally accessed through standard COBOL I/O

statements like READ, WRITE and REWRITE.

COBOL programs can also access data stored in the DBMaker RDBMS.

Traditionally, COBOL programmers use a technique called embedded SQL to

embed SQL statements with COBOL source code. Before compiling the source

code, a special pre-compiler translates SQL statements into "calls" to the

database engine. These calls execute to access the DBMaker RDBMS during

runtime.

Though this technique is a good solution for storing information on a database

using COBOL programs, it has some drawbacks. First, it implies COBOL

programmers have a good knowledge of the SQL language. Second, a program

written in this way is not portable — it cannot work both with B-TREE files

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 1-2

and the DBMaker RDBMS. Furthermore, SQL syntax often varies among

databases. This makes COBOL programs embedded with SQL statements for a

specific DBMaker RDBMS unable to work with another database. Finally,

embedded SQL is difficult to implement with existing programs. In fact,

embedded SQL requires significant application re-engineering, including

substantial additions to the working storage, data storage, and reworking of

each I/O statement’s logic.

There is an alternative to embedded SQL. Some suppliers have developed

seamless COBOL to database interfaces. These interfaces translate COBOL I/O

commands, on the fly, into SQL statements. In this way, COBOL programmers

need not be familiar with SQL and COBOL programs can remain portable.

However, this solution does present a performance problem.

In fact, SQL has a different purpose than COBOL I/O statements. SQL is

intended to be a set-based, ad hoc query language that can find almost any

combination of data from a general specification. In contrast, COBOL B-TREE

or other data structure calls use well-defined traversal keys or navigation

logic or both for direct data access. Therefore, forcing transaction rich,

performance sensitive COBOL applications to operate exclusively via SQL-

based I/O is often an inappropriate method.

CASEMaker's COBOL interface product, DCI, does not use SQL in this way. DCI

provides direct access and traversal to data storage in a manner similar to

COBOL’s own access to users replaceable COBOL file systems. DCI provides

seamless interfaces between COBOL programs and DBMaker file systems.

Information exchange between the application and the database are invisible

to end users. In cases when full SQL-based file and data storage access is

required, like desktop decision support systems (DSS), data warehousing and

4GL applications, DBMaker provides these features along with the reliability

and robustness of an RDBMS.

CASEMaker’s database and DCI products combine the power of 4GLs and

navigational data structures with the ad hoc flexibility of SQL-based database

access and reporting while delivering tremendous performance.

1 Introduction 1

© Copyright 1995-2025 CASEMaker Inc. 1-3

1.1 Additional Resources

DBMaker provides a complete set of DBMS manuals including this one. For

more information on a particular subject, consult one of the manuals listed

below:

• For an introduction to DBMaker’s capabilities and functions, refer to the

DBMaker Tutorial.

• For more information on designing, administering, and maintaining a

DBMaker database, refer to the Database Administrator's Guide.

• For more information on DBMaker management, refer to the JServer

Manager User’s Guide.

• For more information on DBMaker configurations, refer to the

JConfiguration Tool Reference.

• For more information on DBMaker functions, refer to the JDBA Tool User’s

Guide.

• For more information on the dmSQL interface tool, refer to the dmSQL

User’s Guide.

• For more information on the SQL language used in dmSQL, refer to the

SQL Command and Function Reference.

• For more information on the ESQL/C programming, refer to the ESQL/C

User’s Guide.

• For more information on the native ODBC API and JDBC API, refer to the

ODBC Programmer’s Guide and JDBC Programmer’s Guide.

• For more information on error and warning messages, refer to the Error

and Message Reference.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 1-4

1.2 Technical Support

CASEMaker provides thirty days of complimentary email and phone support

during the evaluation period. When software is registered, an additional thirty

days of support is included, extending the total software support period to

sixty days. However, CASEMaker continues providing email support free of

charge for reported bugs after the complimentary support or registered

support has expired.

For most products, support is available beyond sixty days and may be

purchased for twenty percent of the retail price of the product. Please contact

sales@casemaker.com for details and pricing.

CASEMaker support contact information, by post mail, phone, or email, for

your area is at: www.casemaker.com/support. We recommend searching the

most current FAQ database before contacting CASEMaker support staff.

Please have the following information available when phoning support for a

troubleshooting enquiry or include this information in your correspondence:

• Product name and version number

• Registration number

• Registered customer name and address

• Supplier/distributor where product was purchased

• Platform and computer system configuration

• Specific action(s) performed before error(s) occurred

• Error message and number, if any

• Any additional helpful information

mailto:sales@casemaker.com
http://www.casemaker.com/support

1 Introduction 1

© Copyright 1995-2025 CASEMaker Inc. 1-5

1.3 Document Conventions

This manual uses a standard set of typographical conventions for clarity and

ease of use. The NOTE, Procedure, Example, and Command Line conventions

also have a second setting used with indentation.

CONVENTION DESCRIPTION

Italics

Italics indicate placeholders for information that must be supplied,

such as user and table names. The word in italics should not be

typed, but is replaced by the actual name. Italics also introduce

new words, and are occasionally used for emphasis in text.

Boldface

Boldface indicates filenames, database names, table names, column

names, user names, and other database schema objects. It is also

used to emphasize menu commands in procedural steps.

KEYWORDS

All keywords used by the SQL language appear in uppercase when

used in normal paragraph text.

SMALL CAPS

Small capital letters indicate keys on the keyboard. A plus sign (+)

between two key names indicates to hold down the first key while

pressing the second. A comma (,) between two key names

indicates to release the first key before pressing the second key.

NOTE Contains important information.

 Procedure

Indicates that procedural steps or sequential items will follow.

Many tasks are described using this format to provide a logical

sequence of steps for the user to follow .

 Example

Examples are given to clarify descriptions, and commonly include

text, as it will appear on the screen. Other forms of this convention

include Prototype and Syntax.

CommandLine

Indicates text, as it should appear on a text-delimited screen. This

format is commonly used to show input and output for dmSQL

commands or the content in the dmconfig.ini file.

Figure 1-1 Document Conventions Table

1DCI Basics 2

© Copyright 1995-2025 CASEMaker Inc. 2-1

2 DCI Basics

This chapter provides essential DCI environment set up and configuration

information for DBMaker. Also included is information about using the

demonstration program to show you the basic functions of DCI.

The following topics are covered in this chapter:

• Software and hardware requirements

• Step-by-step setup for UNIX and Windows platforms

• Options for configuring DCI for DBMaker

• DCI demonstration program instructions

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 2-2

2.1 DCI Overview

Although traditional COBOL file systems and databases both contain data, they

differ significantly. Databases are generally more robust and reliable than

traditional file systems. Furthermore, they act as efficient systems for data

recovery from software or hardware crashes. In addition, to ensure data

integrity, DBMaker RDBMS provides support for referential actions and

domain, column and table constraints.

File System and Databases

There are parallels between database data storage and COBOL indexed files.

The following table shows each system’s data structures and how they

correspond.

COBOL INDEXED FILE SYSTEM

OBJECT
DATABASE OBJECT

Directory Database

File Table

Record Row

Field Column

Figure 2-1 COBOL and Database Object Structures

Indexed file operations are performed on records in COBOL and operations

are performed on columns in a database. Logically, a COBOL indexed file

represents a database table. Each record in a COBOL file represents a table

row in a database and each field represents a table column. Data can have

multiple definition types in COBOL while table columns in a database must

associate with a particular data type such as integer, character, or date.

1DCI Basics 2

© Copyright 1995-2025 CASEMaker Inc. 2-3

 Example

A COBOL record is defined using the following format:
terms-record.

 03 terms-code PIC 999.

 03 terms-rate PIC s9v999.

 03 terms-days PIC 9(2).

 03 terms-descript PIC x(15).

The COBOL record in the above example has the following representation in a

database. Notice how each row is an instance of the COBOL 01 level record

terms-record.

TERMS_CODE TERMS_RATE TERMS_DAYS TERMS_DESCRIPT

234 1.500 10 net 10

235 1.750 10 net 10

245 2.000 30 net 30

255 1.500 15 net 15

236 2.125 10 net 10

237 2.500 10 net 10

256 2.000 15 net 15

Figure 2-2 COBOL Records Converted to Database Rows

Accessing Data

ACUCOBOL-GT’s generic file handler interfaces with DCI and the Vision file

system. Vision is the standard indexed file system supplied with ACUCOBOL-

GT. See ACUCOBOL-GT's manual for more detail about Vision files.

DCI, in combination with data dictionaries, bridges data access in a COBOL-

based application program interface (API) and DBMaker’s database

management system. Users may access data through the API. Furthermore, ad

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 2-4

hoc data queries can use either of DBMaker’s SQL interfaces: dmSQL or JDBA

Tool. The ACUCOBOL-GT compiler creates data dictionaries which are

discussed in Chapter 3, Data Dictionaries.

ACUCOBOL
Application Program Interface

(User)

Vision FilesGeneric File Handler

DCI

DBMaker
Client Process

Data Dictionaries

DBMaker Storage

Figure 2-3 Data Flowchart

1DCI Basics 2

© Copyright 1995-2025 CASEMaker Inc. 2-5

2.2 System Requirements

DCI for DBMaker is an add-on module that must be linked with the

ACUCOBOL-GT runtime system. For this reason, a C compiler is required to

install the DCI product. To interface the ACUCOBOL-GT Version 4.3 or later

compiler and runtime is required. The README.TXT file located in the DCI

directory lists files that ship with the product.

DCI supports the following platforms:

• Windows 32bit and x86_64bit (Windows 2008/7/8/2012/10)

• Linux 32bit (glibc 2.3) and x86_64bit (glibc 2.7)

• Windows 32bit and x86_64bit (Windows 2000/XP/2003/Vista)

DCI requires the following software:

• DBMaker version 5.2 or greater

• ACUCOBOL-GT runtime version 4.3 or greater

• C compiler for the local machine (e.g., Visual C++™ Version 6.0 for a

Windows platform)

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 2-6

2.3 Setup Instructions

Install and configure the most recent version of DBMaker before configuring

DCI. Refer to the Quick Start sheet included with the DBMaker CD for

installation instructions.

Windows Setup

The DCI files must be copied from the source directory in the DCI zip file

(\DCI\OS\) to a target directory before proceeding to setup DCI. The DCI

libraries include dmdcic.lib, dmacu51.lib for ACUCOBOL-GT 5.1 and previous

versions, dmacu52.lib for ACUCOBOL-GT 5.2 and versions before 8.0,

dmacu80.lib for ACUCOBOL-GT 8.0, and dmacu90.lib for ACUCOBOL-GT 9.0.

 DCI Setup

1. Install @DM_PRODUCT_NAME@. The latest @DM_PRODUCT_NAME@
must be installed and configured prior to configuring DCI.

2. Copy the DCI library dmdcic.lib and the DCI library for ACUCOBOL-GT
from the @DM_PRODUCT_NAME@ DCI zip file into the ACUCOBOL-GT
installation directory.

copy DCI\WIN32\dmdcic.lib c:\acucobol\acugt\lib

a) For ACUCOBOL-GT 5.1 or previous versions:

copy DCI\WIN32\dmacu51.lib c:\acucobol\acugt\lib

b) For ACUCOBOL-GT 5.2 or versions before 8.0:

copy DCI\WIN32\dmacu52.lib c:\acucobol\acugt\lib

c) For ACUCOBOL-GT 8.0:

copy DCI\WIN32\dmacu80.lib c:\acucobol\acugt\lib

d) For ACUCOBOL-GT 9.0:

copy DCI\WIN32\dmacu90.lib c:\acucobol\acugt\lib

3. Edit the ACUCOBOL-GT runtime configuration file filetbl.c. It should be
in the same directory as the ACUCOBOL-GT libraries, for example:
c:\acucobol\acugt\lib.

a) The original filetbl.c contains the entry:

1DCI Basics 2

© Copyright 1995-2025 CASEMaker Inc. 2-7

#ifndef USE_VISION

#define USE_VISION 1

#endif

Add a new entry:

#ifndef USE_DCI

#define USE_DCI 1

#endif

b) The original filetbl.c contains the entry:

extern DISPATCH_TBL v4_dispatch, ci_dispatch, bt_dispatch;

Add a new entry:

#if USE_DCI

extern DISPATCH_TBL DBM_dispatch;

#endif /* USE_DCI */

c) The original filetbl.c contains the entry:

TABLE_ENTRY file_table[] = {

#if USE_VISION

{ &v4_dispatch, "VISIO" },

#endif /* USE_VISION */

 Add a new entry:

#if USE_DCI

{ &DBM_dispatch, "DCI" },

#endif /* USE_DCI */

4. Edit the ACUCOBOL-GT runtime configuration file sub85.c. It is in the
same directory as the ACUCOBOL-GT libraries.

The original sub85.c contains the entry:

struct PROCTABLE WNEAR LIBTABLE[] = {

{ "SYSTEM", call_system },

Add a new entry as follows:

extern int DCI_GETENV();

extern int DCI_SETENV();

extern int DCI_DISCONNECT();

extern int DCI_GET_TABLE_NAME();

extern int DCI_SET_TABLE_CACHE();

extern int DCI_BLOB_ERROR();

extern int DCI_BLOB_PUT();

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 2-8

extern int DCI_BLOB_GET();

extern int DCI_GET_TABLE_SERIAL_VALUE();

extern int DCI_FREE_XFD();

struct PROCTABLE WNEAR LIBTABLE[] = {

{ "SYSTEM", call_system },

{ "DCI_SETENV", DCI_SETENV },

{ "DCI_GETENV", DCI_GETENV },

{ "DCI_DISCONNECT", DCI_DISCONNECT },

{ "DCI_GET_TABLE_NAME", DCI_GET_TABLE_NAME },

{ "DCI_SET_TABLE_CACHE", DCI_SET_TABLE_CACHE },

{ "DCI_BLOB_ERROR", DCI_BLOB_ERROR },

{ "DCI_BLOB_PUT", DCI_BLOB_PUT },

{ "DCI_BLOB_GET", DCI_BLOB_GET },

{ "DCI_GET_TABLE_SERIAL_VALUE", DCI_GET_TABLE_SERIAL_VALUE },

{ "DCI_FREE_XFD", DCI_FREE_XFD },

{ NULL, NULL }

};

5. Edit the ACUCOBOL-GT runtime configuration file direct.c. It is in the
same directory as the ACUCOBOL-GT libraries.

The original direct.c contains the entry:

struct EXTRNTABLE EXTDATA[] = {

{ NULL, NULL }

};

Add a new entry:

extern char *dci_where_constraint;

struct EXTRNTABLE EXTDATA[] = {

{ "DCI-WHERE-CONSTRAINT", (char *) &dci_where_constraint },

{ NULL, NULL }

};

6. If you are using a version of ACUCOBOL-GT prior to 6.0, open
wrun32.mak and search for LIBS. The wrun32.mak file should be in the
same directory as the ACUCOBOL-GT libraries, for example:
c:\acucobol\acugt\lib.

a) If using ACUCOBOL-GT 5.1 or previous versions, add the files:
dmacu51.lib, dmdcic.lib and dmapi52.lib. Build the project to
obtain a new wrun32.exe and wrun32.dll file:

1DCI Basics 2

© Copyright 1995-2025 CASEMaker Inc. 2-9

nmake.exe -f wrun32.mak wrun32.exe.

b) If using ACUCOBOL-GT 5.2 or later version, add the files:
dmacu52.lib, dmdcic.lib and dmapi52.lib. Build the project to
obtain a new wrun32.exe and wrun32.dll file:

nmake.exe -f wrun32.mak wrun32.exe.

7. If you are using ACUCOBOL-GT 6.0 or 6.1, open the VS6.0 project named
wrun32.dsw located in the lib directory of the ACUCOBOL-GT
installation. Add the files dmacu52.lib, dmdcic.lib and dmapi52.lib to
the project. Build the project to obtain a new wrun32.dll file.

8. If you are using ACUCOBOL-GT 6.2 or 7.0, open the VS2003 project
named wrundll.vcproj located in the lib directory of the ACUCOBOL-GT
installation. Add the files dmacu52.lib, dmdcic.lib and dmapi52.lib to
the project. In the property, select MFC's common DLL. Build the
project to obtain a new wrun32.dll file.

9. If you are using ACUCOBOL-GT 8.0, edit the VS2005 project named
wrundll.vcproj located in the lib directory of the ACUCOBOL-GT
installation.

a) Change UseOfMFC from "0" to "2" (i.e., Use MFC in a shared DLL)

b) Add dmacu80.lib dmdcic.lib dmapi52.lib to
AdditionalDependencies, for example:

AdditionalDependencies="rpcrt4.lib wcvt32.lib wfsi32.lib

wrunlib.lib dmacu80.lib dmdcic.lib dmapi52.lib"

c) Use VS2005 to build the project to obtain a new wrun32.dll file.

NOTE To build the runtime with 64-bit ACUCOBOL-GT 8.0, you

must install VS2005 x64 components.

NOTE You cannot build the runtime with VS2005 express edition

because it does not have the MFC library.

NOTE We recommend using the -Fx3 or -Fx4 compiler options

to generate an XFD file with the same format as previous

ACUCOBOL-GT versions because ACUCOBOL-GT 8.0

compiler does not support some XFD syntax like the

"$XFD COMMENT directive" in XML format. However, to

use the new XML format add DCI_XML_XFD 1 to the DCI

configuration file.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 2-10

10. If you are using ACUCOBOL-GT 9.0, edit the VS2008 project named
wrundll.vcproj located in the lib directory of the ACUCOBOL-GT
installation.

a) Change UseOfMFC from "0" to "2". (i.e., Use MFC in a shared DLL)

b) Add dmacu90.lib dmdcic.lib dmapi52.lib to
AdditionalDependencies, for example:

AdditionalDependencies="mpr.lib rpcrt4.lib wcvt32.lib

wfsi32.lib wrunlib.lib dmacu90.lib dmdcic.lib dmapi52.lib"

c) Use VS2008 to build the project to obtain a new wrun32.dll file.

NOTE To build the runtime with 64-bit ACUCOBOL-GT 9.0, you

must install VS2008 x64 components.

NOTE You cannot build the runtime with the VS2008 express

edition because it does not have the MFC library.

NOTE We recommend using the -Fx3 or -Fx4 compiler options to

generate an XFD file with the same format as previous

ACUCOBOL-GT versions because ACUCOBOL-GT 9.0

compiler does not support some XFD syntax like the "$XFD

COMMENT directive" in XML format. However, to use the

new XML format add DCI_XML_XFD 1 to the DCI

configuration file.

11. Copy the new wrun32.exe and wrun32.dll files to a directory mentioned
in your execution path (or just wrun32.dll if using ACUCOBOL-GT 6.2
and above), for example:

copy wrun32.exe c:\acucobol\acugt\bin

copy wrun32.dll c:\acucobol\acugt\bin

12. Set the PATH system variable for @DM_PRODUCT_NAME@
installed\bin directory, for example:

set PATH=c:\@DM_PRODUCT_NAME@\5.2\bin:%PATH%

You can also copy the

c:\@DM_PRODUCT_NAME@\5.2\bin\dmapi52.dll to where the

wrun32.exe and wrun32.dll files are located. Please update the

dmapi52.dll to that directory if you have installed the new

@DM_PRODUCT_NAME@ patch.

13. Verify the link by entering:

1DCI Basics 2

© Copyright 1995-2025 CASEMaker Inc. 2-11

wrun32 -vv

This returns the version information for all products linked with your

runtime system. Make sure it shows the version of the

@DM_PRODUCT_NAME@ interface.

UNIX Setup

The DCI files must be copied from the source directory on the DCI zip file

(\DCI\OS\) to a target directory before proceeding to setup DCI. The DCI

libraries include libdmdcic.a, libdmacu51.a for ACUCOBOL-GT 5.1 and

previous versions, libdmacu52.a for ACUCOBOL-GT 5.2 and versions before

8.0, dmacu80.lib for ACUCOBOL-GT 8.0, and dmacu90.lib for ACUCOBOL-GT

9.0.

1. Copy the DCI library libdmdcic.a and the DCI library for
ACUCOBOL-GT to the ACUCOBOL-GT installed directories.

For example, to get DCI libraries for Linux:

cp dci/Linux2.x86/libdmdcic.a /usr/acucobol/lib

cp dci/Linux2.x86/libdmapic.a /usr/acucobol/lib

For linking DCI libraries with ACUCOBOL-GT 5.1 or previous

versions:

cp dci/Linux2.x86/libdmacu51.a /usr/acucobol/lib

For linking DCI libraries with ACUCOBOL-GT 5.2 or versions before

8.0:

cp dci/Linux2.x86/libdmacu52.a /usr/acucobol/lib

For linking DCI libraries with ACUCOBOL-GT 8.0:

cp dci/Linux2.x86/libdmacu80.a /usr/acucobol/lib

For linking DCI libraries with ACUCOBOL-GT 9.0:

cp dci/Linux2.x86/libdmacu90.a /usr/acucobol/lib

2. Edit the ACUCOBOL runtime configuration file filetbl.c. found in the
same directory as the ACUCOBOL-GT libraries.

a) The original filetbl.c contains the entry:

#ifndef USE_VISION

#define USE_VISION 1

#endif

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 2-12

 Add a new entry:

#ifndef USE_DCI

#define USE_DCI 1

#endif

b) The original filetbl.c contains the entry:

extern DISPATCH_TBL v4_dispatch, ci_dispatch, bt_dispatch;

 Add a new entry:

#if USE_DCI

extern DISPATCH_TBL DBM_dispatch;

#endif /* USE_DCI */

c) The original filetbl.c contains the entry:

TABLE_ENTRY file_table[] = {

#if USE_VISION

{ &v4_dispatch, "VISIO" },

#endif /* USE_VISION */

Add a new entry:

#if USE_DCI

{ &DBM_dispatch, "DCI" },

#endif /* USE_DCI */

3. Edit the ACUCOBOL-GT runtime configuration file sub85.c. It is in the
same directory as the ACUCOBOL-GT libraries.

The original sub85.c contains the entry:

struct PROCTABLE WNEAR LIBTABLE[] = {

{ "SYSTEM", call_system },

Add a new entry:

extern int DCI_GETENV();

extern int DCI_SETENV();

extern int DCI_DISCONNECT();

extern int DCI_GET_TABLE_NAME();

extern int DCI_SET_TABLE_CACHE();

extern int DCI_BLOB_ERROR();

extern int DCI_BLOB_PUT();

extern int DCI_BLOB_GET();

extern int DCI_GET_TABLE_SERIAL_VALUE();

extern int DCI_FREE_XFD();

1DCI Basics 2

© Copyright 1995-2025 CASEMaker Inc. 2-13

struct PROCTABLE WNEAR LIBTABLE[] = {

{ "SYSTEM", call_system },

{ "DCI_SETENV", DCI_SETENV },

{ "DCI_GETENV", DCI_GETENV },

{ "DCI_DISCONNECT", DCI_DISCONNECT },

{ "DCI_GET_TABLE_NAME", DCI_GET_TABLE_NAME },

{ "DCI_SET_TABLE_CACHE", DCI_SET_TABLE_CACHE },

{ "DCI_BLOB_ERROR", DCI_BLOB_ERROR },

{ "DCI_BLOB_PUT", DCI_BLOB_PUT },

{ "DCI_BLOB_GET", DCI_BLOB_GET },

{ "DCI_GET_TABLE_SERIAL_VALUE", DCI_GET_TABLE_SERIAL_VALUE },

{ "DCI_FREE_XFD", DCI_FREE_XFD },

{ NULL, NULL }

};

4. Edit the ACUCOBOL-GT runtime configuration file direct.c. It is in the
same directory as the ACUCOBOL-GT libraries.

The original direct.c contains the entry:

struct EXTRNTABLE EXTDATA[] = {

{ NULL, NULL }

};

Add a new entry:

extern char *dci_where_constraint;

struct EXTRNTABLE EXTDATA[] = {

{ "DCI-WHERE-CONSTRAINT", (char *) &dci_where_constraint },

{ NULL, NULL }

};

5. Open the Makefile file located in \usr\acucobol\lib. If you need to link it
with your own C routines, add them to a SUBS= line in the Makefile of
your C routine. See Appendix C of the ACUCOBOL-GT compiler
documentation for details on linking C subroutines.

6. Add /APP_HOME/lib/libdmdcic.a and /APP_HOME/lib/libdmapic.a to
the line FSI_LIBS=, where /APP_HOME is the directory containing the
@DM_PRODUCT_NAME@ installation. If @DM_PRODUCT_NAME@ has
been installed in the directory /APP_HOME then the Makefile will
contain the following string(s):

For ACUCOBOL-GT 5.1 and previous versions:

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 2-14

FSI_LIBS=libdmacu51.a libdmdcic.a libdmapic.a

For ACUCOBOL-GT 5.2:

FSI_LIBS=libdmacu52.a libdmdcic.a libdmapic.a

For ACUCOBOL-GT 6.0 and 7.0:

FSI_LIBS=libdmacu60.a libdmdcic.a libdmapic.a

For ACUCOBOL-GT 8.0:

FSI_LIBS=libdmacu80.a libdmdcic.a libdmapic.a

For ACUCOBOL-GT 9.0:

FSI_LIBS=libdmacu90.a libdmdcic.a libdmapic.a

7. Ensure you are in the directory containing the ACUCOBOL-GT runtime
system. At the prompt enter:

make -f Makefile

This compiles sub.c and filetbl.c, and then links the runtime system. If

the make fails because of an out-of-date symbol table, execute the

following:

ranlib *.a

Then re-execute the make. If the make fails for any other reason,

please call ACUCORP Technical Support.

8. Verify the link with the following command:

./runcbl -vv

This returns version information for all products linked to your

runtime system. Ensure it shows the version of DCI for

@DM_PRODUCT_NAME@.

NOTE You may also link your own C routines with the runtime

system.

9. Copy the new runcbl file to a directory in your execution path. Everyone
who will be using the runtime system must have execute permission for
this file. The remaining files can be left were they were installed.

10. We recommend using the -Fx3 or -Fx4 compiler options to generate an
XFD file with the same format as previous ACUCOBOL-GT versions
because the ACUCOBOL-GT 8.0 and 9.0 compilers do not support some
XFD syntax like the "$XFD COMMENT directive" in XML format.
However, to use the new XML format add DCI_XML_XFD 1 to the DCI
configuration file.

1DCI Basics 2

© Copyright 1995-2025 CASEMaker Inc. 2-15

Shared Libraries

When re-linking and executing the ACUCOBOL-GT runtime, an error message

similar to these may result:

• Could not load library, no such file or directory

• Can't open shared library . . .

That could mean the operating system is unable to locate some needed shared

libraries. This can happen even if the shared libraries exist in the current

directory.

Some versions require setting an environment variable, which points to

shared libraries on the system. For example, an IBM RS/6000 running AIX 4.1,

the environment variable LIBPATH must indicate the directory where shared

libraries reside. For HP/UX, the environment variable is SHLIB_PATH. For

UNIX SVR4, the environment variable is LD_LIBRARY_PATH. Please consult

your UNIX documentation for specific details.

Alternatively, linking the shared libraries to the runtime with a static link

resolves this error. Please refer to the documentation for your C development

system to find the correct flag for your environment.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 2-16

2.4 Basic Configuration

DCI requires parameters in two configuration files. The first is cblconfig, the

ACUCOBOL runtime configuration file. The second is the DCI_CONFIG file that

is located in a directory determined by an environment variable (see

Configuration File Variables for details). The DCI_CONFIG file sets parameters

for DCI that determine how data appears in the database and defines certain

DBA functions allowing database access. The following configuration variables

must be set before using DCI.

• DCI_DATABASE

• DCI_LOGIN

• DCI_PASSWD

• DCI_XFDPATH

 Example

Here is a basic DCI_CONFIG file.
DCI_LOGIN SYSADM

DCI_PASSWD

DCI_DATABASE DBMaker_Test

DCI_XFDPATH /usr/dbmaker/dictionaries

DCI_DATABASE

DCI_DATABASE specifies the database that will transact with DCI. This

database must exist. Use DBMaker setup to establish it. Please note, database

names are case-sensitive by default, and must be less than or equal to 128

characters. Please refer to Chapter 6, DCI_DATABASE for more information

 Syntax

The following entry must be included in the configuration file. In this example,

we show DBMaker_Test as the database to be used with DCI.

1DCI Basics 2

© Copyright 1995-2025 CASEMaker Inc. 2-17

DCI-DATABASE DBMaker_Test

DCI_LOGIN

Provide your COBOL application with a user name to ensure it has permission

to access objects in the database. The configuration variable DCI_LOGIN sets

the username for all COBOL applications that use DCI. Initially set to SYSADM

to ensure full access to databases, this variable is easily changed to another

user name as described in Chapter 6, DCI_LOGIN.

 Syntax

The DCI configuration file must include the following entry for DCI to connect

with databases via the SYSADM username:
DCI_LOGIN SYSADM

DCI_PASSWD

Once a username has been specified via the DCI_LOGIN variable, a database

account is associated with it. Please note, by default DBMaker sets no

password for SYSADM. Your database administrator will know if the account

information (LOGIN, PASSWD) is correct. See Chapter 6, DCI_PASSWD for

more information.

 Syntax

The configuration file should appear as follows when the database account is

set to SYSADM.
DCI_PASSWD

DCI_XFDPATH

DCI_XFDPATH specifies the directory where data dictionaries are stored. The

default value is the current directory.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 2-18

 Syntax 1

If data dictionaries are stored in /usr/dbmaker/dictionaries, include this entry

in the configuration file:
DCI_XFDPATH /usrdbmaker/dictionaries

 Syntax 2

When specifying more than one path, separate by spaces. For example:
DCI_XFDPATH /usr/dbmaker/dictionaries /usr/dbmaker/dictionaries1

 Syntax 3

Use double-quotes in a WIN-32 environment when including embedded

spaces. For example:
DCI_XFDPATH c:\tmp\xfdlist "c:\my folder with space\xfdlist"

1DCI Basics 2

© Copyright 1995-2025 CASEMaker Inc. 2-19

2.5 Runsql Utility

DCI’s runsql.acu program provides access to some standard SQL commands. It

can be called from a COBOL program or executed from the command line. The

SQL command is limited to 32,767 characters. It may be a variable or a quoted

command string in the CALL statement.

Runsql.acu may issue most all SQL commands but those for data retrieval. For

example, statements that return data, such as SELECT, are unsupported. This

category of statement returns an error when passed to runsql.acu.

The global variable return-code is 0 when a command has completed

successfully. If a command is unsuccessful, the global variable return-code

contains an error code.

 Syntax 1

Creating a DBMaker view.
runcbl runsql.acu

 Example 1

Pausing a program before accepting SQL commands.
create table TEST (col1 char(10), col2 char(10))

create view TESTW as select * from TEST

 Syntax 2

Calling runsql.acu from a COBOL program.
call "runsql.acu" using sql-command

 Example 2

Call "runsql" using "create view TESTW as select * from TEST".

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 2-20

2.6 Invalid Data

Some data is valid for COBOL applications but invalid for DBMaker RDBMS

databases. Data types not accepted by RDBMS are listed here along with

solutions that DCI implements to solve this problem.

COBOL VALUE WHERE IT IS CONSIDERED ILLEGAL

LOW-VALUES In USAGE DISPLAY NUMBERS and text fields

HIGH-VALUES In USAGE DISPLAY NUMBERS, COMP-2 numbers and
COMP-3 numbers

SPACES In USAGE DISPLAY NUMBERS and COMP-2 numbers

Zero In DATE fields

Figure 2-4 Illegal COBOL Data

Check the internal storage format of other numeric types to determine which

Figure 2-4 category it applies to. BINARY numbers and values in BINARY text

fields are always legal.

Certain data types must be converted before DBMaker will accept them. DCI

converts these values as follows:

• Illegal LOW-VALUES: stored as the lowest possible value, 0 or –99999, or

DCI_MIN_DATE default value

• Illegal HIGH-VALUES: stored as the highest possible value, 99999, or

DCI_MAX_DATE default value

• Illegal SPACES: stored as zero (or DCI_MIN_DATE, in the case of a date

field)

• Illegal DATE values: stored as DCI_INV_DATE default value

• Illegal TIME: stored as DCI_INV_DATE default value

1DCI Basics 2

© Copyright 1995-2025 CASEMaker Inc. 2-21

Null fields sent to DCI from a database convert to COBOL in the following

ways:

• Numbers (including dates) convert to zero

• Text (including binary text) converts to spaces

If you want to change these conversion rules, except for the key fields, you can

use DCI_NULL_ON_ILLEGAL_DATE that convert to NULL illegal COBOL data.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 2-22

2.7 Sample Application

A sample application program is included with the DCI files and demonstrates

mapping application data to a DBMaker database. This section teaches:

• Setting up the application

• Compiling source code to create application object code

• Application data input

• Data access using dmSQL and JDBA Tool

• How source code conforms to the generated table’s schema

Setting up the Application

Located in the DCI directory, the application consists of these files INVD.CBL,

INVD.FD, INVD.SL, TOTEM.DEF, CBLCONFIG, INVD.XFD, DCI.CFG, and the

object file INVD.ACU. The application may be run directly from the INVD.ACU

object code file as shown in the following paragraph. Applications may also be

compiled from the source code, INVD.CBL, also demonstrated below.

NOTE ACUCOBOL 4.3 or greater is needed to compile the sample

application

 Running the Application

1. Setup a database in DBMaker to accept data from DCI. For example,
we created a database called DCI using JServer Manager with all
default settings. Specifically, SYSADM is the default login name and
no password was set. For information on creating and setting up a
database, refer to the Database Administrator’s Reference or the
JServer Manager User’s Guide.

2. Located in the DCI directory, use a text editor to open the DCI.CFG
file. Set the configuration variables to appropriate values. Refer to
Section 2.4, Basic Configuration for details. .

1DCI Basics 2

© Copyright 1995-2025 CASEMaker Inc. 2-23

 Example

DCI_DATABASE DCI

DCI_LOGIN SYSTEM

DCI_PASSWD

//DCI_LOGFILE

DCI_STORAGE_CONVENTION Dca

//DCI_XFDPATH C:\DCI

3. Run the DBMaker Server program:dmserver.exe. When prompted,
select the database designated by the DCI.CFG file.

4. The database starts normally and the following window appears. If
any problems or error messages occur, refer to the Error Message
Reference or the Database Administrator’s Guide.

5. From the command prompt go to the ..\DCI directory.

6. Define DCI_CONFIG by entering the following at the command
prompt.

 Syntax 6a

..\DCI\>SET DCI_CONFIG=C:\..\DCI\DCI.CFG

7. Run the COBOL program INVD.ACU using WRUN32.

 Syntax 7a

From the same directory, enter the following command:

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 2-24

..\DCI\>WRUN32 –C CBLCONFIG INVD.ACU

8. The file CBLCONFIG contains the command line DEFAULT-HOST DCI
and is used to set the default file system. For more information refer
to Chapter 5, Compiler and Runtime Options.

9. The INVD.ACU COBOL application window opens as shown below,
allowing data entry.

NOTE For instructions on adding records, refer to Adding Records

below

 Compiling the sample application from the source code:

1. Follow Running the Application steps 1 through 6 shown above.

2. Copy these definition files: acucobol.def, acugui.def, crtvars.def,
fonts.def, showmsg.def,
from ..\Acucorp\Acucbl500\AcuGT\sample\def to the DCI directory.

NOTE ACUCOBOL 4.3 users should copy the definition files from

\Acucbl43\AcuGT\sample\

3. At the command prompt go to the DCI directory.

 Syntax 3a

Enter the following line:

1DCI Basics 2

© Copyright 1995-2025 CASEMaker Inc. 2-25

..\DCI\>ccbl32 –Fx INVD.CBL

4. The file will be compiled and will create a new object code file
INVD.ACU and data dictionary file INVD.XFD. To run the object file
follow steps 6 and 7 in To run the application, above.

Adding Records

Once the application has been started (see To run the application above) it is a

simple matter to add records to the application, and subsequently, to the

database. The field INVD-INVLNO is a key field, so a unique value is required

for a record to be a valid entry. All other fields may be left blank. When you

have finished entering values into the field, click the Add button. The values

entered into the fields will now be saved in the DBMaker database specified by

the DCI.CFG variable, DCI-DATABASE.

 Example

The file descriptor for the application looks like this:
FD INVD

 LABEL RECORDS ARE STANDARD

 01 INVD-R

 05 INVD-INVLNO PIC X(10).

 05 INVD-INVLSSTKNO PIC X(10).

 05 INVD-INVLDESC PIC X(30).

 05 INVD-INVLQTY PIC 9(8).

 05 INVD-INVLFREE PIC 9(8).

 05 INVD-INVLPRICE PIC 9(7)V99.

 05 INVD-MVTCODE PIC X(6).

 05 INVD-SUBTOTAL PIC 9(7)V99.

Once a record has been added, you may browse through the entries by

selecting the First, Previous, Next, or Last buttons on the Screen window. An

individual record may be selected from the drop-down menu at the top of the

Screen window that displays all the key field values. The section Accessing

Data describes how to browse data using DBMaker SQL based tools.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 2-26

Figure 2-5 INVD-INVLNO Key Field Sample Entry

Accessing Data

To browse and manipulate records created within the sample application is

straightforward. First, we recommend that you familiarize yourself with one

of the DBMaker tools: dmSQL, DBA Tool, or JDBA Tool. For information on the

use of these tools, refer to the Database Administrator’s Guide, or the JDBA Tool

User’s Guide. The following example shows how data can be accessed using

JDBA Tool.

The INVD application must first be shut down, because it places a lock on the

table that has been created within the database. Connect to the database with

JDBA. You will be able to see the table by expanding the Tables node within

the database tree as shown below.

1DCI Basics 2

© Copyright 1995-2025 CASEMaker Inc. 2-27

Figure 2-6 INVD Application Tables Tree Node

Double clicking on the SYSADM.invd table allows you to view the table’s

schema. All of the columns and their properties can be viewed here.

Figure 2-7 SYSADM.invd Table Schema

Selecting the Edit Data tab allows you to view the values of each field.

Figure 2-8 SYSADM.invd Edit Data Tab Field Values

1Data Dictionaries 3

© Copyright 1995-2025 CASEMaker Inc. 3-1

3 Data Dictionaries

Data Dictionaries describe how extended file descriptor (.XFD) files are

created and accessed. DCI avoids using SQL function calls embedded in COBOL

code by using a special feature of ACUCOBOL-GT. When a COBOL application is

compiled using the "–Fx" option data dictionaries are generated. These are

known as "extended file descriptors"” (XFD files), which are based on COBOL

file descriptors. DCI uses the data dictionaries to map data between the fields

of a COBOL application and the columns of a DBMaker table. Every DBMaker

table used by DCI has at least one corresponding data dictionary file

associated with it.

NOTE Refer to Chapter 5.3 of the ACUCOBOL-GT User’s Guide for more

detailed information and rules concerning the creation of XFDs.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 3-2

3.1 Assigning Table Names

Database tables correspond to file descriptors in the FILE CONTROL section of

the COBOL application. The database tables must have unique names under

128 bytes in length (128 ASCII characters).

It is possible for a DBMaker table to have more columns than a COBOL

program's corresponding file descriptor. It is also possible to have different

column orders than the COBOL program's corresponding file descriptor.

The number of columns in the database table and the number of fields in the

COBOL program that is accessing the table are not required to match. The

DBMaker table can have more columns than the COBOL program references;

however, the COBOL program may not have more fields than the DBMaker

table. Ensure that any extra columns are set correctly when adding new rows

to a table.

ACUCOBOL generates XFD file names by default from the FILE CONTROL

section. If the SELECT statement for the file has a variable ASSIGN name

(ASSIGN TO filename), then specify a starting name for the XFD file using a

FILE directive (refer to $XFD FILE Directive in chapter 4). If the SELECT

statement for the file has a constant ASSIGN name (such as ASSIGN TO

"EMPLOYEE"), then the constant is used to generate the XFD file name. If the

ASSIGN phrase refers to a device and is generic (such as ASSIGN TO "DISK"),

then the compiler uses the SELECT name to generate the XFD file name.

File names and usernames are case-insensitive. All file descriptors containing

uppercase characters will be converted to lowercase. Users must be aware of

this if using a case sensitive operating system.

 Example 1

If the FILE CONTROL section contains the following line of text:
SELECT FILENAME ASSIGN TO "Customer"

1Data Dictionaries 3

© Copyright 1995-2025 CASEMaker Inc. 3-3

 Example 2

DCI, based on dictionary information read in "customer.xfd", will make a

DBMaker table called "username.customer". The ACUCOBOL-GT compiler

always creates a file name in lowercase. The "username" default is determined

by the DCI_LOGIN value in the DCI_CONFIG file, or can be changed with the

DCI_USER_PATH configuration variable.
SELECT FILENAME ASSIGN TO "CUSTOMER"

 Example 3

If the file has a file extension, DCI replaces "." characters with "_". DCI will

open a DBMaker table named "username.customer_dat".
SELECT FILENAME ASSIGN TO "customer.dat"

 Example 4

DCI_MAPPING can be used to make the dictionary customer.xfd available.

Since DCI uses the base name to look for the XFD dictionary, in this case it

looks for an XFD file named "customer_dat.xfd". The following setting is based

on an XFD file named "customer.xfd".
DCI_MAPPING customer*=customer

COBOL applications may use the same base file name in different directories.

For example a COBOL application opens a file named "customer" in different

directories such as "/usr/file/customer" and "/usr1/file/customer". To make

the file names unique we would include directory paths in the file names. A

way to do this is to change the DCI_CONFIG variable DCI_USEDIR_LEVEL to

"2". DCI will then open a table as follows:

COBOL RDBMS XFD FILENAME

/usr/file/customer usrfilecustomer usrfilecustomer.xfd

/usr1/file/customer usr1filecustomer usr1filecustomer.xfd

Figure 3-1 Sample DCI_USEDIR_LEVEL to "2" Table

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 3-4

NOTE Please remember there is a limit to the maximum length of DBMaker

table names and that DCI_MAPPING must be used to map .XFD file

dictionary definitions.

COBOL CODE
RESULTING FILE

NAME
RESULTING TABLE

NAME

ASSIGN TO
"usr/hr/employees.dat"

employees_dat.xfd employees_dat

SELECT DATAFILE,
ASSIGN TO DISK

datafile.xfd datafile

ASSIGN TO "-D
SYS$LIB:EMP"

emp.xfd emp

ASSIGN TO FILENAME (user specified) (user specified)

Figure 3-2 Example Table Names Formed From Different COBOL Statements

 Example

Table names are, in turn, generated from the XFD file name. Another way to

specify the table name is to use the $XFD FILE directive.

*((XFD FILE = PURCHASE-FILE2))

FD PURCHASE-FILE.

01 PURCHASE-RECORD.

05 DATE-PURCHASED.

 10 YYYY PIC 9(04).

 10 MM PIC 9(02).

 10 DD PIC 9(02).

 05 PAY-METHOD PIC X(05).

The final name is formed as follows:

• The compiler converts extensions and includes them with the starting

name by replacing the "." with an underscore "_".

• It constructs a universal base name from the file name and directory

information as specified by the DCI_CONFIG variable DCI_USEDIR_LEVEL.

1Data Dictionaries 3

© Copyright 1995-2025 CASEMaker Inc. 3-5

It reduces the base name to 32 characters and converts it to lowercase

depending of DCI_CASE value.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 3-6

3.2 Mapping Columns and Records

The table that is created is based on the largest record in the COBOL file. It

contains all of the fields from that record and any key fields. Key fields are

specified in the FILE CONTROL section using the KEY IS phrase. Key fields

correspond to primary keys in the database table and are discussed in detail

in the next section. Note that DCI will create column names for the database

that are case-sensitive, unlike table names.

 Example 1

The following illustrates how data is transferred.
ENVIRONMENT DIVISION.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT HR-FILE

 ORGANIZATION IS INDEXED

 RECORD KEY IS EMP-ID

 ACCESS MODE IS DYNAMIC.

 DATA DIVISION.

 FILE SECTION.

 FD HR-FILE

 LABEL RECORDS ARE STANDARD.

 01 EMPLOYEE-RECORD.

 05 EMP-ID PIC 9(06).

 05 EMP-NAME PIC X(17).

 05 EMP-PHONE PIC X(10).

 WORKING-STORAGE SECTION.

 01 HR-NUMBER-FIELD PIC 9(05).

 PROCEDURE DIVISION.

 PROGRAM-BEGIN.

 OPEN I-O HR-FILE.

 PERFORM GET-NEW-EMPLOYEE-ID.

 PERFORM ADD-RECORDS UNTIL EMP-ID = ZEROS.

 CLOSE HR-FLE.

PROGRAM-DONE.

 STOP RUN.

1Data Dictionaries 3

© Copyright 1995-2025 CASEMaker Inc. 3-7

GET-NEW-EMPLOYEE-ID.

 PERFORM INIT-EMPLOYEE-RECORD.

 PERFORM ENTER-EMPLOYEE-ID.

 INIT-EMPLOYEE-ID.

 MOVE SPACES TO EMPLOYEE-RECORD.

 MOVE ZEROS TO EMP-ID.

 ENTER-EMPLOYEE-ID.

 DISPLAY "ENTER EMPLOYEE ID NUMBER (1-99999),"

 DISPLAY "ENTER 0 TO STOP ENTRY".

 ACCEPT HR-NUMBER-FIELD.

 MOVE HR-NUMBER-FIELD TO EMP-ID.

 ADD-RECORDS.

 ACCEPT EMP-NAME.

 ACCEPT EMP-PHONE.

 WRITE EMPLOYEE-RECORD.

 PERFORM GET-NEW-EMPLOYE-NUMBER.

 Example 2

The preceding program normally would write all fields sequentially to file.

The output would appear as follows:
ENTER EMPLOYEE ID NUMBER (1-99999), ENTER 0 TO STOP ENTRY

51100

LAVERNE HENDERSON

2221212999

ENTER EMPLOYEE ID NUMBER (1-99999), ENTER 0 TO STOP ENTRY

52231

MATTHEW LEWIS

2225551212

ENTER EMPLOYEE ID NUMBER (1-99999), ENTER 0 TO STOP ENTRY

In a traditional COBOL file system, records will be stored sequentially. Every

time a write command is executed, the data is sent to the file. When DCI is

used, the data dictionary will create a map for the data to be stored in the

database. In this case, the record (EMPLOYEE-RECORD) is the only record in

the file.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 3-8

 Example 3

The database will create a distinct column for each field in the file descriptor.

The table name will be HR-FILE in accordance with the SELECT statement in

the FILE-CONTROL section. The database records in the example would

therefore have the following structure:

EMP_ID (INT(6)) EMP_NAME

(CHAR(17))
EMP_PHONE

(DEC(10))

51100 LAVERNE HENDERSON 2221212999

52231 MATTHEW LEWIS 2225551212

Figure 3-3 Table EMPLOYEE-RECORD

In this table, the column EMP-ID is the primary key as defined by the KEY IS

statement of the input-output section. The data dictionary creates a "mapping"

that allows it to retrieve records and place them in the correct fields. A COBOL

application that stores information in this way can take advantage of the

backup and recovery features of the database, as well as take advantage of the

capabilities of SQL.

Identical Field Names

In COBOL, fields with identical names are distinguished by qualifying them

with a group item. DBMaker does not allow duplicate column names on a

table. If fields have the same name, DCI will not generate columns for those

fields.

Adding a NAME directive that associates an alternate name with one or both

of the conflicting fields is a method for handling this situation. Please refer to

$XFD NAME Directive in Chapter 4 for additional details.

 Example

In the following example, you would reference PERSONNEL and PAYROLL in

your program:

1Data Dictionaries 3

© Copyright 1995-2025 CASEMaker Inc. 3-9

FD HR-FILE

 LABEL RECORDS ARE STANDARD.

01 EMPLOYEE-RECORD.

 03 PERSONNEL.

 05 EMP-ID PIC 9(6).

 05 EMP-NAME PIC X(17).

 05 EMP PHONE PIC 9(10).

 03 PAYROLL.

 05 EMP-ID PIC 9(6).

 05 EMP-NAME PIC X(17).

 05 EMP PHONE PIC 9(10).

Long Field Names

DBMaker supports table names up to 128 characters. DCI truncates field

names longer than 128 characters. In the case of the OCCURS clause, described

below, the truncation is to the original name, not the appended index

numbers. The final name, however, including the index number, is limited to

the 32 characters. For example, if the field name is Employee-statistics-01 it

truncates to Employee_statis_01. It is important to ensure that field names are

unique and meaningful within the first 18 characters.

NAME can be used to rename a field with a long name, but within the COBOL

application you must continue using the original name. The NAME directive

affects only the corresponding column name in the database.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 3-10

3.3 Using Multiple Record Formats

The example in the previous section showed how fields are used to create a

database table. However, the example only shows the case of an application

with one record.

A multiple record format is stored differently from a single record format.

COBOL programs with multiple records map all records from the "master"

(largest) record in the file and any key fields in the file. Smaller records map to

the database table by the XFD file but do not appear as discrete, defined

columns in the table; they occupy new records in the existing columns of the

database.

 Example 1

Take the previous example but modify the file descriptor to include several

records.
DATA DIVISION

FILE SECTION

FD HR-FILE

 LABEL RECORDS ARE STANDARD.

01 EMPLOYEE-RECORD.

 05 EMP-ID PIC 9(6).

 05 EMP-NAME PIC X(17).

 05 EMP PHONE PIC 9(10).

01 PAYROLL-RECORD.

 05 EMP-SALARY PIC 9(10).

 05 DD PIC 9(2).

 05 MM PIC 9(2).

 05 YY PIC 9(2).

In this case, the data dictionary is created from the largest file. The record

EMPLOYEE-RECORD contains 33 characters, while the record PAYROLL-

RECORD contains only 16. In this case, records are sequentially entered into

the database. The record EMPLOYEE-RECORD is used to create the schema for

the table column size and data type.

1Data Dictionaries 3

© Copyright 1995-2025 CASEMaker Inc. 3-11

EMP_ID (INT(6)) EMP_NAME (CHAR(17)) EMP_PHONE (DEC(10))

Figure 3-4 Preceding Example Table

Fields from the following record are written into the columns according to the

character positions of the fields. The result is that no discrete columns exist

for the smaller records. The data can be retrieved from the database by the

COBOL application because the XFD file contains a map for the fields, but there

are no columns in the table representing those fields.

In the previous example, when adding the first record to the database, there is

a correlation between the columns and the COBOL fields. When adding the

second record, there is no such correlation. The data occupies its

corresponding character position according to the field. So the first five

characters of EMP_SALARY occupy the EMP_ID column, the last five characters

of EMP_SALARY occupy the EMP_NAME column. The fields DD and MM and YY

are also located within the EMP_NAME column.

 Example 2

The following example illustrates this. Given the following input to the COBOL

application:
ENTER EMPLOYEE ID NUMBER (1-99999), ENTER 0 TO STOP ENTRY

51100

LAVERNE HENDERSON

2221212999

5000000000

01

04

00

The fields have been merged and split according to the character positions of

the fields relative to the table’s schema. Furthermore, the data type of the

column EMP_NAME is CHAR. Because DCI has access to the data dictionary, all

fields will be mapped back to the COBOL application in the correct positions.

This is a very important fact, by default, the fields of the largest record are

used to create the schema of the table, therefore table schema must be

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 3-12

carefully considered when creating file descriptors. To take advantage of the

flexibility of SQL, data types are consistent between fields for different records

that will occupy the same character positions. If a PIC X field is written to a

DECIMAL type database column, the database will return an error to the

application.

 Example 3

A SQL select on the first record of all columns in EMP_NAME would display the

following:
51100, LAVERNE HENDERSON, 2221212999

 Example 4

A SQL select on the second record of all columns in EMP_NAME would display

the following:
500000, 0000010400

1Data Dictionaries 3

© Copyright 1995-2025 CASEMaker Inc. 3-13

3.4 Using XFD File Defaults

In many cases, directives can override the default behavior of DCI. Please refer

to XFD Directives for more information.

The compiler uses special methods to deal with the following COBOL

elements:

• REDEFINES Clause

• KEY IS phrase

• FILLER data items

• OCCURS Clauses

REDEFINES Clause

A REDEFINES clause creates multiple definitions for the same field. DBMaker

supports a single data definition per column. Therefore, a redefined field

occupies the same position in the table as the original field. By default, the

data dictionary uses the field definition of the subordinate field to define the

column data type.

Multiple record definitions are essentially redefines of the entire record area.

Please refer to the previous section for details on multiple record definitions.

Group items are not included in the data dictionary’s definition of the

resultant table’s schema. Instead, the individual fields within the group item

are used to generate the schema. Grouped fields may be combined using the

USE GROUP directive.

KEY IS Phrase

The KEY IS phrase in the input-output section of a COBOL program defines a

field or group of fields as a unique index for all records. The data dictionary

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 3-14

maps fields included in the KEY IS phrase to primary keys in the database. If

the field named in the KEY IS phrase is a group item, the subordinate fields of

the group item become the primary key columns of the table. Use the USE

GROUP directive to collect all subordinate fields into one field. Please see

$XFD USE GROUP Directive in Chapter 4 for more details.

FILLER Data Items

FILLER data items are placeholders in a COBOL file descriptor. They do not

have unique names and cannot be uniquely referenced. The data dictionary

maps all other named fields as if the fillers existed in terms of character

position, but does not create a distinct field for the FILLER data item.

If a FILLER must be included in the table schema it can be combined with

other fields using the USE GROUP directive (see $XFD USE GROUP Directive in

Chapter 4) or the $XFD NAME directive (see in Chapter 4).

OCCURS Clauses

The OCCURS clause allows a field to be defined as many times as necessary.

DCI must assign a unique name for each database column, but multiple fields

defined with an OCCURS clause will all have identical names. To avoid this

problem, a sequential index number is appended to the field specified in the

OCCURS clause.

 Example 1

The following file descriptor part…
 03 EMPLOYEE-RECORD OCCURS 20 TIMES.

 05 CUST-ID PIC 9(5).

 Example 2

Generates the following column names for the database:
EMP_ID_1

EMP_ID_2

.

1Data Dictionaries 3

© Copyright 1995-2025 CASEMaker Inc. 3-15

.

.

EMP_ID_5

EMP_ID_6

.

.

.

EMP_ID_19

EMP_ID_20

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 3-16

3.5 Mapping Multiple Files

It is possible at runtime to use a single XFD file for multiple files with different

names. If the record definitions are identical then it is unnecessary to create a

separate XFD for each file.

The runtime configuration variable DCI_MAPPING determines file mapping to

an XFD.

Suppose a COBOL application has a SELECT with a variable ASSIGN name,

such as EMPLOYEE-RECORD. This variable assumes different values (such as

EMP0001 and EMP0002) during program execution. To provide a base name

for the XFD, use the FILE directive (see ((XFD DATE, USE GROUP)).

 Example

If "EMP" is the base, then the compiler generates an XFD named "Emp.xfd".

The asterisk ("*") in the following example is a wildcard character that

replaces any number of characters in the file name. The file extension ".xfd" is

not included in the map. This statement would cause the XFD "emp.xfd" to be

used for all files with names that begin with "EMP". Add the following entry in

the runtime configuration file to ensure that all employee files, each having a

unique but related name, use the same XFD:
DCI_MAPPING EMP* = EMP

The DCI_MAPPING variable is read during the open file stage. The "*" and "?"

wildcards can be used within the pattern as follows:

* matches any number of characters

? matches a single occurrence of any character

EMP????? matches EMP00001 and EMPLOYEE, but does not match

EMP001 or EMP0001

EMP* matches all of the above

1Data Dictionaries 3

© Copyright 1995-2025 CASEMaker Inc. 3-17

EMP*1 matches EMP001, EMP0001, and EMP00001, but does nor

match EMPLOYEE.

*OYEE matches EMPLOYEE

does not match EMP0001 or EMP00001

 Syntax

Where <pattern> consists of any valid filename characters and may include "*"

or "?". The DCI_MAPPING variable has the following syntax:
DCI_MAPPING [<pattern> = base-xfd-name],

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 3-18

3.6 Mapping to Multiple Databases

It is possible to reference tables in different databases with DCI_DB_MAP by

specifying different files or COBOL file-prefix links to the DBMS.

 Example

To reference table idx1 in the databases DBNAME (as default), DBCED, and

DBMULTI, add the following settings in the DCI_CONFIG configuration file.
DCI_DB_MAP /usr/CED=DBCED

DCI_DB_MAP /usr/MULTI=DBMULTI

To create the idx1 table in these databases by specifying different files:
...

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT IDX-1-FILE

 ASSIGN TO DISK "/usr/CED/IDX1"

 ORGANIZATION IS INDEXED

 ACCESS IS DYNAMIC

 RECORD KEY IS IDX-1-KEY.

 SELECT IDX-2-FILE

 ASSIGN TO DISK "/usr/MULTI/IDX1"

 ORGANIZATION IS INDEXED

 ACCESS IS DYNAMIC

 RECORD KEY IS IDX-2-KEY.

 SELECT IDX-3-FILE

 ASSIGN TO DISK "IDX1"

 ORGANIZATION IS INDEXED

 ACCESS IS DYNAMIC

 RECORD KEY IS IDX-3-KEY.

 DATA DIVISION.

 FILE SECTION.

1Data Dictionaries 3

© Copyright 1995-2025 CASEMaker Inc. 3-19

 FD IDX-1-FILE.

 01 IDX-1-RECORD.

 03 IDX-1-KEY PIC X(10).

 03 IDX-1-ALT-KEY.

 05 IDX-1-ALT-KEY-A PIC X(30).

 05 IDX-1-ALT-KEY-B PIC X(10).

 03 IDX-1-BODY PIC X(50).

 FD IDX-2-FILE.

 01 IDX-2-RECORD.

 03 IDX-2-KEY PIC X(10).

 03 IDX-2-ALT-KEY.

 05 IDX-2-ALT-KEY-A PIC X(30).

 05 IDX-2-ALT-KEY-B PIC X(10).

 03 IDX-2-BODY PIC X(50).

 FD IDX-3-FILE.

 01 IDX-3-RECORD.

 03 IDX-3-KEY PIC X(10).

 03 IDX-3-ALT-KEY.

 05 IDX-3-ALT-KEY-A PIC X(30).

 05 IDX-3-ALT-KEY-B PIC X(10).

 03 IDX-3-BODY PIC X(50).

 WORKING-STORAGE SECTION.

 PROCEDURE DIVISION.

 LEVEL-1 SECTION.

 MAIN-LOGIC.

 set environment "default-host" to "dci"

 * make IDX1 table on DBCED

 OPEN OUTPUT IDX-1-FILE

 MOVE "IDX IN DBCED" TO IDX-1-BODY

 MOVE "A" TO IDX-1-KEY

 WRITE IDX-1-RECORD

 MOVE "B" TO IDX-1-KEY

 WRITE IDX-1-RECORD

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 3-20

 MOVE "C" TO IDX-1-KEY

 WRITE IDX-1-RECORD

 CLOSE IDX-1-FILE

 * make IDX1 table on DBMULTI

 OPEN INPUT IDX-1-FILE

 OPEN OUTPUT IDX-2-FILE

 PERFORM UNTIL 1 = 2

 READ IDX-1-FILE NEXT AT END EXIT PERFORM END-READ

 MOVE IDX-1-RECORD TO IDX-2-RECORD

 MOVE "IDX IN DBMULTI" TO IDX-2-BODY

 WRITE IDX-2-RECORD

 END-PERFORM

 CLOSE IDX-1-FILE IDX-2-FILE

 * make IDX1 table on DBNAME

 OPEN INPUT IDX-1-FILE

 OPEN OUTPUT IDX-3-FILE

 PERFORM UNTIL 1 = 2

 READ IDX-1-FILE NEXT AT END EXIT PERFORM END-READ

 MOVE IDX-1-RECORD TO IDX-3-RECORD

 MOVE "IDX IN DBNAME" TO IDX-3-BODY

 WRITE IDX-3-RECORD

 END-PERFORM

 CLOSE IDX-1-FILE IDX-3-FILE

To read table idx-1 in these databases by file-prefix:
...

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT IDX-1-FILE

 ASSIGN TO DISK "IDX1"

 ORGANIZATION IS INDEXED

 ACCESS IS DYNAMIC

 RECORD KEY IS IDX-1-KEY.

1Data Dictionaries 3

© Copyright 1995-2025 CASEMaker Inc. 3-21

 DATA DIVISION.

 FILE SECTION.

 FD IDX-1-FILE.

 01 IDX-1-RECORD.

 03 IDX-1-KEY PIC X(10).

 03 IDX-1-ALT-KEY.

 05 IDX-1-ALT-KEY-A PIC X(30).

 05 IDX-1-ALT-KEY-B PIC X(10).

 03 IDX-1-BODY PIC X(50).

 WORKING-STORAGE SECTION.

 PROCEDURE DIVISION.

 LEVEL-1 SECTION.

 MAIN-LOGIC.

 set environment "default-host" to "dci"

 set environment "file-prefix" to "/usr/MULTI:/usr/CED".

 OPEN INPUT IDX-1-FILE

 READ IDX-1-FILE NEXT

 DISPLAY IDX-1-BODY

 ACCEPT OMITTED

 CLOSE IDX-1-FILE

 set environment "file-prefix" to "/usr/CED:/usr/MULTI".

 OPEN INPUT IDX-1-FILE

 READ IDX-1-FILE NEXT

 DISPLAY IDX-1-BODY

 ACCEPT OMITTED

 CLOSE IDX-1-FILE

 set environment "file-prefix" to ".:/usr/CED:/usr/MULTI".

 OPEN INPUT IDX-1-FILE

 READ IDX-1-FILE NEXT

 DISPLAY IDX-1-BODY

 ACCEPT OMITTED

 CLOSE IDX-1-FILE

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 3-22

3.7 Using Triggers

COBOL Triggers are a very useful and powerful feature of DCI. COBOL triggers

can automatically execute predefined COBOL programs in response to specific

I/O events, regardless of which user or application program generated them.

COBOL triggers can:

• Implement business rules

• Create an audit trail for COBOL activities

• Derive additional values from existing data

• Replicate data across multiple files

• Perform security authorization procedures

• Control data integrity

• Define unconventional integrity constraints

The following XFD directives to define a COBOL trigger specifying the COBOL

program name to be called when an I/O event occurs.

 Syntax

$XFD DCI COMMENT COBTRIGGER "cobolpgmname"

 Example 1

The "cobolpgmname" is case-sensitive and looks in the CODE-PREFIX

directory or current running directory. The I/O events may be READ (any),

WRITE, REWRITE, DELETE, and OPEN. The COBOL trigger performs BEFORE

and AFTER I/O events except for OPEN that performs BEFORE I/O events.
$xfd dci comment cobtrigger "cobtrig"

 Example 2

The "cobolpgmname" must following the LINKAGE SECTION rule:
LINKAGE SECTION.

1Data Dictionaries 3

© Copyright 1995-2025 CASEMaker Inc. 3-23

01 op-code PIC x.

88 read-after value "R".

88 read-before value "r".

88 write-after value "W".

88 write-before value "w".

88 rewrite-after value "U".

88 rewrite-before value "u".

88 delete-after value "D".

88 delete-before value "d".

88 open-before value "O".

01 record-image PIC x(32767).

01 rc-error PIC 99.

 Example 3

Op-code is valued from DCI based on I/O events. The record-image contains

the COBOL record value before/after the I/O events. The rc-error could be

used to force the COBOL I/O events error using the following values:
88 F-IN-ERROR VALUES 1 THRU 99.

88 E-SYS-ERR VALUE 1.

88 E-PARAM-ERR VALUE 2.

88 E-TOO-MANY-FILES VALUE 3.

88 E-MODE-CLASH VALUE 4.

88 E-REC-LOCKED VALUE 5.

88 E-BROKEN VALUE 6.

88 E-DUPLICATE VALUE 7.

88 E-NOT-FOUND VALUE 8.

88 E-UNDEF-RECORD VALUE 9.

88 E-DISK-FULL VALUE 10.

88 E-FILE-LOCKED VALUE 11.

88 E-REC-CHANGED VALUE 12.

88 E-MISMATCH VALUE 13.

88 E-NO-MEMORY VALUE 14.

88 E-MISSING-FILE VALUE 15.

88 E-PERMISSION VALUE 16.

88 E-NO-SUPPORT VALUE 17.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 3-24

88 E-NO-LOCKS VALUE 18.

88 E-INTERFACE VALUE 19.

1Data Dictionaries 3

© Copyright 1995-2025 CASEMaker Inc. 3-25

3.8 Using Views

DCI allows the use of DBMaker views instead of a table. In this case, DCI users

must manually create a view and be aware of the following limitations:

• Open a view and do all DML operations when the view is a single table

view and the projection column on the original table is without an

expression, aggregate or UDF.

• For other kinds of views, open the view as an OPEN INPUT and perform a

READ operation only.

 Example 1

This example illustrates creating and opening a view. It assumes there are 2

tables, named t2 and t3 created in this way:

create table t2 (c1 char(30), c2 int);

create table t3(c1 int);

Additionally, these tables contain some data.

identification division.

 file-control.

 select miofile assign to ws-nomefile

 organization indexed

 access mode dynamic

 record key rec

 .

 data division.

 file section.

 $XFD FILE=miofile

 fd miofile.

 01 rec.

 03 c1 pic x(30).

 03 c2 pic 9(9).

 working-storage section.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 3-26

 01 ws-nomefile pic x(30).

 01 sql-command pic x(1000).

 procedure division.

 main.

 set environment "default_host" to "dci"

 display "Enter the name of the view to create:" no

 accept ws-nomefile

 inspect ws-nomefile replacing trailing spaces

 by low-value

 string "create view " delimited by size

 ws-nomefile delimited by low-value

 " as (select c1, c2 from t2 where c2 in (select max(c1)

 - " from t3));" delimited by size

 x"00" delimited by size

 into sql-command

 display sql-command

 accept omitted

 call "i$io" using 15, "dci", sql-command

 if return-code not = 0

 display "Errore : " return-code

 accept omitted

 stop run

 end-if

 string "commit;" delimited by size

 x"00" delimited by size

 into sql-command

 call "i$io" using 15, "dci", sql-command

 if return-code not = 0

 display "Errore : " return-code

 accept omitted

 stop run

 end-if

 open input miofile

 perform until 1=2

1Data Dictionaries 3

© Copyright 1995-2025 CASEMaker Inc. 3-27

 read miofile next

 at end exit perform

 end-read

 display rec

 end-perform

 close miofile

 exit program

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 3-28

3.9 Using Synonyms

DCI allows the use of DBMaker synonyms instead of a table or view. Users can

create the synonym on a table, view or remote database’s table or view. If the

synonym for the view is not a single table view, the user can only OPEN INPUT

with that synonym.

1Data Dictionaries 3

© Copyright 1995-2025 CASEMaker Inc. 3-29

3.10 Open Tables in Remote Databases

Users can access the remote database’s table or view by adding a special token

"@" in the COBOL SELECT statement. For example:
SELECT tb1 ASSIGN TO RANDOM, "lnk1@tb1"

To use a different user name and password, set DD_DDBMD=1 in the

dmconfig.ini and create a remote database link.

 Example

Connecting to database dci_db1 and accessing a table in database dci_db2.

1. Set DD_DDBMD=1 in dmconfig.ini.

2. Create the table in dci_db2

NOTE Use dmSQL tool to create the tables in the dci_db2

database.

3. Use a COBOL program to connect to dci_db1 and then open the table
in dci_db2.

dmconfig.ini

[DCI_DB1]

DB_SVADR = 127.0.0.1

DB_PTNUM = 22999

DD_DDBMD = 1

[DCI_DB2]

DB_SVADR = 127.0.0.1

DB_PTNUM = 23000

DD_DDBMD = 1

Use dmSQL tool to create the table

connect to DCI_DB2 SYSADM;

create table tb1 (c1 int not null, c2 int, c3 char(10), primary key c1);

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 3-30

commit;

disconnect;

COBOL program

identification division.

program-id.RemoteTable.

date-written.

remarks.

environment division.

input-output section.

file-control.

 SELECT tb1 ASSIGN TO RANDOM, "dci_db2@tb1"

 ORGANIZATION IS INDEXED

 ACCESS IS DYNAMIC

 FILE STATUS IS I-O-STATUS

 RECORD KEY IS C1.

data division.

file section.

FD tb1.

01 tb1-record.

 03 C1 PIC 9(8) COMP-5.

 03 C2 PIC 9(8) COMP-5.

 03 C3 PIC X(10).

working-storage section.

77 I-O-STATUS pic xx.

procedure division.

main.

 set environment "default_host" to "dci"

 call "DCI_SETENV" using "DCI_DATABASE" "DCI_DB1"

 call "DCI_SETENV" using "DCI_LOGIN" "SYSADM"

 open i-o tb1

 move 100 TO C1.

 move 200 TO C2.

 move "AAAAAAAAAA" TO C3.

 write tb1-record.

 initialize tb1-record.

 read tb1 next.

1Data Dictionaries 3

© Copyright 1995-2025 CASEMaker Inc. 3-31

 display C1, C2, " ", C3.

 close tb1.

 accept omitted.

 stop run.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 3-32

3.11 Using DCI_WHERE_CONSTRAINT

DCI_WHERE_CONSTRAINT specifies an additional WHERE condition for a

succeeding START operation. To be compatible with Acu4gl, DCI also supports

the 4gl_where_constraint.

 Example

The following example queries city names that start with A:

WORKING-STORAGE SECTION.

01 dci_where_constraint pic x(4095) is external.

...

PROCEDURE DIVISION.

...

* to pecify dci_where_constraint

move low-values to dci_where_constraint

 open i-o idx-1-file

 move "city_name = 'a%'" to dci_where_constraint

 inspect dci_where_constraint replacing trailing spaces by low-values.

 move spaces to idx-1-key

 start idx-1-file key is not less idx-1-key

 ...

1XFD Directives 4

© Copyright 1995-2025 CASEMaker Inc. 4-1

4 XFD Directives

Directives are comments placed in COBOL file descriptors that alter how the

database table is built. Directives change the way data is defined in the

database and they assign names to database fields. Directives can also assign

names to .XFD files, assign data to binary large object (BLOB) fields, and add

comments.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 4-2

4.1 Using Directive Syntax

Each directive occupies the entire line located immediately before the related

line of COBOL code. All directives have the prefix $XFD; a $ symbol in the 7th

column followed immediately by XFD.

 Syntax 1

The following command provides a unique database name for an undefined

COBOL variable. Locate the directive directly above the line it affects; in this

case the second instance of the COBOL defined variable qty.
. . .

 03 QTY PIC 9(03).

 01 CAP.

$XFD NAME=CAPQTY

 03 QTY PIC 9(03).

 Syntax 2

Directives may also be specified using this ANSI-compliant syntax:
*((XFD NAME=CAPQTY))

 Syntax 3

More than one directive may be combined together. Directives may share the

same line when preceded by the prefix $XFD and separated by a space or

comma.
$XFD NAME=CAPQTY, ALPHA

 Syntax 4

Alternatively, the following can be used.
*((XFD NAME=CAPQTY, ALPHA))

1XFD Directives 4

© Copyright 1995-2025 CASEMaker Inc. 4-3

4.2 Using XFD Directives

Directives are used when a COBOL file descriptor is mapped to a database

field. The $XFD prefix tells the compiler the proceeding command will be used

during generation of the data dictionary.

$XFD ALPHA Directive

To store non-numeric data like, LOW-VALUES or special codes, in numeric

keys, this directive allows a data item that has been defined as numeric in the

COBOL program to be treated as alphanumeric text (CHAR (n) n 1-max

column length) in the database.

 Syntax 1

$XFD ALPHA

 Syntax 2

*((XFD ALPHA))

Moving a non-numeric value like "A234" to the key without using the $XFD

ALPHA directive would be rejected by the database.

 Example 1

Assume the KEY IS code-key has been specified and we have the following

record definition. CODE-NUM is a numeric value and since group items are

disregarded in the database, it is the key field,.
01 EMPLOYEE-RECORD.

 05 EMP-KEY.

 10 EMP-NUM PIC 9(5).

 Example 2

Using the $XFD ALPHA directive changes a non-numeric value like "A234"

saves the record from rejection by the database, since "A234" is an

alphanumeric value and CODE-NUM is a numeric value.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 4-4

01 EMPLOYEE-RECORD.

 05 EMP-KEY.

$XFD ALPHA

 10 EMP-NUM PIC 9(5)

 Example 3

Now, the following operation can be used without worrying about any

rejection.
MOVE "C0531" TO CODE-KEY.

WRITE CODE-RECORD.

$XFD BINARY Directive

To allow for data in a field to be alphanumeric data of any type, for example,

LOW-VALUES, use the BINARY directive. With LOW-VALUES, for example,

COBOL allows both LOW and HIGH-VALUES in a numeric field but DBMaker

does not.

BINARY directives transform the COBOL fields into DBMaker BINARY data

types.

 Syntax 1

$XFD BINARY

 Syntax 2

*((XFD BINARY))

 Example

This allows moving of LOW-VALUES to CODE-NUM.
01 EMPLOYEE-RECORD.

 05 EMP-KEY.

 10 EMP-TYPE PIC X.

$((XFD BINARY))

 10 EMP-NUM PIC 9(05).

 10 EMP-SUFFIX PIC X(03).

1XFD Directives 4

© Copyright 1995-2025 CASEMaker Inc. 4-5

$XFD COMMENT DCI BIGINT Directive

The XFD COMMENT DCI BIGINT directive is to specify data type is BIGINT.

 Example

01 RECORD-A.

02 A.

 03 A1 PIC 9(19).

 $XFD COMMENT DCI BIGINT

 03 a2 pic 9(19).

The column types for columns A1 and A2 are as following :
A1 DECIMAL(19, 0)

A2 BIGINT

$XFD COMMENT DCI SERIAL n Directive

This directive defines a serial data field and an optional starting number "n".

Trigger DBMaker to generate a serial number by inserting a record and

supplying a 0 value for the serial field. DBMaker will not generate a serial

number when inserting a new row but supplying an integer value instead of a

0 value. If the supplied integer value is greater than the last serial number

generated, DBMaker resets the sequence of generated serial numbers to start

with the supplied integer value.

 Syntax 1

$XFD COMMENT DCI SERIAL 1000

 Syntax 2

*((XFD COMMENT DCI SERIAL 1000))

 Example 1

01 EMPLOYEE-RECORD.

 05 EMP-KEY.

 10 EMP-TYPE PIC X.

$((XFD COMMENT DCI SERIAL 250))

 10 EMP-COUNT PIC 9(05).

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 4-6

 Example 2

To reference data type BIGSERIAL in FD, we support for PIC 9(18) or 9(19).
01 testeserial-REG.

 02 TESTESERIAL-CHAVE.

 $XFD COMMENT DCI SERIAL 1

 03 ID-S PIC 9(18).

 03 EMPRESA PIC 9(04).

 02 DESCRICAO PIC X(60).

Open output testeserial will create table as following :
create table SYSADM.BIGSERIALTB (

 ID_S BIGSERIAL(1),

 EMPRESA SMALLINT not null ,

 DESCRICAO CHAR(60) default null)

 in DEFTABLESPACE lock mode row fillfactor 100 nocache ;

alter table SYSADM.BIGSERIALTB primary key (ID_S, MPRESA) in DEFTABLESPACE;

$XFD COMMENT DCI COBTRIGGER Directive

This directive defines a COBOL program to be triggered by I/O events like

READ, WRITE, REWRITE, or DELETE. The COBOL program is automatic called

before and after I/O events.

 Syntax 1

$XFD COMMENT DCI COBTRIGGER "cblprogramname"

 Syntax 2

*((XFD COMMENT DCI COBTRIGGER "cblprogramname"))

$XFD COMMENT Directive

This directive identifies comments in an XFD file. In this way, information can

be embedded in an XFD file so that other applications can access the data

dictionary. Embedded information in the form of a comment using this

directive does not interfere with processing by DCI interfaces. Each comment

will be recognizable in the XFD file as having the "#"symbol in column 1.

1XFD Directives 4

© Copyright 1995-2025 CASEMaker Inc. 4-7

 Syntax 1

$XFD COMMENT text

 Syntax 2

*((XFD COMMENT text))

$XFD DATE Directive

DATE type data is a special data format supported by DBMaker that is not

supported by COBOL. To take advantage of the properties of this data type,

convert fields from numeric type data. The DATE directive’s purpose is

storage of dates in fields in the database. This directive differentiates dates

from other numbers, so that they enjoy the properties associated with dates in

the RDBMS.

 Syntax 1

$((XFD DATE=date-format-string))

 Syntax 2

*((XFD DATE=))

If no date-format-string is specified, then six-digit (or six-character) fields are

retrieved as YYMMDD from the database. Eight-digit fields are retrieved as

YYYYMMDD.

The date-format-string is a description of the desired date format, composed

of characters.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 4-8

CHARACTER DESCRIPTION

M Month (01-12)

Y Year (2 or 4 digit)

D Day of month (01-31)

J Julian day (00000000-99999999)

E Day of year (001-366)

H Hour (00-23)

N Minute (00-59)

S Second (00-59)

T Hundredths of a second

 Figure 4-1 date-format-string Characters

Each character in a date format string is a placeholder representing the type of

information stored at that location. The characters also determine how many

digits will be used for each type of data.

For example, although you would typically represent the month with two

digits, if you specify MMM as part of your date format, the resulting date will

use three digits for the month, with a left-zero filling the value. If the month is

given as M, the resulting date will use a single digit, and will truncate on the

left.

JULIAN DATES

The definition of Julian dates varies, so the DATE directive allows for a flexible

representation of Julian dates. Many sources define a Julian day as the day of

the year, with January 1st being 001, January 2nd being 002, etc. To use this

definition, use FEE (day of year) in the date formats.

Other references define a Julian day as the number of days since a specific

base date. This definition is represented in the DATE directive by the letter J.

For example, a six-digit date field would be preceded with the directive $XFD

1XFD Directives 4

© Copyright 1995-2025 CASEMaker Inc. 4-9

DATE=JJJJJJ. The default base date for this form of Julian date is

01/01/0001AD.

You may define your own base date for Julian date calculations by setting the

configuration variable DCI_JULIAN_BASE_DATE.

DCI considers dates in the following range to be valid:

01/01/0001 to 12/31/9999

If a COBOL program attempts to write a record containing a date that DCI

knows is invalid, DCI inserts a date value that depends on the setting specified

by the DCI_INV_DATE, DCI_MIN_DATE and DCI_MAX_DATE configuration

variables into the date field and writes the record.

If a COBOL program attempts to insert into a record from a table with a NULL

date field, zeroes are inserted into that field in the COBOL record.

If a date field has two-digit years, then years 0 through 19 are inserted as

2000 through 2019, and years 20 through 99 are inserted as 1920 through

1999. You can change this behavior by changing the value of the variable

DCI_DATE_CUTOFF. Also, refer to the configuration variables DCI_MAX_DATE

and DCI_MIN_DATE for information regarding invalid dates when the date is

in a key.

NOTE If a field is used as part of a key, the field cannot be a NULL value.

USING GROUP ITEMS

You may place the DATE directive in front of a group item, so long as you also

use the USE GROUP directive.

 Example 1

$XFD DATE

 05 DATE-PURCHASED PIC 9(08).

 05 PAY-METHOD PIC X(05).

The date-purchased column will have eight digits and will be type DATE in

the database, with a format of YYYYMMDD.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 4-10

 Example 2

$((XFD DATE, USE GROUP))

 05 DATE-PURCHASED.

 10 YYYY PIC 9(04).

 10 MM PIC 9(02).

 10 DD PIC 9(02).

 05 PAY-METHOD PIC X(05).

$XFD DCI SPLIT

The DCI SPLIT directive is used to define one or more table splitting points

starting where the DCI interface makes a new DBMS table.

 Example 1

A COBOL FD structure using DCI SPLIT directive.

In this example three DBMaker tables named INVOICE, INVOICE_A, and

INVOICE_B are created with fields between the split points.
FILE SECTION.

FD INVOICE.

 01 INV-RECORD-TOP.

 03 INV-KEY.

 05 INV-TYPE PIC X.

 05 INV-NUMBER PIC 9(5).

 05 INV-ID PIC 999.

 03 INV-CUSTOMER PIC X(30).

$XFD DCI SPLIT

 03 INV-KEY-D.

 05 INV-TYPE-D PIC X.

 05 INV-NUMBER-D PIC 9(5).

 05 INV-ID-B PIC 999.

$XFD DCI SPLIT

 03 INV-ARTICLES PIC X(30).

 03 INV-QTA PIC 9(5).

 03 INV-PRICE PIC 9(17).

1XFD Directives 4

© Copyright 1995-2025 CASEMaker Inc. 4-11

$XFD FILE Directive

The FILE directive names the data dictionary with the file extension .XFD. This

directive is required when creating a different .XFD name from that specified

in the SELECT COBOL statement. Another case that requires this kind of

directive is when the COBOL file name is not specific.

 Syntax 1

$XFD FILE=filename

 Syntax 2

*((XFD FILE=filename))

 Example

In this case, the ACUCOBOL-GT compiler makes an XFD file name called

CUSTOMER.xfd.
ENVIRONMENT DIVISION.

 FILE-CONTROL.

 SELECT FILENAME ASSIGN TO VARIABLE-OF-WORKING.

 . . .

 DATA DIVISION.

 FILE SECTION.

$XFD FILE=CUSTOMER

 FD FILENAME

 . . .

$XFD HIDDEN Directive

This directive allows a field to be marked as hidden. This will avoid the need

to convert a field into a database field. The field will be ignored by the external

interfaces that read the XFD file.

 Syntax 1

$XFD HIDDEN

 Syntax 2

*((XFD HIDDEN))

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 4-12

 Example

$XFD HIDDEN

 05 USELESS PIC X(32).

$XFD NAME Directive

The NAME directive assigns a DBMaker RDBMS column name to the field

defined on the next line. In DBMaker, all column names are unique and must

be less than 128 characters. This directive can be used to avoid problems

created by columns with incompatible or duplicate names.

 Syntax 1

$XFD NAME=columnname

 Syntax 2

*((XFD NAME=columnname))

 Example

In DBMaker RDBMS, the COBOL field cus-cod will map to a RDBMS field

named customercode.
$XFD NAME=customercode

 05 cus-cod PIC 9(05).

$XFD NUMERIC Directive

The NUMERIC directive causes the subsequent field to be treated as an

unsigned integer if it is declared as alphanumeric.

 Syntax 1

$XFD NUMERIC

 Syntax 2

*((XFD NUMERIC))

 Example

The field customer-code will be stored as INTEGER type data in the DBMaker

table.

1XFD Directives 4

© Copyright 1995-2025 CASEMaker Inc. 4-13

$xfd numeric

 03 customer-code PIC x(7).

$XFD USE GROUP Directive

The USE GROUP directive assigns a group of items to a single column in the

DBMaker table. The default data type for the resultant dataset in the database

column is alphanumeric (CHAR (n), where n = 1- max column length). The

directive may be combined with other directives if the data is stored as a

different type (BINARY, DATE, NUMERIC). Combining fields into groups

improves processing speed on the database, so effort is made to determine

which fields can be combined.

 Syntax 1

$XFD USE GROUP

 Syntax 2

*((XFD USE GROUP))

 Example 1

By adding the USE GROUP directive, the data is stored as a single numeric field

where the column name is code-key.
01 CODE-RECORD.

$XFD USE GROUP

 05 CODE-KEY.

 10 AREA-CODE-NUM PIC 9(03).

 10 CODE-NUM PIC 9(07).

 Example 2

The USE GROUP directive can be combined with other directives. The fields

are mapped into a single DATE type data column in the database.
$((XFD DATE, USE GROUP))

 05 DATE-PURCHASED.

 10 YYYY PIC 9(04).

 10 MM PIC 9(02).

 10 DD PIC 9(02).

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 4-14

$XFD VAR-LENGTH Directive

VAR-LENGTH directives force DBMaker to use a BLOB field to save COBOL

fields. This is useful if the COBOL field is over or near the maximum allowable

column size for regular data types. Please refer to Chapter 8, COBOL

Conversions.

Since BLOB fields cannot be used in any key field and are slower to retrieve

then normal data type fields such as CHAR, we suggest you use this directive

only when needed.

 Syntax 1

$XFD USE VAR-LENGTH

 Syntax 2

*((XFD USE VAR-LENGTH))

 Example

$XFD USE VAR-LENGTH

 05 LARGE-FIELD PIC X(10000).

$XFD WHEN Directive for File Names

The WHEN directive is used to build certain columns in DBMaker that

wouldn’t normally be built by default. By specifying a WHEN directive in the

code, the field (and subordinate fields in the case of a group item) immediately

following this directive will appear as an explicit column, or columns, in the

database tables.

The database stores and retrieves all fields regardless of whether they are

explicit or not. Furthermore, key fields and fields from the largest record

automatically become explicit columns in the database table. The WHEN

directive is only used to guarantee that additional fields will become explicit

columns when you want to include multiple record definitions or REDEFINES

in a database table.

1XFD Directives 4

© Copyright 1995-2025 CASEMaker Inc. 4-15

One condition for how the columns are to be used is specified in the WHEN

directive. Additional fields you want to become explicit columns in a database

table must not be FILLER or occupy the same area as key fields.

 Syntax 1

Equal to
$XFD WHEN field = value

 Syntax 2

Less than or equal to)
$XFD WHEN field <= value

 Syntax 3

Less than
$XFD WHEN field < value

 Syntax 4

Greater than or equal to
$XFD WHEN field >= value

 Syntax 5

Greater than
$XFD WHEN field > value

 Syntax 6

Not equal to
$XFD WHEN field != value

 Syntax 7

OTHER can only be used with the symbol "=". In this case, the field or fields

after OTHER must be used only if the WHEN condition or conditions listed at

the same level are not met. OTHER can be used before one record definition,

and, within each record definition, once at each level. It is necessary to use a

WHEN directive with OTHER in the eventuality that the data in a field doesn’t

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 4-16

meet the explicit conditions specified in the other WHEN directives.

Otherwise, the results will be undefined.
$XFD WHEN field = OTHER

 Syntax 8

Value is an explicit data value used in quotes, and field is a previously defined

COBOL field.
*((XFD WHEN field(operator)value))

 Example

Explicit data values in quotes ("") are permitted.
 05 AR-CODE-TYPE PIC X.

$XFD WHEN AR-CODE-TYPE="S"

 05 SHIP-CODE-RECORD PIC X(04).

$XFD WHEN AR-CODE-TYPE="B"

 05 BACKORDER-CODE-RECORD REDEFINES SHIP-CODE-RECORD.

$XFD WHEN AR-CODE-TYPE=OTHER

 05 OBSOLETE-CODE-RECORD REFEFINES SHIP-CODE-RECORD.

TABLENAME OPTION

The WHEN directive has the TABLENAME option to change the table name

according to the value of the WHEN directive during runtime.

When using the TABLENAME option in a WHEN statement, be aware of the

DCI_DEFAULT_RULES and filename_RULES DCI configuration variables.

 Example 1

A COBOL FD structure using the "When" directive with two table names.
FILE SECTION.

$XFD FILE=INV

 FD INVOICE.

$XFD WHEN INV-TYPE = "A" TABLENAME=INV-TOP

 01 INV-RECORD-TOP.

 03 INV-KEY.

 05 INV-TYPE PIC X.

 05 INV-NUMBER PIC 9(5).

 05 INV-ID PIC 999.

1XFD Directives 4

© Copyright 1995-2025 CASEMaker Inc. 4-17

 03 INV-CUSTOMER PIC X(30).

$XFD WHEN INV-TYPE = "B" TABLENAME=INV-DETAILS

 01 INV-RECORD-DETAILS.

 03 INV-KEY-D.

 05 INV-TYPE-D PIC X.

 05 INV-NUMBER-D PIC 9(5).

 05 INV-ID-B PIC 999.

 03 INV-ARTICLES PIC X(30).

 03 INV-QTA PIC 9(5).

 03 INV-PRICE PIC 9(17).

 Example 2

The DCI interface makes two tables named "inv-top" and "inv-details" based

on the value of the inv-type fields in example 1. DCI checks the value of the

inv-type field to know where to fill the record.
*MAKE TOP ROW

 MOVE "A" TO INV-TYPE

 MOVE 1 TO INV-NUMBER

 MOVE 0 TO INV-ID

 MOVE "acme company" TO INV-CUSTOMER

 WRITE INV-RECORD-TOP

*MAKE DETAIL ROWS

 MOVE "B" TO INV TYPE

 MOVE 1 TO INV-NUMBER

 MOVE 0 TO INV-ID

 MOVE "floppy disk" TO INV-ARTICLES

 MOVE 10 TO INV-QTA

 MOVE 123 TO INV-PRICE

 WRITE INV-RECORD-DETAILS

Running the preceding code, DCI fills the "TOP-ROW" record in the "INV-TOP" table

and "DETAIL-ROW" in the "INV-DETAILS" table. When DCI reads the above record, it

can use sequential reading, or use the key to access filled records. If you plan to use

sequential reading through record types, you must set DCI_DEFAULT_RULES = POST or

= COBOL. Alternately, if you plan to use sequential reading inside record types you

must set DCI_DEFAULT_RULES=BEFORE or = DBMS.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 4-18

There are advantages and disadvantages to using this rule. To have a 100%

COBOL ANSI reading behavior, you should use the "POST" or "COBOL"

method, but this method can degrade performance (more records are read

and all involved tables are open at the same time).

If you use the "BEFORE" or "DBMS" method, the involved table is opened

when the $WHEN condition matches at the read record level.

 Example 3

In other words, if you use the previous records, and code the following

statements
 OPEN INPUT INVOICE.

* to see the customer invoice

 READ INVOICE NEXT.

 DISPLAY "Customer: " INV-CUSTOMER

 DISPLAY "Invoice number: " INV-NUMBER

* to see the invoice details

 READ INVOICE NEXT.

 DISPLAY INV-ARTICLES.

If the method is "POST" or "COBOL", the "open input" opens both tables and

"read next", reads thru different tables.

 Example 4

The matched table is opened at the "start" statement level.

If the method is "BEFORE" or "DBMS" the code is changed as follows.
 open input invoice.

* to see the customer invoice

 move "A" to inv-type

 move 1 to inv-number

 move 0 to inv-id

 start invoice key is = inv-key.

 read invoice next

 display "Customer " inv-customer

display "Invoice number "inv-number

* to see the invoice details

 move "B" to inv-type

1XFD Directives 4

© Copyright 1995-2025 CASEMaker Inc. 4-19

 move 1 to inv-number

 move 0 to inv-id

start invoice key is = inv-key.

 read invoice next

 display inv-articles

1Compiler and Runtime Options 5

© Copyright 1995-2025 CASEMaker Inc. 5-1

5 Compiler and Runtime

Options

This section describes configuration settings for ACUCOBOL-GT used to

specify what file system to use.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 5-2

5.1 Using ACUCOBOL-GT Default File
System

Existing files opened with a COBOL application are associated with their

respective file systems as defined in the ACUCOBOL-GT configuration file.

When new files are created by a COBOL application, you need to specify what

file system to use. The ACUCOBOL-GT configuration file needs to be set so that

new files use the file system of choice.

The DEFAULT-HOST setting tells ACUCOBOL which file system to use if no

other system is specified for a new file. If no value has been given to this

variable, ACUCOBOL will use the Vision file system as default. The filename-

HOST setting allows you to set a file system for a specific file. The name of the

file should replace filename in the setting.

The following variables in the ACUCOBOL-GT configuration file allow the file

system of choice to be used.

 Syntax 1

DEFAULT-HOST (*)

 Syntax 2

filename-HOST (*)

1Compiler and Runtime Options 5

© Copyright 1995-2025 CASEMaker Inc. 5-3

5.2 Using DCI Default File System

In order to take advantage of DBMaker’s reliability and features such as

replication, backup and integrity constraints, we suggest using the DEFAULT-

HOST DCI to avoid use of the ACUCOBOL-GT Vision file system. If no file

system is specified, the Vision file system will be used by default.

 Syntax 1

In this case, all new files will be DBMaker files, unless the new files have been

designated to a different file system.
DEFAULT-HOST DCI

 Syntax 2

In order to establish that all new files, unless otherwise specified, will be

Vision files, use the following.
DEFAULT-HOST VISION

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 5-4

5.3 Using Multiple File Systems

Filename-HOST is used to associate new files to a particular file system. It

differs from the DEFAULT-HOST variable in that it associates single data files

to a file system. In this way, files that use a different file system than the

default file system can be used.

In order to accomplish this, substitute the configuration file "DEFAULT" value,

with the name of a file, without using directory names, or file extensions.

DEFAULT-HOST and filename-HOST can be used together.

 Example

In this case, file 1 and 2 will use DBMaker, while the other files will use the

vision file system.
DEFAULT-HOST VISION

file1-HOST DCI

file2-HOST DCI

1Compiler and Runtime Options 5

© Copyright 1995-2025 CASEMaker Inc. 5-5

5.4 Using the Environment Variable

In order to allow the file system to be setup during execution of a program,

specify the following in the COBOL code. The (*) is only used for the

ACUCOBOL runtime. Also, be aware that specification of a file system is

usually done in the runtime configuration file and NOT changed in the COBOL

program.

NOTE Refer to the ACUCOBOL-GT, User’s Manual (chapter 2.1 and 2.2) for

detailed instructions on how to use the ACUCOBOL-GT compiler and

runtime.

 Syntax 1

SET ENVIRONMENT "filename-HOST" TO filesystem (*)

 Syntax 2

SET ENVIRONMENT "DEFAULT-HOST" TO filesystem (*)

1Configuration File Variables 6

© Copyright 1995-2025 CASEMaker Inc. 6-1

6 Configuration File

Variables

This section lists the acceptable ranges of data for DCI, as well as tables

specifying how COBOL data types are mapped to DBMaker data types.

Configuration file variables are used to modify the standard behavior of DCI

and are stored in a file called DCI_CONFIG.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 6-2

6.1 Setting DCI_CONFIG Variables

It is possible to give a configuration file a different address by setting a value

to an environment variable called DCI_CONFIG. The value assignable to this

environment variable can be either a full pathname or simply the directory

where the configuration file resides. In this case, DCI will look for a file called

DCI_CONFIG stored in the directory specified in the environmental variable. If

the file specified in the configuration variable doesn't exist, DCI doesn't

display an error and assumes that no configuration variables have been

assigned. This variable is set in the COBOL runtime configuration file.

 Syntax 1

In UNIX, DCI will look for the file DCI_CONFIG. This environment variable is

used to establish the path and name of the DCI configuration file. Working

with the Bourne shell, the following command can be used.
DCI_CONFIG=/usr/marc/config;export DCI_CONFIG

 Syntax 2

In DOS, DCI reads the configuration file called DCI_CONFIG in the directory

c:\etc\test.
set DCI_CONFIG=c:\etc\test

 Syntax 3

In UNIX, DCI utilizes the file called "DCI" in the directory /home/test.
DCI_CONFIG=/home/test/dci; export DCI_CONFIG

<filename>_RULES

Default management for a multi-definition file. The actual file name replaces

<filename>.

1Configuration File Variables 6

© Copyright 1995-2025 CASEMaker Inc. 6-3

 Example

All of the files will use the POST rule except for the CLIENT file when the

following commands are used.
DCI_DEFAULT_RULES POST

CLIENT_RULES BEFORE

DCI_AUTO_CREATE_FOR_INVALID_TABLE

DCI_AUTO_CREATE_FOR_INVALID_TABLE is used to create table when any

table open fail with multiple table case.

The default value is off (0).

 Example

User can set DCI_AUTO_CREATE_FOR_INVALID_TABLE 1 in DCI_CONFIG

when any table opened in the following case fail.
$xfd when rt = 1, tablename = tableA

 01 record-definition1.

 …

$xfd when rt = 2, tablename = tableB

 01 record-definition2.

 …

$xfd when rt = 3, tablename = tableC

 01 record-definition3.

 …

DCI_AUTOMATIC_SCHEMA_ADJUST

This variable directs DCI to alter the table schema definition when the XFD

differs from the table schema. This variable is incompatible with the split

tables (those with a number of columns > 2000, and those who's record size is

greater than 32 KB -exclude the BLOB field).

The possible values of this variable are:

0 Default, does nothing

1 Add the new fields to the table, and drop the ones who are not in the XFD

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 6-4

2 Add the new fields to the table, but do not drop the ones who are not in

the XFD

DCI_CASE

File names in COBOL are case insensitive but table names are case sensitive.

The DCI_CASE configuration variable determines how file names are

translated into table names. Setting it to lower translates file names into table

names with all lowercase characters. Setting it to upper translates file names

into table names with all uppercase characters. Setting it to ignore means no

file names are translated into table names with all lowercase or uppercase

characters. The default setting for DCI_CASE is lower. If your file names are

DBCS words, set DCI_CASE to ignore.

 Example

DCI_CASE IGNORE

DCI_COLUMNS_MAPPING

DCI_COLUMNS_MAPPING keyword is used to specified only the necessary

columns need to be returned for reading record. It may speed up read

performance if user do not need all the columns to be returned. This keyword

must be set before OPEN table and can only be used for OPEN INPUT

table. User should also make sure all necessary column including key column

is specified in the columns list or the result will be wrong.

 Syntax

DCI_COLUMNS_MAPPING table1=col1,col2,…coln

 Example

When user open INPUT with the following table and specified

DCI_COLUMNS_MAPPING, only the specified columns will be returned when

START/READ/NEXT/PREVIOUS.

It will retrieve 3 columns of table.

1Configuration File Variables 6

© Copyright 1995-2025 CASEMaker Inc. 6-5

call "DCI_SETENV" using "DCI_COLUMNS_MAPPING"

" EMPTABLE = EMPID,EMP-NAME,EMP-PHONE "

DCI_COMMIT_COUNT

The DCI_COMMIT_COUNT configuration variable indicates the conditions

under which a COMMIT WORK operation is issued. There are two possible

values, 0 and <n>.

DCI_COMMIT_COUNT = 0

No automatic commit is done (default value).

DCI_COMMIT_COUNT = <N>

Under this condition DCI waits until the number of WRITE, REWRITE, AND

DELETE operations are equal to the value <n> before issuing a COMMIT

WORK statement. This rule applies only when opening the file in "output" or

"exclusive" mode.

DCI_CONNECTION_ID

 DCI_CONNECTION_ID is used to get runtime connection ID.

 Example:

77 SID pic x(20).

...

 CALL "DCI_GETENV" using "DCI_CONNECTION_ID", SID

 DISPLAY "CONNECTION_ID: " SID

DCI_CREATE_ALTERNATE_KEY

DCI_CREATE_ALTERNATE_KEY can be used when migrating table from vision

files and do not want to create alternate key (when setting

DCI_CREATE_ALTERNATE_KEY 0) to speed up migrating progress. Therefore,

it will build only primary key. The default value is 1.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 6-6

 Example

1. Migrate without alternate key.

Setting DCI_CONFIG before migration.
DCI_CREATE_ALTERNATE_KEY 0

;DCI_AUTOMATIC_SCHEMA_ADJUST 1

2. Check index created or not
shell> runcbl dcimigrate.acu PERF PERF --noverify

3. Run COBOL program after migration.

Turn on DCI_AUTOMATIC_SCHEMA_ADJUST after migration.
;DCI_CREATE_ALTERNATE_KEY 0

DCI_AUTOMATIC_SCHEMA_ADJUST 1

shell> runcbl -c dciconf prog_testTurn on DCI_AUTOMATIC_SCHEMA_ADJUST after

migrating.

Please don't set DCI_AUTOMATIC_SCHEMA_ADJUST when migrating.

Otherwise, “alternate key” will be created.

DCI_DATABASE

DCI_DATABASE is used to specify the name of the database established during

the setup of DBMaker.

 Example 1

The following entry has to be included in the configuration file if the database

used is named DBMaker_Test.
DCI_DATABASE DBMaker_Test

 Example 2

Sometimes, the database name is not known in advance, and for this reason it

is necessary to set it dynamically during runtime. In cases like this, it is

possible to write special code in the COBOL program similar to the one listed

below. The following code has to be executed before the first OPEN statement

has been executed.

1Configuration File Variables 6

© Copyright 1995-2025 CASEMaker Inc. 6-7

CALL "DCI_SETENV" USING "DCI_DATABASE" , "DBMaker_Test"

 Example 3

You can use DCI_DATABASE to connect to more than one database and

dynamically switch between databases to access a table on a different

database.
* connect to DBNAME to access idx-1-file

CALL "DCI_SETENV" USING "DCI_DATABASE" "DBNAME"

...

open output idx-1-file

...

* connect to DCIDB to access idx-2-file CALL "DCI_SETENV" USING "DCI_DATABASE"

"DCIDB"

...

open output idx-2-file

* to switch dynamically to DBNAME connection

CALL "DCI_SETENV" USING "DCI_DATABASE" "DBNAME"

close idx-1-file

...

DCI_DATE_CUTOFF

This variable uses a two-digit value and establishes the two-digit years that

will be interpreted by the program as being in the 20th Century and the two-

digit years that will be interpreted by the program as being in the 21st

Century.

The default value for the DCI_DATE_CUTOFF is 20. In this case, 2000 will be

added to the two-digit years that are smaller than "20" (or whatever value you

give to this variable), and will therefore make them part of the 21st Century.

1900 will be added to the two-digit years that are larger than "20" (or

whatever value you give to this variable), making them part of the 20th

Century. A COBOL date like 99/10/10 will be translated into 1999/10/10. A

COBOL date like 00/02/12 will be translated into 2000/02/12.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 6-8

DCI_DB_MAP

This variable is used to map files in different directories as tables of different

databases. Refer to Mapping to Multiple Databases for more info.

DCI_DEFAULT_TABLESPACEThis variable is used to set the default

tablespace where new tables are to be stored. The tablespace specified must

already exist in the database. If no tablespace is specified by this variable,

then new tables will be created in the default user tablespace.

DCI_DEFAULT_CACHE Variables

By default, DCI pre-reads data into the client data buffer to reduce

client/server network traffic. The default maximum pre-read buffer is the

smaller of 8kb ÷ (record size) or 5 records.

It is possible that user's application will read a small table and only read a few

records which are less than 8kb ÷ (record size). For example, for a table with

an average record size of 20 bytes and a total of 1,000 records, DBMaker will

be able to read about 400 records (8kb ÷ 20) but the user's application may

only read 4 or 5 records then call the START statement again. In this case, set

the following variable to reduce the cache size and improve performance.

Consider the application and data's behavior carefully when using these

variables or it may increase network traffic and cause reductions in

performance.

The following are the three DCI_CACHE variables to set in the DCI_CONFIG file:

• DCI_DEFAULT_CACHE_START – sets the first read records to cache for

START or READ. The default is the maximum of 8kb ÷ (record size) or 5

records.

• DCI_DEFAULT_CACHE_NEXT – sets the next read records after the first

cached record for START or READ have been read or discarded. The

default is the maximum of 8kb ÷ (record size) or 5 records.

1Configuration File Variables 6

© Copyright 1995-2025 CASEMaker Inc. 6-9

• DCI_DEFAULT_CACHE_PREV – sets the read records for caching the

previous records after the first cache record for START or READ have

been read or discarded.

The default is DCI_DEFAULT_CACHE_NEXT/2.

Setting these variables in the DCI_CONFIG will affect all the tables in the user's

application.

 Example

DCI_DEFAULT_CACHE_START 10

DCI_DEFAULT_CACHE_NEXT 10

DCI_DEFAULT_CACHE_PREV 5

DCI_DEFAULT_USER

DCI_DEFAULT_USER is used when user want to specify different default user

for OPEN OUTPUT/I-O/INPUT when create table. The default user is

DCI_LOGIN if user did not specify DCI_DEFAULT_USER.

 Example

If user want to open DB_USER2's table and login user is DB_USER1, user can

set DCI_CONFIG as follows:
call "DCI_SETENV" using "DCI_LOGIN" "DB_USER1"

call "DCI_SETENV" using "DCI_DEFAULT_USER" "DB_USER2"

DCI_DUPLICATE_CONNECTION

DCI_DUPLICATE_CONNECTION is used to acquire a lock when opening the

same table and locking the same record two times in the same COBOL

application by opening the same table using the same COBOL process but with

a different database connection.

Set DCI_DUPLICATE_CONNECTION 1 in DCI_CONFIG, when a table is opened in

the default connection and open the same table again, it will open another

connection for this table. So the table will be opened in different connection,

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 6-10

and "commit" does not affect each other, but it is also possible to cause a

locked state because of the two connections.

The default value is off (0).

 Example

To allow a COBOL application to acquire a lock on a table using different

database connections:
DCI_DUPLICATION_CONNECTION 1

The following application will open table TB1 and tableTB3, then open TB1

again and write TB1.
 IDENTIFICATION DIVISION.

 PROGRAM-ID. dupdci.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SPECIAL-NAMES.

 DECIMAL-POINT IS COMMA.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

 SELECT ARQDCI

 ASSIGN TO "TB1"

 ORGANIZATION IS INDEXED

 ACCESS MODE IS DYNAMIC

 LOCK MODE IS AUTOMATIC

 RECORD KEY IS DCI-CODIGO

 ALTERNATE RECORD KEY IS DCI-DESCRICAO WITH DUPLICATES

 FILE STATUS IS STAT-ARQDCI.

 SELECT ARQDCI2

 ASSIGN TO "TB1"

 ORGANIZATION IS INDEXED

 ACCESS MODE IS DYNAMIC

 LOCK MODE IS AUTOMATIC

 RECORD KEY IS DCI2-CODIGO

 ALTERNATE RECORD KEY IS DCI2-DESCRICAO WITH DUPLICATES

 FILE STATUS IS STAT-ARQDCI2.

 SELECT ARQDCI3

1Configuration File Variables 6

© Copyright 1995-2025 CASEMaker Inc. 6-11

 ASSIGN TO "TB3"

 ORGANIZATION IS INDEXED

 ACCESS MODE IS DYNAMIC

 LOCK MODE IS AUTOMATIC

 RECORD KEY IS DCI3-CODIGO

 ALTERNATE RECORD KEY IS DCI3-DESCRICAO WITH DUPLICATES

 FILE STATUS IS STAT-ARQDCI3.

 DATA DIVISION.

 FILE SECTION.

 FD ARQDCI.

 01 REG-ARQDCI.

 02 DCI-CODIGO PIC 99.

 02 DCI-DESCRICAO PIC X(30).

 FD ARQDCI2.

 01 REG-ARQDCI2.

 02 DCI2-CODIGO PIC 99.

 02 DCI2-DESCRICAO PIC X(30).

 FD ARQDCI3.

 01 REG-ARQDCI3.

 02 DCI3-CODIGO PIC 99.

 02 DCI3-DESCRICAO PIC X(30).

 WORKING-STORAGE SECTION.

 01 STAT-ARQDCI PIC X(02).

 88 valid-arqdci value is "00" thru "09".

 01 STAT-ARQDCI2 PIC X(02).

 88 valid-arqdci2 value is "00" thru "09".

 01 STAT-ARQDCI3 PIC X(02).

 88 valid-arqdci3 value is "00" thru "09".

 01 W-OP PIC 9.

 77 w7 pic x(20).

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 6-12

 PROCEDURE DIVISION.

 INICIO.

 OPEN OUTPUT ARQDCI

 CLOSE ARQDCI.

 OPEN I-O ARQDCI.

 OPEN OUTPUT ARQDCI3

 CLOSE ARQDCI3.

 OPEN I-O ARQDCI3.

 DISPLAY "OPEN TB1 and TB3 at 1 conn: CHECK SYSUSER AT dmSQL"

 ACCEPT W-OP

 OPEN INPUT ARQDCI2.

 DISPLAY "OPEN TB1 again at 2nd conn: CHECK SYSUSER AT dmSQL"

 ACCEPT W-OP

 INITIALIZE REG-ARQDCI

 MOVE 1 TO DCI-CODIGO

 MOVE 'aaaaa' TO DCI-DESCRICAO.

 WRITE REG-ARQDCI.

 DISPLAY "WRITE TB1 at 1st conn: CHECK SYSUSER AT dmSQL"

 ACCEPT W-OP

 CLOSE ARQDCI

 CLOSE ARQDCI2

 CLOSE ARQDCI3

 EXIT PROGRAM

 STOP RUN.

Users can check the commands executed by duplicate connections by

selecting system table SYSUSER. The following shows the result from

SYSUSER in different steps from the example above.

1. After table TB1 and TB3 are opened first time:
dmSQL> select CONNECTION_ID, CAST(USER_NAME as char(20)) as USER_NAME,

CAST(SQL_CMD as char(50)) AS SQL_CMD FROM SYSUSER;

1Configuration File Variables 6

© Copyright 1995-2025 CASEMaker Inc. 6-13

===

 18424 SYSADM [EXIT] DCI OPEN TB3 (client: 18421)

 18393 SYSADM [EXEC] select CONNECTION_ID, CAST(USER_NAME

2. After table TB1 is opened second time:
===

 18430 SYSADM (DCITB_18424) [EXIT] DCI OPEN TB1 (client: 18421)

 18424 SYSADM [EXIT] DCI OPEN TB3 (client: 18421)

 18393 SYSADM [EXEC] select CONNECTION_ID, CAST(USER_NAME

3. After table TB1 is written:
===

 18430 SYSADM (DCITB_18424) [EXIT] DCI OPEN TB1 (client: 18421)

 18424 SYSADM [EXIT] DCI WRITE TB1 (client: 18421)

 18393 SYSADM [EXEC] select CONNECTION_ID, CAST(USER_NAME

DCI_GET_EDGE_DATES

DCI_SET_EDGE_DATE is used to specify the value to be displayed if a user

enters a low/high value in the DATE field. When a user inputs low/high value

for a DATE field in a COBOL program, for example, by entering

00010101/99991231, the date will be displayed using COBOL's low/high

value 00000000/99999999. When this variable is used, the low/high value of

the DATE field will be displayed using the database's low/high value

00010101/99991231. This rule is also applied when the DATE field is a part

of a key. The default value is off.

 Syntax

The following line must be added in the dci.cfg file:
DCI_GET_EDGE_DATES 1

DCI_GRANT_ON_OUTPUT

This new option allows you to specify the permission on the table during table

creation (OPEN OUTPUT).

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 6-14

 Example

DCI_GRANT_ON_OUTPUT user1=SELECT

DCI_GRANT_ON_OUTPUT user2=SELECT,INSERT,UPDATE

After open output, user1 will be able to select from the table, user2 will be

able to select and modify data.

DCI_IGNORE_MAX_BUFFER_LENGTH

This variable is used to ignore the setting of DCI_MAX_BUFFER_LENGTH

value. It will not split the table when the record length > 32k. The default is

off.

DCI_INCLUDE

This variable permits the inclusion an additional DCI_CONFIG file. It works as

the COBOL COPY statement, and allows you to define more complex

configurations.

 Example

DCI_INCLUDE /etc/generic_dci_config

DCI_INV_DATE

This variable is used to establish an invalid date (like 2000/02/31) in order to

avoid problems that can occur when an incorrect date format has been

written to the database. The default for this variable is 99991230 (December

30th, 9999).

DCI_LOGFILE

This variable specifies the pathname of the DCI log file used to write all of the

I/O operations executed by the interface. The dci_trace.log log file, stored in

the /tmp directory is used for debugging purposes. The use of a log file slows

1Configuration File Variables 6

© Copyright 1995-2025 CASEMaker Inc. 6-15

down the performance of DCI. For this reason it is recommended not add this

variable in the configuration file unless deemed absolutely necessary.

 Example

A sample log file entry in the Config.ini file:
DCI_LOGFILE /tmp/dci_trace.log

DCI_LOGIN

The variable DCI_LOGIN allows specification of a username for connecting to

the database system. It has no default value. Therefore, if no username is

specified, no login will be used.

The username specified by the DCI_LOGIN variable should have RESOURCE

authority or higher with the database. Additionally, the user should have

permission with existing data tables. New users may be created using the

JDBA Tool or dmSQL.

NOTE For more detailed information on creating new users, refer to the

JDBA Tool User’s Guide or the Database Administrator’s Guide.

 Example

A sample username entry, JOHNDOE, made in the Config.cfg file:
 DCI_LOGIN JOHNDOE

DCI_JULIAN_BASE_DATE

This variable, used with the DATE directive, sets the base date for Julian date

calculations. It utilizes the format YYYYMMDD. The default value for this

variable is January 1st, 1 AD.

One usage of this variable could be a COBOL program that uses dates from

1850 onwards. These dates can be stored in a database by setting the DATE

directive to $XFD DATE = JJJJJJ (the date field must have the same number of

characters) and setting the DCI configuration variable

DCI_JULIAN_BASE_DATE to 18500101.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 6-16

DCI_LOGTRACE

This variable sets different levels for the trace log.

• 0: no trace

• 1: connect trace

• 2: record i/o trace

• 3: full trace

• 4: internal debug trace

DCI_MAPPING

This variable is used to associate particular filenames with a specific XFD in

the DCI system. In this way, one XFD can be used in conjunction with multiple

files. A "pattern" can be made up of any valid filename characters. It may

include the wildcard "*" symbol, which stands for any number of characters,

or the question mark "?", which stands for a single occurrence of any one

character and can be used multiple times.

 Syntax

DCI_MAPPING [pattern = base-xfd-name] ...

 Example 1

The pattern "CUST*1" and base-XFD-name "CUSTOMER" will cause filenames

such as "CUST01", "CUST001", "CUST0001" and "CUST00001" to be associated

with the XFD "customer.XFD".
DCI_MAPPING CUST*1=CUSTOMER ORD*=ORDER "ord cli*=ordcli"

 Example 2

The pattern "CUST????" and base-XFD-name "CUST" will cause filenames such

as "CUSTOMER" and "CUST0001" to be associated with the XFD "cust.XFD".
DCI_MAPPING CUST????=CUST

1Configuration File Variables 6

© Copyright 1995-2025 CASEMaker Inc. 6-17

DCI_MAX_ATTRS_PER_TABLE

A DBMaker table may have up to 2000 columns. A COBOL file with more than

2000 fields will not be able to map all fields to columns in the table. DCI

provides the DCI_MAX_ATTRS_PER_TABLE configuration variable to define

the number of fields at which the table will split into two or more distinct

tables. The resulting tables must have unique names, so DCI appends the table

name with an underscore (_) character followed by letters in consecutive

order (A, B, C, …).

 Example 1

A COBOL file has 300 fields, and the following statement:
SELECT FILENAME ASSIGN TO "customer"

 Syntax

The following line must be added in the dci.cfg file:
DCI_MAX_ATTRS_PER_TABLE = 100.

 Example 2

Three tables will be created with the following names:
customer_a

customer_b

customer_c

DCI_MAX_BUFFER_LENGTH

DCI_MAX_BUFFER_LENGTH is used to split a COBOL data record into multiple

database tables, similar to the function performed by DCI_MAX_ATTRS_PER_

TABLE. However, the cutoff value used to determine where a table will be split

is determined by buffer length. The default value is 32640.

 Example 1

A COBOL record size contains 9000 bytes of data, and the following statement:
SELECT FILENAME ASSIGN TO "customer"

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 6-18

 Syntax:

The following line must be added in the dci.cfg file:
DCI_MAX_BUFFER_LENGTH 3000

 Example 2

Three tables will be created with the following names:
customer_a

customer_b

customer_c

DCI_MAX_DATE

This variable is used to establish a high-value date in order to avoid problems

in cases where invalid dates have been incorrectly written to the database.

The default for this variable is 99991231 (December 31st, 9999).

DCI_MIN_DATE

This variable is used to establish a low-value, 0 or space date in order to avoid

problems that can occur when invalid dates have been incorrectly written to

the database. The default for this variable is 00010101 (January 1st, 1AD).

DCI_NULL_DATE

When DCI writes a date field with this value it will write NULL, and when DCI

reads a date with a NULL value, it will return DCI_NULL_DATE to a COBOL

program.

DCI_NULL_ON_ILLEGAL_DATE

DCI_NULL_ON_ILLEGAL_DATE determines how COBOL data that is considered

illegal by the database will be converted before it is stored. The value 1 causes

all illegal data (except key fields) to be converted to null before it is stored.

The value 0 (default value) causes the following conversions to occur:

1Configuration File Variables 6

© Copyright 1995-2025 CASEMaker Inc. 6-19

• Illegal LOW-VALUES: stored as the lowest possible value (0 or - 99999...)

or DCI_MIN_DATE default value.

• Illegal HIGH-VALUES: stored as the highest possible value (99999...) or

DCI_MAX_DATE default value.

• Illegal SPACES: stored as zero (or DCI_MIN_DATE, in the case of a date

field).

• Illegal DATE values: stored as DCI_INV_DATE default value.

• Illegal TIME: stored as DCI_INV_DATE default value.

• Illegal data in key fields is always converted, regardless of the value of this

configuration variable.

DCI_NULL_ON_MIN_DATE

With this variable set to 1 the following action occurs. When a COBOL

program writes a value of 0 to a DATE field, the value is stored in the

database as NULL. Likewise, when a NULL value is read from the database

the COBOL FD will be 0.

DCI_NULL_ON_ZERO_NUMBER

DCI_NULL_ON_ZERO_NUMBER is used to specify whether to insert NULL value

into database for numeric type and its value is zero.

The default value is off (0).

 Example

When move 0 to col1, the col1's value should be set to NULL when WRITE

record.

In DCI_CONFIG sets as following:
DCI_NULL_ON_ZERO_NUMBER 1

COBOL program
05 col1 pic 9(5) value zeros.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 6-20

move 0 to col1

WRITE table_record

DCI_NULL_ON_SPACE_CHAR

DCI_NULL_ON_SPACE_CHAR is used to specify whether to insert NULL value

into database for CHAR type and its value is space.

 Example

When move space to col1, the col1's value should be set to NULL when WRITE

record.

In DCI_CONFIG sets as following:
DCI_NULL_ON_SPACE_CHAR 1

COBOL program
05 col1 pic 9(5) value zeros.

move spaces to col1

WRITE table_record

DCI_PASSWD

Once a username has been specified via the DCI_LOGIN variable, a database

account is associated with it. A password needs to be designated to this

database account. This can be done using the variable DCI_PASSWD.

 Example 1

If the password you want to designate to the database account is

SUPERVISOR, the following must be specified in the configuration file:
DCI_PASSWD SUPERVISOR

 Example 2

A password can also be accepted from a user upon execution of the program.

This allows for greater reliability. To do this, the DCI_PASSWD variable must

be set according to the response:

1Configuration File Variables 6

© Copyright 1995-2025 CASEMaker Inc. 6-21

ACCEPT RESPONSE NO-ECHO.

CALL "DCI_SETENV" USING "DCI_PASSWD" , RESPONSE.

In this case, however, you should furnish a native API to call in order to read

and write environment variables,

 Syntax 1

This statement can be used in the COBOL program to write or update the

environment variable.
 CALL "DCI_SETENV" USING "environment variable", value.

 Syntax 2

This statement can be used in the COBOL program to read the environment

variable.
 CALL "DCI_GETENV" USING "environment variable", value.

DCI_RESET_CHARTOBLOB_LENGTH

DCI_RESET_CHARTOBLOB_LENGTH is used to specify the max length to be

declared as CHAR type.

The default value is off (0).

When setting DCI_RESET_CHARTOBLOB_LENGTH to a positive integer,

any field specified with PIC X(N) and N >=

DCI_RESET_CHARTOBLOB_LENGTH, its column type will be long

varbinary(N).

 Example

In DCI_CONFIG sets as following:
DCI_RESET_CHARTOBLOB_LENGTH 10000

COBOL program
FD file1.

 01 file1-record.

 03 col-key pic 9(3).

 03 col-data pic x(10).

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 6-22

 03 col-blob pic x(10000).

With OPEN OUTPUT DCI creates a table as follows:

 TABLE FILE1 (COL_KEY NUMERIC(3), COL_DATA CHAR(10), COL_BLOB

BLOB)

DCI_STORAGE_CONVENTION

This variable sets the COBOL storage convention. There are four value types

currently supported by DBMaker.

DCI

Selects the IBM storage convention. It is compatible with IBM COBOL, as well

as with several other COBOL versions including RM/COBOL-85. It is also

compatible with the X/Open COBOL standard.

DCM

Selects the Micro Focus storage convention. It is compatible with Micro Focus

COBOL when the Micro Focus "ASCII" sign-storage option is used (this is the

Micro Focus default).

DCN

Causes a different numeric format to be used. The format is the same as the

one used when the "-DCI" option is used, except that positive COMP-3 items

use "x0B" as the positive sign value instead of "x0C". This option is compatible

with NCR COBOL.

DCA

Selects the ACUCOBOL-GT storage convention. It is the default setting. This

convention is also compatible with data produced by RM/COBOL (not

RM/COBOL-85) and previous versions of ACUCOBOL-GT.

1Configuration File Variables 6

© Copyright 1995-2025 CASEMaker Inc. 6-23

DCI_TABLE_CACHE

This function is to support DCI_TABLE_CACHE tablename=start,next,prev for

specify cache with different table. This keyword DCI_TABLE_CACHE, can

refer to DCI_MAPPING feature.

 Syntax:

DCI_TABLE_CACHE tabname=start,next,prev

 Example

In DCI_CONFIG set as following. Checking config's link list before START or

READ, if accorded with table name or pattern, then call

DBM_SET_TABLE_CACHE.
DCI_TABLE_CACHE tab*=10,10,5

DCI_TABLE_CACHE employee=20,20,10

It is not only one setting, so cannot support DCI_SETENV or DCI_GETENV.

DCI_TABLE_FILLFACTOR

DCI_TABLE_FILLFACTOR specified the fillfactor for creating table.

 Example

 To specify fillfactor 90 for table emp_tab1 and emp_tab2. Add the following

line in DCI_CONFIG file.
DCI_TABLE_FILLFACTOR emp_tab*=90

DCI_TABLESPACE

This allows you to define in which tablespace to create a table. It also works

with wildcards. It is important only when a table is first created. Once the

table exists, DCI does not monitor the value of this variable.

 Example 1

You want to create the customer table in tablespace tbs1:
DCI_TABLESPACE customer=tbs1

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 6-24

 Example 2

You want to create all tables that begin with cust in tablespace tbs1.
DCI_TABLESPACE cust*=tbs1

DCI_TABLESPACE_IDX

Use this keyword to specify the index tablespace when creating an index. If

the user does not specify this keyword, the default tablespace for creating

the index will be the same as the table's tablespace.

 Syntax

DCI_TABLESPACE_IDX table_pat=tablespace_name

 Example

DCI_TABLESPACE_IDX tab*=TS1

DCI_USER_TABLESPACE

DCI_USER_TABLESPACE is used to specify tablespace for create table for

user/schema.

 Syntax

DCI_USER_TABLESPACE USER_NAME=TABLESPACE_NAME"

 Example

We try to map all tables from USER1 to Tablespace TS1 and all tables that

start with CUST* to TS2.
DCI_USER_TABLESPACE USER1=TS1

DCI_TABLESPACE CUST*=TS2

About the priority for creating table in tablespace is listed as followings:

• Check if DCI_TABLESPACE specified for table_name=tablespace_name, if

matched, then create table in specified tablespace.

1Configuration File Variables 6

© Copyright 1995-2025 CASEMaker Inc. 6-25

• Check if DCI_USER_TABLESPACE specified for

user_name=tablespace_name, if matched, then create table in specified

tablespace.

• Check if DCI_DEFAULT_TABLESPACE specified and create table in

specified tablespace.

DCI_USEDIR_LEVEL

If this variable is set > 0, use the directory in addition to the name of the table.

 Example 1

The following line is equal to: /usr/test/01/clients 01clients
DCI_USEDIR_LEVEL 1

 Example 2

The following line is equal to: /usr/test/01/clients test01clients
DCI_USEDIR_LEVEL 2

 Example 3

The following line is equal to: /usr/test/01/clients usrtest01clients
DCI_USEDIR_LEVEL 3

DCI_USER_PATH

When DCI looks for a file or files, the variable DCI_USER_PATH allows for

specification of a username, or names. The user argument can be a period (.)

with regard to the files, or the name of a user on the system.

 Syntax

DCI_USER_PATH user1 [user2] [user3] .

The type of OPEN statement issued for a file will determine the results of this

setting.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 6-26

OPEN

STATEMENT
DCI_USER_PATH DCI SEARCH

SEQUENCE
RESULT

OPEN INPUT or
OPEN I/O

Yes 1-list of users in
USER_PATH

2-the current user

The first valid file
will be opened.

OPEN INPUT or
OPEN I/O

No The user
associated with
DCI_LOGIN.

The first file with
a valid user/file-
name will be
opened.

OPEN OUTPUT Yes or no Doesn’t search for
a user.

A new table will
be made for the
name associated
with DCI_LOGIN.

Figure 6-1 Types of OPEN Statements

DCI_XFD_INFO_OFF

This feature is used to turn off DBM_SET_XFD_INFO(). This option was

implemented to speed OPEN of large numbers of fields, tables.

We have supported to set XFD_INFO_OFF dynamic.

 Example

CALL "DCI_SETENV" USING "DCI_XFD_INFO_OFF" "1"

DCI_XFDPATH

DCI_XFDPATH is used to specify the name of the directory where data

dictionaries are stored. The default value is the current directory.

 Example 1

Include the following entry in the configuration file in order to store data

dictionaries in the directory /usr/dbmaker/dictionaries.
DCI_XFDPATH /usr/dbmaker/dictionaries

1Configuration File Variables 6

© Copyright 1995-2025 CASEMaker Inc. 6-27

 Example 2

If it is necessary to specify more than one path, different directories have to be

separated by spaces.
DCI_XFDPATH /usr/dbmaker/dictionaries /usr/dbmaker/dictionaries1

 Example 3

In a WIN-32 environment, "embedded spaces" can be specified using double-

quotes.
DCI_XFDPATH c:\tmp\xfdlist "c:\my folder with space\xfdlist"

DCI_XML_XFD

This variable is set to 1 to indicate the DCI runtime need to use the ACUCOBOL

XML format XFD file. The default is 0 for users are using old xfd format which

is made by previous ACUCOBOL compiler or when ACUCOBOL users compile

their COBOL program with –Fx3 option.

Because ACUCOBOL-GT compiler does not support some XFD syntax like the

"$XFD COMMENT directive" syntax in the XML format, it is not recommended

for users to use the XML format if they want to use the related syntax in their

COBOL

 Example 1

The following syntax listed in Chapter 4.2 is not supported.
$XFD COMMENT DCI SERIAL n directive

$XFD COMMENT DCI COBTRIGGER Directive

$XFD COMMENT Directive

$XFD COMMENT DCI SPLIT

DCI_VARCHAR

With this variable set to 1 the following action occurs: When a COBOL

program creates a new table (trough OPEN OUTPUT verb) all fields that were

created as CHAR will become VARCHAR.

1DCI Functions 7

© Copyright 1995-2025 CASEMaker Inc. 7-1

7 DCI Functions

This section lists the DCI functions that could be called in the COBOL program.

To enable these functions, the user must add these functions in the sub85.c

and rebuild the DCI runtime.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 7-2

7.1 Calling DCI functions

Add this to your COBOL program to call these DCI functions:
CALL "dci_function_name" USING variable [, variable, ...]

DCI_SETENV

This function writes or updates the environment variable.

 Syntax

CALL "DCI_SETENV" USING "environment variable", value

 Example

call "DCI_SETENV" using "DCI_DATABASE" , "DBNAME"

DCI_GETENV

This function reads the environment variable.

 Syntax

CALL "DCI_GETENV" USING "environment variable", variable

 Example

CALL "DCI_GETENV" USING "DCI_DATABASE", ws_dci_database

DCI_DISCONNECT

This function disconnects a database connection.

 Example 1

If there is only one connection in the COBOL program, use the following code

to disconnect from the database.
CALL "DCI_DISCONNECT".

1DCI Functions 7

© Copyright 1995-2025 CASEMaker Inc. 7-3

 Example 2

If there is more than one connection the COBOL program, use the following

code to disconnect a specific database.
CALL "DCI_DISCONNECT" USING "DBNAME"

DCI_GET_TABLE_NAME

This function gets the table name of the passed COBOL name (It's not always

so immediate to know the effective table name, because there can be some

manipulation in these cases: XFD WHEN ... TABLENAME.).
CALL "DCI_GET_TABLE_NAME" USING ws-filename, ws-dci-file-name

DCI_SET_TABLE_CACHE

This function dynamically changes the cache for tables set these variables

before START or READ statements.

 Example

…

WORKING-STORAGE SECTION.

 01 CACHE-START PIC 9(5) VALUE 10.

 01 CACHE-NEXT PIC 9(5) VALUE 20.

 01 CACHE-PREV PIC 9(5) VALUE 30.

…

PROCEDURE DIVISION.

 OPEN INPUT IDX-1-FILE

 MOVE SPACES TO IDX-1-KEY

 CALL "DCI_SET_TABLE_CACHE" USING CACHE-START

 CACHE-NEXT

 CACHE-PREV

 START IDX-1-FILE KEY IS NOT LESS IDX-1-KEY.

 PERFORM VARYING IND FROM 1 BY 1 UNTIL IND = 10000

 READ IDX-1-FILE NEXT AT END EXIT PERFORM END-READ

 DISPLAY IND AT 0101

 END-PERFORM

 CLOSE IDX-1-FILE

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 7-4

DCI_BLOB_ERROR

This function gets the error after calling DCI_BLOB_GET or DCI_BLOB_PUT.

 Example

 working-storage section.

 77 BLOB-ERROR-ERRNO pic S9(4) COMP-5.

 77 BLOB-ERROR-INT-ERRNO pic S9(4) COMP-5.

 PROCEDURE DIVISION.

 CALL "DCI_BLOB_ERROR" USING BLOB-ERROR-ERRNO

 BLOB-ERROR-INT-ERRNO

 DISPLAY "BLOB-ERROR-ERRNO=" BLOB-ERROR-ERRNO.

 DISPLAY "BLOB-ERROR-INT-ERRNO=" BLOB-ERROR-INT-ERRNO.

DCI_BLOB_GET

This function enables users to more effectively use BLOB data in a COBOL

program. By using the DCI_BLOB_GET command you can quickly and

efficiently access BLOB data using COBOL. When using the DCI_BLOB_GET

command you must follow the rules listed below:

• The user’s table must have a BLOB (long varchar/long varbinary) data

type

• Users cannot set the field with BLOB type in the COBOL FD

• Users can only use the DCI_BLOB_GET command after the READ, READ

NEXT or READ PREVIOUS command

 Example

A user creates a table by:
CREATE TABLE BLOBTB (

 SB_CODCLI char(8),

 SB_PROG SERIAL,

 IL_BLOB LONG VARBINARY,

 PRIMARY KEY ("sb_codcli")) LOCK MODE ROW NOCACHE;

1DCI Functions 7

© Copyright 1995-2025 CASEMaker Inc. 7-5

The following gives a practical application of the use of the DCI_BLOB_GET in

the COBOL program.
 identification division.

 program-id. blobtb.

 date-written.

 remarks.

 environment division.

 input-output section.

 file-control.

 SELECT BLOBTB ASSIGN TO RANDOM, "BLOBTB"

 ORGANIZATION IS INDEXED

 ACCESS IS DYNAMIC

 FILE STATUS IS I-O-STATUS

 RECORD KEY IS SB-CODCLI.

 ==

 data division.

 file section.

 FD BLOBTB.

 01 SB-RECORD.

 03 SB-CODCLI PIC X(8).

 03 SB-PROG PIC S9(9) COMP-5.

 ==

 working-storage section.

 77 I-O-STATUS pic xx.

 77 BLOB-ERROR-ERRNO pic S9(4) COMP-5.

 77 BLOB-ERROR-INT-ERRNO pic S9(4) COMP-5.

procedure division.

main.

 open i-o blobtb

 initialize sb-record.

 READ blobtb next.

 CALL "DCI_BLOB_GET" USING "il_blob" "laecopy.bmp" 1.

 CALL "DCI_BLOB_ERROR" USIG BLOB-ERROR-ERRNO

 BLOB-ERROR-INT-ERRNO

 DISPLAY "BLOB-ERROR-ERRNO=" BLOB-ERROR-ERRNO.

 DISPLAY "BLOB-ERROR-INT-ERRNO=" BLOB-ERROR-INT-ERRNO.

 DISPLAY "SB-CODCLI=" SB-CODCLI.

 DISPLAY "SB-PROG=" SB-PROG.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 7-6

 close blobtb.

 ACCEPT OMITTED.

 stop run.

DCI_BLOB_PUT

This function enables users to more effectively use BLOB data in a COBOL

program. Using the DCI_BLOB_PUT command you can insert data into a BLOB.

When using the DCI_BLOB_PUT command you must follow the rules listed

below:

• The user’s table must have a BLOB (long varchar/long varbinary) data

type.

• Users cannot set the field with BLOB type in the COBOL FD.

• Users can only call the DCI_BLOB_PUT command before a WRITE or

REWRITE command.

• If users do not call DCI_BLOB_PUT before a WRITE statement, the default

value will be inserted in the blob column.

• If users do not call DCI_BLOB_PUT before REWRITE statement, the blob

column will not be updated.

 Example

The following gives a practical application of the use of the DCI_BLOB_PUT in

the COBOL program.

First the user creates a table:
CREATE TABLE BLOBTB (

 SB_CODCLI char(8),

 SB_PROG SERIAL,

 IL_BLOB LONG VARBINARY,

 PRIMARY KEY ("sb_codcli")) LOCK MODE ROW NOCACHE;

Once the table is created the user continues with the following.
identification division.

 program-id. blobtb.

1DCI Functions 7

© Copyright 1995-2025 CASEMaker Inc. 7-7

 date-written.

 remarks.

 environment division.

 input-output section.

 file-control.

 SELECT BLOBTB ASSIGN TO RANDOM, "BLOBTB"

 ORGANIZATION IS INDEXED

 ACCESS IS DYNAMIC

 FILE STATUS IS I-O-STATUS

 RECORD KEY IS SB-CODCLI.

 ==

 data division.

 file section.

 FD BLOBTB.

 01 SB-RECORD.

 03 SB-CODCLI PIC X(8).

 03 SB-PROG PIC S9(9) COMP-5.

 ==

 working-storage section.

 77 I-O-STATUS pic xx.

 77 BLOB-ERROR-ERRNO pic S9(4) COMP-5.

77 BLOB-ERROR-INT-ERRNO pic S9(4) COMP-5.

procedure division.

main.

 open i-o blobtb

 move "AAAAAAAA" TO SB-CODCLI.

 move 0 TO SB-PROG.

 CALL "DCI_BLOB_PUT" USING "il_blob" "laetitia.bmp".

 WRITE SB-RECORD.

 close blobtb.

 ACCEPT OMITTED.

 stop run.

DCI_GET_TABLE_SERIAL_VALUE

This function gets the serial value after a WRITE statement.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 7-8

 Example

FD SERIALTB.

 01 SB-RECORD.

 03 SB-CODCLI PIC X(8).

$XFD COMMENT dci serial

 03 SB-PROG PIC S9(9) COMP-5.

working-storage section.

77 I-O-STATUS pic xx.

77 SERIAL-NUM pic S9(9) COMP-5.

procedure division.

main.

 open i-o serialtb

 move "AAAAAAAA" TO SB-CODCLI.

 move 0 TO SB-PROG.

 WRITE SB-RECORD.

 CALL "DCI_GET_TABLE_SERIAL_VALUE" USING SERIAL-NUM.

 DISPLAY "SERIAL-NUM=" SERIAL-NUM.

DCI_FREE_XFD

This function is used to purge the XFD image DCI keeps in cache. This can be

useful to reload a XFD that changed after a table has already been opened by

this connection.
CALL "DCI_FREE_XFD"

DCI_UNLOAD_CONFIG

This function is used to unload the current configuration. Then you can create

a new configuration by calling DCI_SETENV. Very useful in ThinClient

environment.
CALL "DCI_UNLOAD_CONFIG"

1COBOL Conversions 8

© Copyright 1995-2025 CASEMaker Inc. 8-1

8 COBOL Conversions

Transactions are enforced in DCI during conversions. All I/O operations are

done using transactions. DCI sets AUTOCOMMIT off and manages DBMaker

transactions to make record changes for users available. DCI fully supports

COBOL transaction statements like START TRANSACTION,

COMMIT/ROLLBACK TRANSACTION.

DCI doesn’t support record encryption, record compression, or the alternate

collating sequence. If these options are included in code, they will be

disregarded. DCI also doesn’t support the "P" PICture edit function in the XFD

data definition and all file names are converted to lowercase.

DBMAKER DATABASE SETTINGS RANGE LIMIT

Indexed key size. 4000

Number of columns per key. 32

Length for a CHAR field. 32640

Simultaneous RDBMS connections. 4800

Character for column names. 128

Database tables simultaneously open by a single
process.

256

Figure 8-1 DBMaker Database Settings Range Limits table

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 8-2

8.1 Using Special Directives

DBMaker can use the same sort or retrieval sequence as the Vision file system,

but it requires that a BINARY directive be placed before each key field

containing signed numeric data. High and low values can create complications

in key fields.

The DBMaker OID, VARCHAR(size), and FILE data types are not currently

supported with special directives.

DBMAKER DATA TYPE DIRECTIVE

DATE Using XFD DATE

TIME Using XFD DATE

TIMESTAMP Using XFD DATE

LONGVARCHAR Using XFD VAR-LENGH

LONGVARBINARY Using XFD VAR-LENGH*

BINARY Using XFD BINARY

SERIAL Using XFD COMMENT DCI SERIAL

Figure 8-2 DBMaker Data Types Supported using Special Directives

1COBOL Conversions 8

© Copyright 1995-2025 CASEMaker Inc. 8-3

8.2 Mapping COBOL Data Types

DCI establishes what it considers to be the best match for COBOL data types in

the creation of all columns in a DBMaker database table. Any data the COBOL

date type can contain can also be contained in the database column. The XFD

directives that have been specified will be checked first.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 8-4

COBOL DBMAKER COBOL DBMAKER

9(1-4) SMALLINT 9(5-9) comp-4 INTEGER

9(5-9) INTEGER 9(10-18) comp-4 DECIMAL(10-18)

9(10-18) DECIMAL(10-18) 9(1-4) comp-5 SMALLINT

s9(1-4) SMALLINT 9(5-10) comp-5 DECIMAL(10)

s9(5-9) INTEGER s9(1-4) comp-5 SMALLINT

s9(10-18 DECIMAL(10-18) s9(5-10) comp-5 DECIMAL(10)

9(n) comp-1 n (1-
17)

INTEGER 9(1-4) comp-6 SMALLINT

s9(n) comp-1 n
(1-17)

INTEGER 9(5-9) comp-6 INTEGER

9(1-4) comp-2 SMALLINT 9(10-18) comp-6 DECIMAL(10-18)

9(5-9) comp-2 INTEGER s9(1-4) comp-6 SMALLINT

9(10-18) comp-2 DECIMAL(10-18) s9(5-9) comp-6 INTEGER

s9(1-4) comp-2 SMALLINT s9(10-18) comp-6 DECIMAL(10-18)

s9(5-9) comp-2 INTEGER signed-short SMALLINT

s9(10-18) comp-2 DECIMAL(10-18) unsigned-short SMALLINT

9(1-4) comp-3 SMALLINT signed-int CHAR(10)

9(5-9) comp-3 INTEGER unsigned-int CHAR(10)

9(10-18) comp-3 DECIMAL(10-18) signed-long CHAR(18)

s9(1-4) comp-3 SMALLINT unsigned-long CHAR(18)

s9(5-9) comp-3 INTEGER float FLOAT

s9(10-18) comp-3 DECIMAL(10-18) Double DOUBLE

9(1-4) comp-4 SMALLINT PIC x(n) CHAR(n) n 1-
max column length

Figure 8-3 COBOL to DBMaker Data Type Conversion Chart

1COBOL Conversions 8

© Copyright 1995-2025 CASEMaker Inc. 8-5

8.3 Mapping DBMaker Data Types

DCI reads data from the database by doing a COBOL-like MOVE from the

native data types to the COBOL data types (most of which have a CHAR

representation so you can display them by using dmSQL).

It is not necessary to worry about exactly matching the database data types to

COBOL data types. PIC X(nn) can be used for each column with regards to

database types having a CHAR representation. PIC 9(9) is a closer COBOL

match for databases that have INTEGER types. The more you know about a

database type, the more flexible you can be in finding a matching COBOL type.

For example, if a column in a DBMaker database only contains values between

zero and 99 (0-99), PIC 99 would be a sufficient COBOL date match.

Choosing COMP-types can be left to the discretion of the programmer since it

has little effect on the COBOL data used. BINARY data types will usually be re-

written without change, because they are foreign to COBOL. However, a closer

analysis of BINARY columns might allow you to find a different solution. The

DECIMAL, NUMERIC, DATE and TIMESTAMP types have no exact COBOL

matches. They are returned from the database in character form, so the best

COBOL data type equivalent would be USAGE DISPLAY.

The following table illustrates the best matches for database data types and

COBOL data types:

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 8-6

DBMAKER COBOL DBMAKER COBOL

SMALLINT 9(1-4) INTEGER 9(5-9) comp-4

INTEGER 9(5-9) DECIMAL(10-18) 9(10-18) comp-4

DECIMAL(10-18) 9(10-18) SMALLINT 9(1-4) comp-5

SMALLINT s9(1-4) DECIMAL(10) 9(5-10) comp-5

INTEGER s9(5-9) SMALLINT s9(1-4) comp-5

DECIMAL(10-18) s9(10-18 DECIMAL(10) s9(5-10) comp-5

INTEGER 9(n) comp-1 n (1-
17)

 SMALLINT 9(1-4) comp-6

INTEGER s9(n) comp-1 n (1-
17)

 INTEGER 9(5-9) comp-6

SMALLINT 9(1-4) comp-2 DECIMAL(10-18) 9(10-18) comp-6

INTEGER 9(5-9) comp-2 SMALLINT s9(1-4) comp-6

DECIMAL(10-18) 9(10-18) comp-2 INTEGER s9(5-9) comp-6

SMALLINT s9(1-4) comp-2 DECIMAL(10-18) s9(10-18) comp-6

INTEGER s9(5-9) comp-2 SMALLINT signed-short

DECIMAL(10-18) s9(10-18) comp-2 SMALLINT unsigned-short

SMALLINT 9(1-4) comp-3 CHAR(10) signed-int

INTEGER 9(5-9) comp-3 CHAR(10) unsigned-int

DECIMAL(10-18) 9(10-18) comp-3 CHAR(18) signed-long

SMALLINT s9(1-4) comp-3 CHAR(18) unsigned-long

INTEGER s9(5-9) comp-3 FLOAT float

DECIMAL(10-18) s9(10-18) comp-3 DOUBLE Double

SMALLINT 9(1-4) comp-4 CHAR(n) n 1-max
column length

PIC x(n)

Figure 8-4 DBMaker to COBOL Data Type Conversion Chart

1COBOL Conversions 8

© Copyright 1995-2025 CASEMaker Inc. 8-7

8.4 Troubleshooting Runtime Errors

Runtime errors have the format "9D, xx", where "9D" indicates a file system

error (reported in the FILE STATUS variable) and "xx" indicates a secondary

error code.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 8-8

ERROR DEFINITION INTERPRETATION SOLUTION

9D,01 There is a read error
on the dictionary file.

An error occurred
while reading the
XFD file. The XFD
file is corrupt.

Recompile with -Fx to
re-create the
dictionary file.

9D,02 There is a corrupt
dictionary file. The
dictionary file cannot
be read.

The dictionary file
for a COBOL file is
corrupt.

Recompile with -Fx to
re-create the
dictionary file.

9D,03 A dictionary file (.xfd)
has not been found.

The dictionary file
for a COBOL file
cannot be found.

Specify a correct
directory in the
DCI_XFDPATH
configuration file
variable (it may be
necessary to
recompile using –Fx).

9D,04 There are too many
fields in the key.

There are more
than16 fields in a
key.

Check key definitions,
re-structure illegal
key, recompile with –
Fx.

9D,12 There is an unexpected
error on a DBMaker
library function.

A DBMaker library
function returned
an unexpected
error.

9D,13 The size of the "xxx"
variable is illegal.

An elementary
data item in an FD
is larger than 255
bytes.

9D,13 The type of data for the
"xxx" variable is illegal.

There is no
DBMaker type that
matches the data
type used.

9D,14 There is more than one
table with the same
name.

More than one
table had the same
name when they
were listed.

Figure 8-5 DCI Secondary Errors Chart

1COBOL Conversions 8

© Copyright 1995-2025 CASEMaker Inc. 8-9

8.5 Troubleshooting Native SQL Errors

Some native SQL errors may be generated by a database while using DCI for

DBMaker. The exact error number and wording may vary from database to

database.

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 8-10

NUMBER DEFINITION INTERPRETATION SOLUTION

9D,
6523,6018

Invalid
column name
or reserved
word.

A column was named
using a word that has
been reserved for the
database.

Compare a file trace of
CREATE TABLE to the list
of database reserved
words. Apply the NAME
directive to the FD field of
an invalid column and
recompile to create a new
XFD file.

9D, 1310 Journal full,
command
rolled back to
internal
savepoint

 Add "start
transaction/commit/rollba
ck" code in the COBOL
program. Or set
DCI_COMMIT_COUNT in
the DCI configuration file.

9D, 5503 invalid key
name

The table does not have
the index

Create the index with
correct index name and
columns

9D, 5504 Cannot use
host variable

 Users cannot use host
variable in the runsql.acu

9D, 5508 do not have
INSERT/UPDA
TE/DELETE
privilege

Users cannot open I-O for
table that they does not
have the
insert/delete/update
privilege

OPEN INPUT with that
table

9D, 5512 cannot issue
select query

 Users cannot issue select
statement in the runsql.acu

9D,5513 client-server
version
mismatch
when dci
connect

User’s DCI runtime is
newer than the dmserver

User should upgrade their
dmserver before running
new DCI runtime

9D, 5514 invalid
column
number

COBOL FD column
number > table column
number

Users need to check the FD
column number and table
column number

9D, 5515 invalid XFD
column name
or data type
and length
does not

COBOL FD column name
or column type does not
match with table
definition

Compare the FD and table
definition. Fix this problem
by either change the
COBOL FD or alter table.

1COBOL Conversions 8

© Copyright 1995-2025 CASEMaker Inc. 8-11

match

9D, 5518 DCI blob data
is null

When users get blob from
a column and the data is
null

9D, 5519 DCI blob file
does not
exist

 Users should ensure the
blob file has existed.

Figure 8-6 Native SQL Errors Char

 DCI User’s Guide1

© Copyright 1995-2025 CASEMaker Inc. 8-12

8.6 Converting Vision Files

DCI provides a sample program to convert COBOL files into RDBMS tables.

Before using the DCI_MIGRATE program, a Vision file to be converted and an

XFD data dictionary for the Vision file are required. The ACUCOBOL runtime

system 4.3 or higher linked to DCI must be installed and a DCI_MIGRATE

object program must be ready.

Using DCI_Migrate

This is a general-purpose program that converts any COBOL vision file into a

DBMaker table. To run correctly the minimum DCI configuration settings must

be defined to work with DBMaker (DCI_LOGIN, DCI_DATABASE, DCI_PASSWD

etc) and match the .XFD file name with dbm_table_name or use DCI_MAPPING

to specify the name and location.

The program DCI_MIGRATE reads vision files and writes DBMaker tuples

through DCI. In addition, after migration, it checks if all records are correct by

reading vision records and comparing them by reading DBMaker rows.

The DCI_MIGRATE program will report the following:

• Total record read successful

• Total record write successful

• Total record read unsuccessful

• Total record write unsuccessful

• Total record compared successful

• Total record compared unsuccessful

1COBOL Conversions 8

© Copyright 1995-2025 CASEMaker Inc. 8-13

DCI_MIGRATE

OPTIONS
RESULT

--help Displays the online help.

--nowait Doesn’t wait for user confirmation during interactive
mode.

--noverify Skips the verify process.

--nomigrate Skips the migrate process.

--visdbm Converts vision files to DBMaker tables (default).

--dbmvis Converts DBMaker tables to vision files.

Figure 8-7 DCI_MMIGRATE Options Result table

 Syntax 1

The vision_file_name is the name of the Vision file to be converted and

dbm_table_name is the name of the DBMaker table.
runcbl DCI_MIGRATE vision_file_name dbm_table_name [options]

 Syntax 2

Setting the environment variable named DCI_MIGRATE to "yes" can turn off

the report. The report will then append a file named "dbm_table_name.log".
DCI_MIGRATE = yes

 Syntax 3

The record can be dumped for an unsuccessful operation by adding, "dump" to

the DCI_MIGRATE setting (Spaces will be considered separators. Log file

names with embedded spaces are not permitted).
DCI_MIGRATE = yes dump

 Syntax 4

Setting the environment variable named DCIMIGRATE_COMMIT_COUNT can

change the commit count from 100 to specified number.
DCIMIGRATE_COMMIT_COUNT = 200

1Glossary

© Copyright 1995-2025 CASEMaker Inc. Glossary-1

Glossary

API

Application Programming Interface: The API is an interface between an

application and an operating system.

Binary Large Object (BLOB)

A large block of data stored in the database that is not stored as distinct

records in a table. A BLOB cannot be accessed through the database in the

same way as ordinary records. The database can only access the name and

location of a BLOB; typically, another application is used to read the data.

Buffer

A buffer is an internal memory space (zone) where data is temporarily stored

during input or output operations.

Client

A computer that can access and manipulate data that is stored on a central

server computer.

Column

A set of data in a database table defined as multiple records consisting of the

same data type.

 DCI User's Guide1

© Copyright 1995-2025 CASEMaker Inc. Glossary-2

Data dictionaries

Also known as extended file descriptors; they serve as maps (links) between

database schema and the file descriptors in a COBOL application.

Directive

An optional comment placed in the COBOL code that sets the proceeding field

or fields to a data type other than the default DCI setting.

Field

Part of a COBOL file descriptor roughly corresponding to a database column. It

is a discrete data item contained in a COBOL record.

File Descriptor

A file descriptor is an integer that identifies a file that is operated on by a

process. Operations that read, write, or close a file use the file descriptor as an

input parameter.

Indexed file

File containing a list of keys that uniquely identify all records.

Key

A unique value used to identify a record in a database. (See Primary Key for

more details).

Primary key

A primary key consists of a column of unique (or key) values, which can be

used to identify individual records contained in a table.

Query

In DBMaker, SQL commands used to execute data query requests made by a

user to obtain specific information.

1Glossary

© Copyright 1995-2025 CASEMaker Inc. Glossary-3

Record

In COBOL, a group of related fields defined in the Data Division. In DBMaker, a

record is also referred to as a row, and defines a set of related data items in

table columns.

Relational Database

A relational database is a database system where internal database tables on

different databases may be related to one another by the use of keys or unique

indexes.

Schema

A database table’s structure as defined by its columns. Data type, size, number

of columns, keys, and constraints all define a table’s schema.

Server

A server is a central computer that stores and handles network configuration

files, which also can consist of a database management system to store data

(database) and distribute data to clients via a network connection.

SQL

Structured Query Language is the language DBMaker and other ODBC

compliant programs use to access and manipulate data.

Table

A logical storage unit in a database that consists of columns and rows used to

store records.

XFD file

An acronym for extended file descriptor or data dictionary. It also forms the

file extension for the data dictionary.

1Index

© Copyright 1995-2025 CASEMaker Inc. Index-1

Index

A

ALPHA Directive, 4-3

B

BINARY Directive, 4-4

B-TREE

Files, 1-1

C

Column Names

Maximum Length, 8-2

Columns, 3-6

COMMENT DCI BIGINT Directive, 4-5

COMMENT DCI COBTRIGGER Directive, 4-

6

COMMENT DCI SERIAL n Directive, 4-5

COMMENT Directive, 4-6

Configuration

Basic, 2-16

Configuration file variables, 6-1

Configuration File Variables

_DCI_MAPPING, 6-13

DCI_LOGFILE, 6-11

DCI Table Cache, 6-8

DCI_AUTO_CREATE_FOR_INVALID_TAB

LE, 6-3

DCI_AUTOMATIC_SCHEMA_ADJUST, 6-

3

DCI_CASE, 6-4

DCI_COLUMNS_MAPPING, 6-4

DCI_COMMIT_COUNT, 6-5

DCI_CONNECTION, 6-5

DCI_CREATE_ALTERNATE_KEY, 6-5

DCI_DATABASE, 6-6

DCI_DATE_CUTOFF, 6-7

DCI_DB_MAP, 6-8

DCI_DEFAULT_TABLESPACE, 6-8

DCI_DEFAULT_USER, 6-9

DCI_DUPLICATE_CONNECTION, 6-9

DCI_GET_EDGE_DATES, 6-10

DCI_GRANT_ON_OUTPUT, 6-10

DCI_IGONRE_MAX_BUFFER_LENGTH,

6-11

DCI_INCLUDE, 6-11

DCI_INV_DATE, 6-11

DCI_JULIAN_BASE_DATE, 6-12

 DCI User's Guide1

© Copyright 1995-2025 CASEMaker Inc Index-2

DCI_LOGIN, 6-12

DCI_LOGTRACE, 6-12

DCI_MAX_ATTRS_PER_TABLE, 6-13

DCI_MAX_BUFFER_LENGTH, 6-14

DCI_MAX_DATE, 6-15

DCI_MIN_DATE, 6-15

DCI_NULL_DATE, 6-15

DCI_NULL_ON_ILLEGAL_DATE, 6-15

DCI_NULL_ON_MIN_DATE, 6-16

DCI_NULL_ON_SPACE_CHAR, 6-16

DCI_NULL_ON_ZERO_NUMBER, 6-16

DCI_PASSWD, 6-17

DCI_RESET_CHARTOBLOB_LENGTH, 6-

18

DCI_STORAGE_CONVENTION, 6-18

DCI_TABLE_CACHE, 6-19

DCI_TABLE_FILLFACTOR, 6-20

DCI_TABLESPACE, 6-20

DCI_TABLESPACE_IDX, 6-20

DCI_USEDIR_LEVEL, 6-22

DCI_USER_PATH, 6-22

DCI_USER_TABLESPACE, 6-21

DCI_VARCHAR, 6-24

DCI_XFD_INFO_OFF, 6-23

DCI_XFDPATH, 6-23

DCI_XML_XFD, 6-24

filename_RULES, 6-2

D

Data Structures, 2-2

Data Types

COBOL to DBMaker, 8-3

DBMaker to COBOL, 8-5

Not Supported, 8-2

Supported, 8-2

Database Name

Specifying, 6-5, 6-6

DATE Directive, 4-7

DCI SPLIT, 4-10

DCI TABLE CACHE Variables, 6-8

DCI_ CONNECTION, 6-5

DCI_AUTO_CREATE_FOR_INVALID_TABLE

, 6-3

DCI_BLOB_ERROR, 7-4

DCI_BLOB_GET, 7-4

DCI_BLOB_PUT, 7-6

DCI_CASE, 6-4

DCI_COLUMNS_MAPPING, 6-4

DCI_COMMIT_COUNT, 6-5

DCI_CONFIG, 6-1

DCI_CREATE_ALTERNATE_KEY, 6-5

DCI_DATABASE, 6-6

DCI_DATE_CUTOFF, 6-7

DCI_DB_MAP, 6-8

DCI_DEFAULT_TABLESPACE, 6-8

DCI_DEFAULT_USER, 6-9

DCI_DISCONNECT, 7-2

DCI_DUPLICATE_CONNECTION, 6-9

DCI_FREE_XFD, 7-8

DCI_GET_EDGE_DATES, 6-10

DCI_GET_TABLE_NAME, 7-3

DCI_GET_TABLE_SERIAL_VALUE, 7-7

DCI_GETENV, 7-2

DCI_GRANT_ON_OUTPUT, 6-10

DCI_IGNORE_MAX_BUFFER_LENGTH, 6-

11

1Index

© Copyright 1995-2025 CASEMaker Inc. Index-3

DCI_INCLUDE, 6-11

DCI_INV_DATE, 6-11

DCI_JULIAN_BASE_DATE, 6-12

DCI_LOGFILE, 6-11

DCI_LOGIN, 6-12

DCI_LOGTRACE, 6-12

DCI_MAPPING, 6-13

DCI_MAX_ATTRS_PER_TABLE, 6-13

DCI_MAX_BUFFER_LENGTH, 6-14

DCI_MAX_DATE, 6-15

DCI_MIN_DATE, 6-15

DCI_NULL_DATE, 6-15

DCI_NULL_ON_ILLEGAL_DATE, 6-15

DCI_NULL_ON_MIN_DATE, 6-16

DCI_NULL_ON_SPACE_CHAR, 6-16

DCI_NULL_ON_ZERO_NUMBER, 6-16

DCI_PASSWD, 6-17

DCI_RESET_CHARTOBLOB_LENGTH, 6-18

DCI_SET_TABLE_CACHE, 7-3

DCI_SETENV, 7-2

DCI_STORAGE_CONVENTION, 6-18

DCI_TABLE_CACHE, 6-19

DCI_TABLE_FILLFACTOR, 6-20

DCI_TABLESPACE, 6-20

DCI_TABLESPACE_IDX, 6-20

DCI_UNLOAD_CONFIG, 7-8

DCI_USEDIR_LEVEL, 6-22

DCI_USER_PATH, 6-22

DCI_USER_TABLESPACE, 6-21

DCI_VARCHAR, 6-24

DCI_XFD_INFO_OFF, 6-23

DCI_XFDPATH, 6-23

DCI_XML_XFD, 6-24

Default Filing System, 5-3

DEFAULT-HOST setting, 5-2

Directives, 4-1

ALPHA, 4-3

BINARY, 4-4

COMMENT, 4-6

COMMENT DCI BIGINT, 4-5

COMMENT DCI COBTRIGGER, 4-6

COMMENT DCI SERIAL n, 4-5

DATE, 4-7

DCI SPLIT, 4-10

FILE, 4-11

HIDDEN, 4-11

NAME, 4-12

NUMERIC, 4-12

Supported, 4-3

Syntax, 4-2

USE GROUP, 4-13

VAR-LENGH, 4-14

WHEN, 4-14

Document Conventions, 1-5

E

embedded SQL, 1-1

Errors

Runtime, 8-7

SQL, 8-9

Extended File Descriptors, 3-1

F

Field Names

Identical, 3-8

Long, 3-9

 DCI User's Guide1

© Copyright 1995-2025 CASEMaker Inc Index-4

FILE CONTROL section, 3-2

FILE Directive, 4-11

File System, 2-2

FILE=Filename Directive, 4-11

filename_RULES(*), 6-2

Filing System Options, 5-2

FILLER data items, 3-14

H

HIDDEN Directive, 4-11

I

I/O Statements, 1-1

Illegal DATE values, 2-20, 6-16

Illegal HIGH-VALUES, 2-20, 6-15

Illegal LOW-VALUES, 2-20, 6-15

Illegal SPACES, 2-20, 6-15

Illegal time, 2-20, 6-16

Invalid Data, 2-20

J

Julian dates, 4-8

K

Key fields, 3-6

KEY IS phrase, 3-6, 3-13

L

Login, 6-12

M

Multiple Record Formats, 3-10

N

NAME Directive, 4-12

NUMERIC Directive, 4-12

O

OCCURS Clauses, 3-14

P

Password, 6-17

Platforms

Supported, 2-5

Primary Keys, 3-6

R

Records, 3-6

REDEFINES Clause, 3-13

Requirements

Software, 2-5

System, 2-5

Runtime Errors, 8-7

Runtime Options, 5-1

S

Sample Application, 2-22

Schema, 3-11

SELECT statement, 3-2, 3-8

Setup, 2-6

Windows, 2-6

Shared Libraries, 2-15

Software Requirements, 2-5

Sources of Information, 1-3

SQL

1Index

© Copyright 1995-2025 CASEMaker Inc. Index-5

Embedded, 1-1

Errors, 8-9

Supported Features, 8-1

Supported Platforms, 2-5

System Requirements, 2-5

T

Table Schema, 3-11

Tables, 3-2

Technical Support:, 1-4

U

USE GROUP Directive, 4-13

User Name, 6-12

V

VAR-LENGH Directive, 4-14

Vision file system, 5-2

W

WHEN Directive, 4-14

X

XFD files, 3-1

	Contents
	1 Introduction
	1.1 Additional Resources
	1.2 Technical Support
	1.3 Document Conventions

	2 DCI Basics
	2.1 DCI Overview
	File System and Databases
	Accessing Data

	2.2 System Requirements
	2.3 Setup Instructions
	Windows Setup
	UNIX Setup
	Shared Libraries

	2.4 Basic Configuration
	DCI_DATABASE
	DCI_LOGIN
	DCI_PASSWD
	DCI_XFDPATH

	2.5 Runsql Utility
	2.6 Invalid Data
	2.7 Sample Application
	Setting up the Application
	Adding Records
	Accessing Data

	3 Data Dictionaries
	3.1 Assigning Table Names
	3.2 Mapping Columns and Records
	Identical Field Names
	Long Field Names

	3.3 Using Multiple Record Formats
	3.4 Using XFD File Defaults
	REDEFINES Clause
	KEY IS Phrase
	FILLER Data Items
	OCCURS Clauses

	3.5 Mapping Multiple Files
	3.6 Mapping to Multiple Databases
	3.7 Using Triggers
	3.8 Using Views
	3.9 Using Synonyms
	3.10 Open Tables in Remote Databases
	3.11 Using DCI_WHERE_CONSTRAINT

	4 XFD Directives
	4.1 Using Directive Syntax
	4.2 Using XFD Directives
	$XFD ALPHA Directive
	$XFD BINARY Directive
	$XFD COMMENT DCI BIGINT Directive
	$XFD COMMENT DCI SERIAL n Directive
	$XFD COMMENT DCI COBTRIGGER Directive
	$XFD COMMENT Directive
	$XFD DATE Directive
	Julian dates
	Using group items

	$XFD DCI SPLIT
	$XFD FILE Directive
	$XFD HIDDEN Directive
	$XFD NAME Directive
	$XFD NUMERIC Directive
	$XFD USE GROUP Directive
	$XFD VAR-LENGTH Directive
	$XFD WHEN Directive for File Names
	TABLENAME Option

	5 Compiler and Runtime Options
	5.1 Using ACUCOBOL-GT Default File System
	5.2 Using DCI Default File System
	5.3 Using Multiple File Systems
	5.4 Using the Environment Variable

	6 Configuration File Variables
	6.1 Setting DCI_CONFIG Variables
	<filename>_RULES
	DCI_AUTO_CREATE_FOR_INVALID_TABLE
	DCI_AUTOMATIC_SCHEMA_ADJUST
	DCI_CASE
	DCI_COLUMNS_MAPPING
	DCI_COMMIT_COUNT
	DCI_COMMIT_COUNT = 0
	DCI_COMMIT_COUNT = <n>

	DCI_CONNECTION_ID
	DCI_CREATE_ALTERNATE_KEY
	DCI_DATABASE
	DCI_DATE_CUTOFF
	DCI_DB_MAP
	DCI_DEFAULT_CACHE Variables
	DCI_DEFAULT_USER
	DCI_DUPLICATE_CONNECTION
	DCI_GET_EDGE_DATES
	DCI_GRANT_ON_OUTPUT
	DCI_IGNORE_MAX_BUFFER_LENGTH
	DCI_INCLUDE
	DCI_INV_DATE
	DCI_LOGFILE
	DCI_LOGIN
	DCI_JULIAN_BASE_DATE
	DCI_LOGTRACE
	DCI_MAPPING
	DCI_MAX_ATTRS_PER_TABLE
	DCI_MAX_BUFFER_LENGTH
	DCI_MAX_DATE
	DCI_MIN_DATE
	DCI_NULL_DATE
	DCI_NULL_ON_ILLEGAL_DATE
	DCI_NULL_ON_MIN_DATE
	DCI_NULL_ON_ZERO_NUMBER
	DCI_NULL_ON_SPACE_CHAR
	DCI_PASSWD
	DCI_RESET_CHARTOBLOB_LENGTH
	DCI_STORAGE_CONVENTION
	DCI
	DCM
	DCN
	DCA

	DCI_TABLE_CACHE
	DCI_TABLE_FILLFACTOR
	DCI_TABLESPACE
	DCI_TABLESPACE_IDX
	DCI_USER_TABLESPACE
	DCI_USEDIR_LEVEL
	DCI_USER_PATH
	DCI_XFD_INFO_OFF
	DCI_XFDPATH
	DCI_XML_XFD
	DCI_VARCHAR

	7 DCI Functions
	7.1 Calling DCI functions
	DCI_SETENV
	DCI_GETENV
	DCI_DISCONNECT
	DCI_GET_TABLE_NAME
	DCI_SET_TABLE_CACHE
	DCI_BLOB_ERROR
	DCI_BLOB_GET
	DCI_BLOB_PUT
	DCI_GET_TABLE_SERIAL_VALUE
	DCI_FREE_XFD
	DCI_UNLOAD_CONFIG

	8 COBOL Conversions
	8.1 Using Special Directives
	8.2 Mapping COBOL Data Types
	8.3 Mapping DBMaker Data Types
	8.4 Troubleshooting Runtime Errors
	8.5 Troubleshooting Native SQL Errors
	8.6 Converting Vision Files
	Using DCI_Migrate

	Glossary
	API
	Binary Large Object (BLOB)
	Buffer
	Client
	Column
	Data dictionaries
	Directive
	Field
	File Descriptor
	Indexed file
	Key
	Primary key
	Query
	Record
	Relational Database
	Schema
	Server
	SQL
	Table
	XFD file

	Index

