
DBMaker
DBMaker Tutorial

CASEMaker Inc./Corporate Headquarters

1680 Civic Center Drive

Santa Clara, CA 95050, U.S.A.

www.casemaker.com

www.casemaker.com/support

©Copyright 1995-2012 by CASEMaker Inc.
Document No. 645049-235114 /DBM53-M12302012-TUTO

Publication Date: 2012-12-30

All rights reserved. No part of this manual may be reproduced, stored in a retrieval system, or transmitted in any
form, without the prior written permission of the manufacturer.

For a description of updated functions that do not appear in this manual, read the file named README.TXT
after installing the CASEMaker DBMaker software.

Trademarks
CASEMaker, the CASEMaker logo, and DBMaker are registered trademarks of CASEMaker Inc. Microsoft, MS-
DOS, Windows, and Windows NT are registered trademarks of Microsoft Corp. UNIX is a registered trademark
of The Open Group. ANSI is a registered trademark of American National Standards Institute, Inc.

Other product names mentioned herein may be trademarks of their respective holders and are mentioned only
form information purposes. SQL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

Notices
The software described in this manual is covered by the license agreement supplied with the software.

Contact your dealer for warranty details. Your dealer makes no representations or warranties with respect to the
merchantability or fitness of this computer product for any particular purpose. Your dealer is not responsible for
any damage caused to this computer product by external forces including sudden shock, excess heat, cold, or
humidity, nor for any loss or damage caused by incorrect voltage or incompatible hardware and/or software.

Information in this manual has been carefully checked for reliability; however, no responsibility is assumed for
inaccuracies. This manual is subject to change without notice.

This text is not here.

www.casemaker.com
www.casemaker.com/support

 1Contents

Contents

1 Introduction1-1

1.1 Additional Resources1-3

1.2 Technical Support ..1-4

1.3 Document Conventions1-5

2 RDBMS Basics2-1

2.1 Syntax Diagrams...2-3

2.2 RDBMS Functions ...2-4

2.3 Data Models ..2-6

2.4 Data Independence.......................................2-7
Physical .. 2-7
Logical ... 2-8

2.5 High-Level Language Support2-9

2.6 Transaction Management2-10
What is a Transaction? ... 2-10
Concurrency Control... 2-11
The Lock Concept ... 2-11

2.7 Integrity Control ...2-14

2.8 Access Control ...2-15

©Copyright 1995-2012 CASEMaker Inc. i

 DBMaker Tutorial1

User Authorization...2-15
Transaction Authorization..2-15

2.9 RDBMS Recovery 2-17
System Failures...2-17
Media Failures..2-17

3 RDBMS Architecture 3-1

3.1 Logical RDBMS... 3-2
Internal or Physical Level ...3-3
Conceptual Level..3-3
External or View Level ...3-3
Mappings between Levels ...3-4

3.2 Physical RDBMS... 3-5
Applications and Utilities ...3-6
Application Program Interface (API)3-8
Query Language Processor ...3-9
RDBMS Engine ...3-10

4 Databases ... 4-1

4.1 Naming Conventions.................................... 4-2

4.2 dmconfig.ini File... 4-3
Creating ...4-3
Directory..4-4
Format ...4-4
Section Names ...4-5
Keywords ...4-5
Comments ...4-6

4.3 dmSQL .. 4-7
Starting ..4-7
Workspace..4-8

4.4 JTools... 4-10
JConfiguration Tool...4-10
JServer Manager ...4-10

©Copyright 1995-2012 CASEMaker Inc. ii

 1Contents

JDBA Tool .. 4-11

4.5 Creating a Database...................................4-12
Tutorial Database .. 4-12
Connection Handles .. 4-12
Default User .. 4-13

4.6 Database Modes ...4-15
Single-User Mode .. 4-15
Multiple-Connection Mode... 4-15
Client/Server Mode.. 4-16

5 Tables ..5-1

5.1 Tablespaces..5-2
Regular Tablespaces ... 5-2
Autoextend Tablespaces ... 5-2
System Tablespace ... 5-2
Default User Tablespace .. 5-3
The Temporary Tablespace.. 5-3

5.2 Data Types ..5-5
BIGINT .. 5-5
BIGSERIAL (start) .. 5-5
BINARY (size) ... 5-6
CHAR (size) .. 5-7
DATE.. 5-7
DECIMAL (NUMERIC).. 5-8
DOUBLE .. 5-9
FILE .. 5-9
FLOAT.. 5-10
INTEGER... 5-10
LONG VARBINARY (BLOB).. 5-11
LONG VARCHAR (CLOB)... 5-11
NCHAR (size) ... 5-12
NVARCHAR (size) ... 5-12
OID... 5-13

©Copyright 1995-2012 CASEMaker Inc. iii

 DBMaker Tutorial1

REAL ...5-14
SERIAL (start) ...5-14
SMALLINT ...5-15
TIME...5-15
TIMESTAMP..5-16
VARCHAR (size)...5-16
Media Types ..5-17

5.3 Creating a Table... 5-19
Default Values for Columns...5-21
Lock Mode...5-22
Fillfactor...5-22
NOCACHE...5-23
Temporary Tables ..5-23

6 Data... 6-1

6.1 Inserting ... 6-2
Inserting Using Host Variables...6-3
Different Data Types ...6-4
Inserting Blob Data..6-5

6.2 Updating ... 6-7
Updating Using Standard SQL ..6-7
Updating Using Host Variables..6-7
Updating Using OIDs..6-8

6.3 Result Sets ... 6-10
Selecting Tables..6-10
Selecting Columns ...6-12
Selecting Rows ...6-13

6.4 Operator Types .. 6-14
Comparison Operators ...6-14
Logical Operators ...6-16
Arithmetic Operators ...6-17

6.5 Deleting .. 6-18
Deleting Using Standard SQL..6-18

©Copyright 1995-2012 CASEMaker Inc. iv

 1Contents

Deleting Using Host Variables... 6-18
Deleting Using OIDs... 6-19

7 Database Objects7-1

7.1 Views...7-2
Creating Views... 7-2
Dropping Views... 7-3

7.2 Synonyms..7-4
Creating Synonyms.. 7-4
Dropping Synonyms.. 7-5

7.3 Indexes ...7-6
Creating Indexes .. 7-7
Dropping Indexes .. 7-8

8 Users and Privileges8-1

8.1 Security Management...................................8-2

8.2 Authority Levels..8-3
Resource .. 8-3
DBA .. 8-3
SYSADM... 8-4

8.3 New Users...8-5
User Access .. 8-5
Multiple Users ... 8-6

8.4 Promoting Authority Level8-7
Multiple Users ... 8-7

8.5 Demoting Authority Level.............................8-8

8.6 Removing Users..8-9

8.7 Passwords...8-10

8.8 Managing Groups..8-12
Creating ... 8-12
Adding Members ... 8-13
Removing Members... 8-13

©Copyright 1995-2012 CASEMaker Inc. v

 DBMaker Tutorial1

Dropping ...8-14
Nested Groups ...8-14

8.9 Table Level Privileges................................ 8-15
Select..8-15
Insert ..8-15
Delete...8-15
Update ...8-15
Index ..8-16
Alter ...8-16
Reference..8-16

8.10 GRANT Privileges....................................... 8-17
GRANT Table Privileges ...8-18
GRANT Column Privileges ...8-19

8.11 REVOKE Privileges..................................... 8-20
REVOKE Table Privileges ...8-20
REVOKE Column Privileges ...8-22

9 Database Recovery 9-1

9.1 Types of Failures.. 9-2
System..9-2
Media...9-2

9.2 Recovery Methods 9-3
Journal Files ...9-3
Checkpoint Events ...9-3
Recovery Steps ...9-4

9.3 Types of Backup .. 9-6
Full Backup..9-6
Differential Backups...9-6
Incremental Backup ...9-7
Offline Backup...9-7
Online Backup ...9-8
Backup Combinations..9-8

9.4 Backup Modes.. 9-10

©Copyright 1995-2012 CASEMaker Inc. vi

 1Contents

NONBACKUP Mode ... 9-10
BACKUP-DATA Mode .. 9-10
BACKUP-DATA-AND-BLOB Mode................................. 9-11
Tablespace BLOB Backup Mode ... 9-11
Backup File Object Mode .. 9-12
Setting Backup Mode... 9-13

9.5 Offline Full Backup9-17
Offline Full Backup using dmSQL 9-17
Offline Full Backup Using JServer Manager 9-17

9.6 Backup Server ..9-19
Starting Backup Server ... 9-20
Differential Backup Filename Format 9-23
Incremental Backup Filename Format 9-23
Backup Directory... 9-27
Setting the Old Directory .. 9-30
Differential Backup Settings .. 9-31
Incremental Backup Settings.. 9-33
Journal Trigger Value Settings ... 9-36
Compact Backup Mode Settings.. 9-39
Full Backup Schedule... 9-41
File Object Backup Mode .. 9-43
Inactivate Backup Server .. 9-47

9.7 Backup History Files9-49
Locating the Backup History File... 9-49
Understanding the Backup History File 9-49
Using the Backup History File ... 9-50
Understanding the File Object Backup History File 9-50

9.8 Backup on Replication Databases.............9-51

9.9 Recovery Options9-53
Analyzing Options ... 9-53
Preparing for Restoration ... 9-53
Performing a Restoration ... 9-54

©Copyright 1995-2012 CASEMaker Inc. vii

Restoring database by Rollover...9-55

 DBMaker Tutorial1

©Copyright 1995-2012 CASEMaker Inc. viii

 1Introduction 1

©Copyright 1995-2012 CASEMaker Inc. 1-1

1 Introduction

Welcome to the CASEMaker family of products. DBMaker is a powerful and flexible
SQL Database Management System (RDBMS) that supports an interactive Structured
Query Language (SQL), a Microsoft Open Database Connectivity (ODBC)
compatible interface, and Embedded SQL for C (ESQL/C). DBMaker also supports a
Java Database Connectivity compliant interface and DBMaker COBOL interface
(DCI). The unique open architecture and native ODBC interface give you the
freedom to build custom applications using a wide variety of programming tools or to
query databases using existing ODBC-compliant applications.

DBMaker is easily scalable from personal single-user databases to distributed
enterprise-wide databases. The advanced security, integrity, and reliability features of
DBMaker ensure the safety of critical data. Extensive cross-platform support permits
you to leverage existing hardware, allows for expansion and upgrades to more powerful
hardware as your needs grow.

DBMaker provides excellent multimedia handling capabilities to store, search,
retrieve, and manipulate all types of multimedia data. Binary Large Objects (BLOBs)
ensure the integrity of multimedia data by taking full advantage of the advanced
security and crash recovery mechanisms included in DBMaker. File Objects (FOs)
manage multimedia data while maintaining the capability to edit individual files in the
source application.

This book is intended for end users who are not familiar with DBMaker. It has been
written to provide a practical and demonstrative introduction to DBMaker for first-
time users. This book presumes you have a general working knowledge of computers,

 DBMaker Tutorial1

and are comfortable using the operating system you are using to run DBMaker.
Information on the operating system is beyond the scope of this book; consult
operating system documentation if you encounter any problems in this area.

This book contains general information on the concepts and principles needed to
understand the organization and structure of a database created and maintained using
DBMaker. This information presents manageable segments on a single topic. The
examples and illustrations provided help you to understand the information presented
more clearly.

The SQL language as implemented by DBMaker is covered in this book, and syntax
diagrams for commands are provided where the command first appears. The syntax
diagrams show you at a glance, possible options, and syntax variations for each
command. Explanations of SQL commands include several examples and notes on
important points to watch for when using the command.

Most of the concepts, commands, and examples in this book use dmSQL, the
command-line tool provided with DBMaker. A few operations can only be performed
using other DBMaker application tools or utilities. Refer to Section 1.3, Additional
Resources for more information on application tools and utilities provided with
DBMaker.

©Copyright 1995-2012 CASEMaker Inc. 1-2

 1Introduction 1

©Copyright 1995-2012 CASEMaker Inc. 1-3

1.1 Additional Resources

DBMaker provides a complete set of RDBMS manuals in addition to this one. For
more information on a particular subject, consult one of the books listed below:

 For more information on designing, administering, and maintaining a DBMaker
database, refer to the Database Administrator's Guide.

 For more information on DBMaker management, refer to the JServer Manager
User’s Guide.

 For more information on DBMaker configurations, refer to the JConfiguration
Tool Reference.

 For more information on DBMaker functions, refer to the JDBA Tool User’s
Guide.

 For more information on the DCI COBOL interface tool, refer to the DCI User’s
Guide.

 For more information on the SQL language used in dmSQL, refer to the SQL
Command and Function Reference.

 For more information on the SQL language used in dmSQL, refer to the
“dmSQL User’s Guide.

 For more information on the ESQL/C programming, refer to the ESQL/C User’s
Guide.

 For more information on the native ODBC API and JDBC API, refer to the
ODBC Programmer’s Guide and JDBC Programmer’s Guide.

 For more information on error and warning messages, refer to the Error and
Message Reference.

 DBMaker Tutorial1

1.2 Technical Support

CASEMaker provides thirty days of complimentary email and phone support during
the evaluation period. When software is registered, an additional thirty days of support
will be included, thus, extending the total support period for software to sixty days.
However, CASEMaker will continue to provide email support for any bugs reported
after the complimentary support or registered support has expired (free of charges).

For most products, support is available beyond sixty days and may be purchased for
twenty percent of the retail price of the product. Please contact sales@casemaker.com
for details and prices.

CASEMaker support contact information, by post mail, phone, or email, for your area
() is at: www.casemaker.com/support. We recommend searching the most current
database of FAQ’s before contacting CASEMaker support staff.

Please have the following information available when phoning support for a
troubleshooting enquiry or include this information in your correspondence:

 Product name and version number

 Registration number

 Registered customer name and address

 Supplier/distributor where product was purchased

 Platform and computer system configuration

 Specific action(s) performed before error(s) occurred

 Error message and number, if any

 Any additional information deemed pertinent

©Copyright 1995-2012 CASEMaker Inc. 1-4

mailto:sales@casemaker.com
http://www.casemaker.com/support

 1Introduction 1

©Copyright 1995-2012 CASEMaker Inc. 1-5

1.3 Document Conventions

This book uses a standard set of typographical conventions for clarity and ease of use.
The NOTE, Procedure, Example, and Command Line conventions also have a
second setting used with indentation.

CONVENTION DESCRIPTION

Italics Italics indicate placeholders for information that must be supplied,
such as user and table names. The word in italics should not be
typed, but replaced by the actual name. Italics can also be used to
introduce new words, and are occasionally used for emphasis in
text.

Boldface Boldface indicates filenames, database names, table names, column
names, usernames, and other database schema objects. It is also used
to emphasize menu commands in procedural steps.

KEYWORDS All keywords used by the SQL language appear in uppercase when
used in normal paragraph text.

small caps Small capital letters indicate keys on the keyboard. A plus sign (+)
between two key names indicates to hold down the first key while
pressing the second. A comma (,) between two key names indicates
to release the first key before pressing the second key.

NOTE Contains important information.

 Procedure Indicates that procedural steps or sequential items will follow. Many
tasks are described using this format to provide a logical sequence of
steps for the user to follow

 Example
Examples are given to clarify descriptions, and commonly include
text, as it will appear on the screen.

Command Line Indicates text, as it should appear on a text-delimited screen. This
format is commonly used to show input and output for dmSQL
commands or the content in the dmconfig.ini file

Figure 1-1 Document Conventions Table

 DBMaker Tutorial1

©Copyright 1995-2012 CASEMaker Inc. 1-6

 1RDBMS Basics 2

©Copyright 1995-2012 CASEMaker Inc. 2-1

2 RDBMS Basics

If you are not familiar with relational database concepts and principles, or using the
SQL language, read this book before any other manuals provided with DBMaker.

Read this book from cover to cover, and complete all of the examples in each chapter
provided for creating the tutorial database. We recommended completing each of the
examples in the order they appear, omission of examples may produce unexpected
results or errors in subsequent examples.

If you are already familiar with databases and only want to try some of the features
found in specific chapters, first setup the tutorial database for use with that chapter,
then run one of the script files provided with this manual.

One of the most common tasks for computer systems today is storing and managing
data. It can include facts, figures, pictures, or multimedia. In general, any collection of
information about a particular subject is a database.

Before the widespread use of computers, this information was stored on paper in file
folders and filing cabinets. To retrieve some information, you would go to a file
cabinet, take a file, and look at the information in the folder. As the collection of
information got larger, it became increasingly difficult to retrieve data in a timely
manner. Even remembering where to find the information became cumbersome.

When people first began using computers to store information, they stored it in files
with a specific, known format. They had to remember where the files were located,
and they had to know how to find the data in the file.

 DBMaker Tutorial1

To obtain the information from the files, a special program had to be written to
retrieve the data. Once this program existed, a user could retrieve the data very
quickly. However, if the user decided to change the way the data was stored, or
wanted to look for different data, a new program was required.

Programmers in a company’s information systems department usually wrote these
programs. As the amount of information available on the computer grew, the requests
for new and different ways to view the data also increased. Large backlogs of user
requests for programs became more common, and there were delays of weeks or even
months for the new programs. This led to the need of an independent storage system
for data and new methods to retrieve it.

©Copyright 1995-2012 CASEMaker Inc. 2-2

 1RDBMS Basics 2

2.1 Syntax Diagrams

Syntax diagrams show the syntax for all SQL commands. These diagrams provide
assistance when constructing a statement on the command line, but cannot remember
the syntax options. See the example syntax diagram displayed below.

To use the syntax diagram, simply follow the line from start to finish. Any elements of
the command that you cannot navigate around are required. Any elements that you
can navigate around are optional, but provide additional options or flexibility.

ALTER TABLE table_name PRIMARY KEY

column_name

,

()

Figure 2-1 Sample Syntax Diagram

Any words that appear in italics are placeholders for the actual names used in a
database. Substitute the actual names for these placeholders. In the above diagram,
replace the <table_name> placeholder with the name of a table in the database. For
example, in the tutorial database, replace the <table_name> placeholder with
Customers to execute this command on the Customers table.

Also, note the direction of the arrows. Sometimes it is possible to have a list of items
in a command, shown in a syntax diagram as a circular path. Both <column_name>
fields above can include a list of column names, separated by commas, as indicated by
the circular path following the arrows.

©Copyright 1995-2012 CASEMaker Inc. 2-3

 DBMaker Tutorial1

2.2 RDBMS Functions

A Relational Database Management System manages the data stored in a database. It
is a record-keeping system used to maintain information and to make data available
upon request. There are important features of DBMaker that make it a powerful and
flexible enough system to virtually underlie all other information systems.

A typical Relational Database Management System provides a number of specific
functions:

 Data model — must have some means of representing the data in a way that a
user can easily understand. The data model is actually a mathematical abstraction.
It ensures that all of the data present in the database is available and viewable by
users.

 Data independence — should provide insulation from any physical storage
changes in the structure of the database. A request for specific information should
return the correct results, even if the physical storage structure of the database has
changed.

 High-level language support — the information in the database should be
accessible by a high-level language. This language should allow a user to define,
access, and manipulate data without having to know what the physical storage
structure of the database looks like.

 Transaction management — should provide some method to ensure that
multiple transactions on the same data do not interfere with each other. This
allows multiple users to simultaneously use a database.

 Integrity control — should guarantee that data in the database does not have
invalid values or inconsistency in related data. This prevents a user from
accidentally entering invalid data or performing operations that can violate data
dependency.

©Copyright 1995-2012 CASEMaker Inc. 2-4

 1RDBMS Basics 2

©Copyright 1995-2012 CASEMaker Inc. 2-5

 Access control — should provide facilities for protecting the security and privacy
of data from unauthorized users. This prevents unauthorized users from gaining
access and viewing sensitive data.

 Recovery methods — should provide a method for backing up and restoring data
in the event of a system failure.

 DBMaker Tutorial1

2.3 Data Models

The way data is physically stored on computers probably has little or no significance
to a user. All of the data may be stored as simple binary numbers that span several files
or even multiply disks. The RDBMS uses a data model to represent stored data in a
way that is meaningful and easy for a user to understand.

The database model is a mathematical abstraction of data, which provides structural
access techniques for the data. This ensures quick manipulation and retrieval of data
by users and application programs without the burden of remembering data location
or storage methods.

There have been several popular data models over the years, but the relational database
model is currently the most widely used. This is also the data model used by
DBMaker. The relational database model presents information to the user in a
familiar form of tables with rows and columns. Each row contains data on one subject
or item, and each column contains attributes, for example name, size and quantity, for
these subjects or items.

©Copyright 1995-2012 CASEMaker Inc. 2-6

 1RDBMS Basics 2

©Copyright 1995-2012 CASEMaker Inc. 2-7

2.4 Data Independence

One of the biggest advantages of a RDBMS is data independence. Data independence
allows changes to occur to the structure of a database, without requiring application
programs or users to make any changes in the way they access the data. The two kinds
of data independence are physical and logical.

Physical

Early file-based systems stored all of their information in files with a specific format.
To retrieve data from the files, a programmer who knew the format of those files had
to write a program. If there was a change to the structure of the data, the program had
to be changed in order to read the information from the new structure in the proper
order. If a user wanted to look at the data with a new view, a new program had to be
written. The organization of the data and the access techniques for retrieving that data
are built into the application logic and code. This type of system is data dependent.

In a RDBMS, the physical structure of the database may be changed without affecting
application programs or altering the user’s view of the data. These changes may affect
the speed or efficiency of application programs, but the user programs should not have
to be altered. This is possible because the RDBMS uses the abstraction provided by
the data model to make the physical structure of the database transparent to both users
and application programs. The data is translated from the way it is physically stored
and accessed on disk to the representation and access techniques used by the outside
world, or the logical view.

If the physical structure changes, the RDBMS is aware of these changes and still
provides the same logical view. Because the logical view presented to the outside world
remains constant, application programs and user interactions based on the logical view
of the data do not have to be altered to provide for changes in the physical structure.
Therefore, the RDBMS has physical data independence.

 DBMaker Tutorial1

Logical

Sometimes it is necessary to make a change in the logical structure of the data. As long
as the logical view of the existing data remains the same, this should have no effect on
user interactions or application programs. The data model permits the use of abstract
characteristics for instance, names to access data instead of the physical characteristics
used in a file based system. Since adding data will not alter these abstract
characteristics for a data item, no changes in access methods or techniques are
required. Existing programs and user queries will run unaffected, and will only have to
be modified if the new data must be used. Therefore, the RDBMS has logical data
independence.

©Copyright 1995-2012 CASEMaker Inc. 2-8

 1RDBMS Basics 2

©Copyright 1995-2012 CASEMaker Inc. 2-9

2.5 High-Level Language Support

Most databases usually include the capability to use some type of high-level query
language. These high-level languages allow a user to define access and manipulate data
without having to reference the physical storage structure of the database.

High-level query language support omits the need to access information in a database
by means of writing a program that uses the application program interface (API). This
low-level access method is very useful for creating user applications that automate
common and repetitive tasks, but it does not allow any easy way to do one-time ad-
hoc, (unplanned or unexpected), queries. Every time someone wanted to do an ad-hoc
query, a program would have to be written to perform the query. This would involve a
significant amount of effort and training on the part of users, or would greatly increase
the workload for application programmers for a one-time query.

The inclusion of a high-level language makes performing ad-hoc queries a relatively
simple task. Most high-level languages supported by databases use an English-like
syntax that makes them very easy to learn. High-level query languages are very
powerful and are able to perform any functions required of a database. DBMaker uses
Structured Query Language (SQL), the de-facto standard query language used in the
industry today.

 DBMaker Tutorial1

2.6 Transaction Management

Database management systems are designed to store a large amount of information
and provide simultaneous user access. These users may be performing operations on
data simultaneously; some type of transaction management is required to ensure that
the correct sequence of data is written to the database.

What is a Transaction?

A transaction is traditionally defined as a logical unit of work, one or more operations
on a database that must be completed together to leave the database in a consistent
state. A single operation on a database can be a self-contained transaction that must
complete successfully and change the data, or fail and leave the data unchanged.

Multiple operations can make up a single transaction. Suppose two kinds of
information are stored in a database, records of shipments sent to customers and
records of the items currently in stock. When an item is shipped to a customer, it is
added to the shipments list. This is one operation on the database. However, the
quantity of the item shipped must also be subtracted from the items currently in
stock.

If both of these are not completed together, the database will be in an inconsistent
state. The quantity of items in stock will be too high; items shipped, but not
subtracted from items in stock, or too low; items subtracted from items in stock, but
not shipped. Both of these operations together make up a single transaction, and must
complete successfully or both will fail.

If a transaction completes successfully and changes the data, we say the transaction has
been committed. If it fails and leaves the data unchanged, we say it has been rolled
back.

©Copyright 1995-2012 CASEMaker Inc. 2-10

 1RDBMS Basics 2

©Copyright 1995-2012 CASEMaker Inc. 2-11

Concurrency Control

There are usually multiple users that require access to data simultaneously, and delays
may result in decreased productivity. As a result, most databases support concurrent
access. This allows multiple users to access the database simultaneously.

This is does not present a problem if the users are accessing different data, but can
become a problem when they operate on the same data. When two user transactions
operate on the same data without any coordination, the results become unpredictable.
Some transactions may read obsolete data, or modifications that were apparently
completed successfully may be lost.

To prevent these types of events from occurring, transactions are serialized. Two
transactions that are executed concurrently will give the same results as if they were
performed one after the other, and each user can access the database transparently.
Sometimes one transaction must wait for another transaction to finish using a data
item. If the second transaction were allowed to proceed without coordination, the
results would still be unpredictable.

Suppose one transaction modifies a data item and then continues to perform other
operations. While the other operations are being performed, a second transaction
modifies the same data item and continues. Before either transaction can be
committed, the first transaction encounters an error and is rolled back. The RDBMS
returns the database to the state it was in before the transaction occurred, and gives the
data item its original value. The second transaction has not yet been committed; the
value it placed in the data item is lost.

To permit transactions to be serialized and prevent uncoordinated access to the
database, some form of concurrency control is required. Forms of concurrency control
often used by a RDBMS are locks.

The Lock Concept

A lock on a data item permits a RDBMS to guarantee a transaction will have exclusive
access. No other transaction can perform operations on that item while locked. In a
typical multi-user RDBMS, this is not always a practical approach.

 DBMaker Tutorial1

Instead, a more complex model is used:

 Different types of locks exist like share locks and exclusive locks

 Different levels of locks exist like row locks, page locks, and table locks

TYPES OF LOCKS

A share lock allows multiple transactions to access a data item simultaneously, but
with one restriction; the transactions cannot modify the data item. This may occur
when multiple transactions want to read the value of a data item, but will not change
it. In this case, multiple accesses are acceptable because they will not interfere with
each other.

When a transaction wants to modify a data item, allowing other transactions to read
or modify the data item at the same time can lead to inconsistencies in the database.
When a transaction wants to modify a data item, an exclusive lock is used to prevent
other transactions from accessing the data. This allows the transaction to continue
with its other operations, certain that the data item will remain in a stable state for the
duration of its cycle.

A RDBMS may also use different levels of locks, although the reasons behind this are
more for performance issues than concurrency control. In a relational RDBMS, the
smallest data item that can usually have a lock placed on it is the row. These rows are
grouped together forming pages, which are further grouped to produce tables. In a
RDBMS, pages and tables can be locked as a single item, locking all data items
contained within.

LOCK ESCALATION

If a transaction has to access many rows in a page, the time needed to acquire all of the
individual locks and resources used to keep track of items would be quite long. Using
a page lock would reduce the time and resources used, but at the cost of concurrency
for other transactions. If a second transaction wants to acquire a lock on one of the
rows in the same page, it will now be unable to do so. However, this is usually offset
by the gain in performance.

©Copyright 1995-2012 CASEMaker Inc. 2-12

 1RDBMS Basics 2

©Copyright 1995-2012 CASEMaker Inc. 2-13

A similar situation occurs when a transaction accesses many pages in a table, using a
table lock instead of a page lock will decrease the time and resources used at the
expense of concurrency. The level of lock used on a specific data item can be set
manually in the transaction. A RDBMS can use an automatic lock escalation when it
determines that performance will be improved, still maintaining an acceptable level of
concurrency by automatically changing a lock to the next higher level.

 DBMaker Tutorial1

2.7 Integrity Control

People assume that data contained in a database is accurate. This is the primary reason
database systems have evolved, to provide the ability to retrieve accurate data in a
timely manner. To ensure this is true, a RDBMS must have some form of integrity
control. Integrity control ensures that the data is consistent and valid.

Inconsistency can result when there is redundancy in the database, such as when the
same data exists in two separate places in the database and the RDBMS is not aware of
the duplication. It would be possible for a transaction to update only one of the two
entries. After that, the RDBMS could supply incorrect or contradictory information
to users, and clearly be in an inconsistent state. A RDBMS with integrity control will
generate an error if this occurs in a properly designed database.

It is also possible to retain the redundancy in the database, as long as it is controlled.
In this case, the RDBMS is aware of both entries, and any change to one will cause the
RDBMS to update the other one as well. This is generally referred to as a cascading
update. It is possible for the database to temporarily be in an inconsistent state during
the update procedure, the RDBMS would make the data unavailable to users until the
update is finished.

Ensuring data is valid is also an important function of the database. A payroll database
that shows an employee worked 400 hours in a week instead of 40 clearly contains
invalid data. There is no way for the RDBMS to determine if this value is invalid
itself, but a RDBMS with the proper integrity control functions can allow the
Database Administrator to define and implement integrity constraints. These integrity
constraints will check to ensure that data is valid whenever a transaction attempts to
modify data.

©Copyright 1995-2012 CASEMaker Inc. 2-14

 1RDBMS Basics 2

©Copyright 1995-2012 CASEMaker Inc. 2-15

2.8 Access Control

The centralized and multi-user nature of a RDBMS requires that some form of
security control be in place, to prevent unauthorized access and to limit access for
authorized users. Security control can generally be divided into two areas, user
authorization, and transaction authorization.

User Authorization

User authorization protects a database against unauthorized use, usually by requiring
that a user enter a username and a password to gain entry to the system. The password
is usually known only to the user and the RDBMS, and is protected by the system.
The username and password scheme cannot guarantee the security of a database. Tell
users to choose a password that is not easy to guess and does not contain personal
information like the name of a spouse or a pet. Users should never write or post their
password in an insecure location, like on the front of a computer!

Transaction Authorization

Generally, users are not given the same access rights to a database. Sensitive data such
as employee salaries should only be accessible to users who need it. In other cases,
users may only require the ability to read some data items, where other users require
the ability to both read and update the data.

A Point-Of-Sale (POS) system is a good example. Clerks at a store might need read-
access for item prices, but should not be able to change the price. Employees at the
head office may need to read and update the data to enter new prices or items.

Transaction authorization helps to protect a database against an authorized user
intentionally or unintentionally trying to access a data item, they do not have
permission to access. The RDBMS keeps a record of what rights have been granted to
users on all data objects, and checks these rights every time a user’s transaction tries to
access a database. If the user does not have the proper rights to a data item, the

 DBMaker Tutorial1

transaction will not be allowed. It is the responsibility of the Database Administrator
to explicitly grant rights to each user.

©Copyright 1995-2012 CASEMaker Inc. 2-16

 1RDBMS Basics 2

©Copyright 1995-2012 CASEMaker Inc. 2-17

2.9 RDBMS Recovery

A RDBMS may fall victim to a software or hardware failure. Failures are divided into
two types, system failures, and media failures. A method for recovery after a failure is
one of the main advantages a RDBMS has over a file-based system.

System Failures

A system failure occurs when the volatile storage fails in a computer system. Volatile
storage is the term used for the main memory in a computer system. A system failure
may be caused by a power failure, a program/operating system crash, or some other
reason. The most common method of protecting against system failures is the use of a
transaction journal or transaction log.

The transaction journal is a history of all changes made to the database. The exact
state of a transaction in progress cannot be reliably determined in the event of a system
failure and it cannot be completed when the system restarts. The RDBMS uses the
transaction journal to undo all changes that have been written to disk for transactions
that terminated abnormally.

It is possible that a transaction have completed before the system failure, but not all
changes have been written to disk. The data may still be stored in the RDBMS system
buffers at the time of the failure. In this case, the RDBMS uses the transaction journal
to redo or rollover all transactions.

Media Failures

Media failure occurs in a disk storage system. Media failures are usually caused by
physical trauma to the disk itself, such as excessive heat or a head crash resulting from
exposure to vibration or g-forces outside its physical operating limits. There is nothing
to prevent the loss of data on the affected disk. However, the database can be restored
if the database provides archiving or data mirroring.

 DBMaker Tutorial1

©Copyright 1995-2012 CASEMaker Inc. 2-18

Archiving is a backup of a database at periodic intervals, every night for example. This
allows saving a backup copy of every file transaction that has occurred since the last
backup. When a media failure occurs, use the backup copies to reconstruct a database
up to the point in time of the last backup. All changes made since the last backup will
be lost. This type of archiving is suitable for some database systems, but is not robust
enough for critical applications such as electronic banking or airline reservation
systems.

Data mirroring involves continuously creating an archive copy of the entire database.
A copy of the entire database at a single point in time and a duplicate transaction
journal are created. Any changes made to the database are written to both logs
simultaneously, in effect creating two copies of the database. If a media failure occurs
during a log time, then only the part that was not written to the second log will not
survive. There is still a record in the other log, an error message can be sent to the user
notifying them of the loss during recovery.

When using either of these methods, store the backup copies in a location away from
the original database to ensure its survival for restoration.

 1RDBMS Architecture 3

©Copyright 1995-2012 CASEMaker Inc. 3-1

3 RDBMS Architecture

There are two different ways to look at the architecture of a RDBMS: the logical
RDBMS architecture and the physical RDBMS architecture. The logical architecture
deals with the way data is stored and presented to users, while the physical architecture
is concerned with the software components that make up a RDBMS.

 DBMaker Tutorial1

3.1 Logical RDBMS

The logical architecture describes how users perceive data in the database. It is not
concerned with how the data is handled and processed by the RDBMS, but only with
how it looks. The way data is stored on the underlying file system is transparent to the
user. Users can manipulate the data without worrying about where it is located or how
it is actually stored. This results in the database having different levels of abstraction.

The majority of commercial Database Management Systems available today are based
on the ANSI/SPARC generalized RDBMS architecture, as proposed by the
ANSI/SPARC Study Group on Data Base Management Systems. The ANSI/SPARC
architecture divides the system into three levels of abstraction: the internal or physical
level, the conceptual level, and the external or view level.

P hysical
D atabase

U ser V iew U ser V iew

C onceptual
L evel

U ser V iew

S ystem
A dm inistrator

D atabase
A dm inistrator

I nternal or
P hysical

L evel

E xternal or V iew L evel

Figure 3-1: The logical architecture of a typical RDBMS

©Copyright 1995-2012 CASEMaker Inc. 3-2

 1RDBMS Architecture 3

©Copyright 1995-2012 CASEMaker Inc. 3-3

Internal or Physical Level

The collections of files permanently stored on secondary storage devices are the
physical database. The physical or internal level is closest to the physical storage. It
provides a low-level description of the physical database and an interface between the
operating system’s file system and the record structures used in higher levels of
abstraction. It is at this level that record types and methods of storage are defined. It
also defines; how stored fields are represented, what physical sequence the stored
records are in, and what other physical structures exist.

Conceptual Level

The conceptual level presents a logical view of the entire database as a unified whole,
which brings all data in the database together for viewing in a consistent manner. The
first stage in the design of a database is to define the conceptual view; a RDBMS
provides a data definition language for this purpose.

The conceptual level allows a RDBMS to provide data independence. The data
definition language used to create the conceptual level must not specify any physical
storage considerations that should be handled by the physical level. It should not
provide any storage or access details, but should only define the information content.

External or View Level

The external or view level provides a window on the conceptual view, which allows
the user to see only data of interest to them. The user can be either an application
program or an end user. Any number of external schemas can be defined and overlap
each other.

The System and Database Administrators are special cases. Because they have
responsibilities for the design and maintenance of a database, they need to be able to
see the entire database. The external and conceptual views are functionally equivalent
for these two users.

 DBMaker Tutorial1

Mappings between Levels

The three levels of abstraction in a database do not exist independently of each other.
There must be some correspondence or mapping between the levels. There are
actually two mappings, the conceptual/internal mapping, and the external/conceptual
mapping.

The conceptual/internal mapping lies between the conceptual and internal levels, and
defines the correspondence between records and fields in the conceptual view, and the
files and data structures of the internal view. If the structure of the stored database
changes, then the conceptual/ internal mapping must also change. It is this mapping
that provides physical data independence for the database.

The external/conceptual view lies between the external and conceptual levels, and
defines the correspondence between a particular external view and the conceptual
view. Although these two levels are similar, some elements found in a particular
external view may be different from the conceptual view. For example, several fields
may be combined into a single (virtual) field, which can also have different names
from the original fields. If the structure of the database at the conceptual level changes,
then the external/conceptual mapping must change, accordingly so the view from the
external level remains consistent. It is this mapping that provides logical data
independence for the database.

It is also possible to have another mapping, where one external view is expressed in
terms of other external views; this could be called an external/external mapping. This
is useful if several external views are closely related to one another. It allows a user to
avoid mapping each of the similar external views directly to the conceptual level.

©Copyright 1995-2012 CASEMaker Inc. 3-4

 1RDBMS Architecture 3

©Copyright 1995-2012 CASEMaker Inc. 3-5

3.2 Physical RDBMS

The physical architecture describes the software components used to enter and process
data, and how these software components interconnect. At its most basic level, the
physical RDBMS architecture can be broken down into two parts, the back end, and
the front end.

The back end is responsible for managing the physical database and providing the
necessary support and mappings for the internal, conceptual, and external levels.
Other benefits of a RDBMS, such as security, integrity, and access control, are also the
responsibility of the back end.

The front end consists of any application that runs on top of the RDBMS. These may
be applications provided by the RDBMS vendor, the user, or a third party. The user
interacts with the front end, and may not even be aware that the back end exists.

The back end and front end can be further broken down into the software
components that are common in most types of RDBMS.

 DBMaker Tutorial1

Physical
Database

Database
Utilities

User
Applications

API

Front End

Back End

End User

Transaction
Manager

File Manager

Parser Optimizer

DBMS Engine

Query Language Processor

Figure 3-2: Common functions and components of a RDBMS

Applications and Utilities

Applications and utilities are the main interface to the RDBMS for most users. There
are three main sources of applications and utilities for a RDBMS a vendor, a user, and
third parties.

VENDOR APPLICATIONS

Vendor applications and utilities are provided for working with or maintaining the
database, and allow users to create and manipulate a database without the need to
write custom applications. These are usually general-purpose applications and are not
the best tools to use for doing specific, repetitive tasks.

©Copyright 1995-2012 CASEMaker Inc. 3-6

 1RDBMS Architecture 3

©Copyright 1995-2012 CASEMaker Inc. 3-7

USER APPLICATIONS

User applications are custom-made application programs written for a specific purpose
using a conventional programming language. This programming language is coupled
with the RDBMS query language through the API. This allows the user to utilize the
power of the RDBMS query language with the flexibility of a custom application.

THIRD PARTY APPLICATIONS

Third party applications may be similar to those provided by the vendor with
enhancements, or they may fill a perceived need that the vendor has not included with
the application. They can also be similar to user applications, written for a specific
purpose they think a large majority of users will need.

APPLICATIONS AND UTILITIES LIST

The most common applications and utilities used with a database fall into several well-
defined categories:

Command Line Interfaces

Character-based, interactive interfaces that directly use the full power and
functionality of a RDBMS query language. They allow manipulation of a database,
perform ad-hoc queries, and see the results immediately. They are often the only
method of exploiting the full power of a database without creating programs using a
conventional programming language. DBMaker includes the command line interface
dmSQL.

Graphical User Interface (GUI) tools

Graphical, interactive interfaces that hide the complexity of the RDBMS and query
language behind an intuitive, easy to understand, and convenient interface. This
allows casual users the ability to access the database without having to learn the query
language, and it allows advanced users to quickly manage and manipulate the database
without the trouble of entering formal commands. Graphical interfaces usually do not
provide the same level of functionality as a command line interface because it is not
always possible to implement all commands or options. DBMaker 5.3 includes three
GUI tools: JConfiguration Tool, JServer Manager and JDBA Tool.

 DBMaker Tutorial1

Backup/Restore Utilities

Designed to minimize the effects of a database failure and ensure a database is restored
to a consistent state when a failure does occur. Manual backup/restore utilities require
the user to initiate the backup, while automatic utilities will backup the database at
regular intervals without any intervention from the user. Proper use of a
backup/restore utility allows a RDBMS to recover from a system failure correctly and
reliably.

Load/Unload Utilities

Allow the user to unload a database or parts of a database and reload the data on the
same machine, or on another machine in a remote location. This can be useful in
several situations; creating backup copies of a database at a specific point in time, or
for loading data into a new version of the database, or into a completely different
database. These load/unload utilities may also be used for rearranging the data to
improve performance, such as clustering data together in a particular way or
reclaiming space occupied by data that has become obsolete.

Reporting/Analysis Utilities

Used to analyze and report on the data contained in a database. This may include
analyzing trends in data, computing values from data, or displaying data that meets
some specified criteria, and then displaying or printing a report containing this
information.

Application Program Interface (API)

The application program interface (API) is a library of low-level routines, which
operate directly on the database engine. The API is usually used when creating
software applications with a general-purpose programming language, for instance C++
or Visual Basic. This allows a user to write custom software applications to suit the
needs of a business, without having to develop the storage architecture. The database
engine handles the storage of the data. The input and any special analysis or reporting
functions are handled by the custom application.

©Copyright 1995-2012 CASEMaker Inc. 3-8

 1RDBMS Architecture 3

©Copyright 1995-2012 CASEMaker Inc. 3-9

An API is specific to each RDBMS, and a program written using the API of one
RDBMS cannot be used with another RDBMS. Each API usually has its own unique
function calls that are tied very tightly to the operation of the database. Even if two
databases have the same functionality, they may use different parameters and
functions, depending on how the database was designed. One exception to this is the
Microsoft Open Database Connectivity API, designed to work with any RDBMS that
supports it.

Query Language Processor

The query language processor is responsible for receiving query language statements
and changing them from the English-like syntax of the query language to a form the
RDBMS can understand. The query language processor usually consists of two
separate parts, the parser, and the query optimizer.

PARSER

The parser receives query language statements from application programs or
command-line utilities and examines the syntax of the statements to ensure they are
correct. The parser breaks a statement down into basic units of syntax and examines
them to make sure each statement consists of the proper component parts. If the
statements follow the syntax rules, the tokens are passed to the query optimizer.

QUERY OPTIMIZER

The query optimizer examines the query language statement, and tries to choose the
most efficient way of executing the query. The optimizer will generate several query
plans to perform operations in different orders, and then try to estimate which plan
will execute most efficiently. The query optimizer may examine CPU time, disk time,
network time, sorting methods, and scanning methods, when making the estimate.

 DBMaker Tutorial1

©Copyright 1995-2012 CASEMaker Inc. 3-10

RDBMS Engine

The RDBMS engine is the heart of the RDBMS, and it is responsible for all data
management. The RDBMS engine usually consists of two separate parts, the
transaction manager and the file manager.

TRANSACTION MANAGER

The transaction manager maintains tables of authority and concurrency controls. The
RDBMS may use authorization tables to allow the transaction manager to ensure the
user has permission to execute the query language statement on the database. The
authorization tables can only be modified by authorized user commands, which are
checked against the tables of authority. A database may also support concurrency
control tables to prevent conflicts when simultaneous, conflicting commands are
executed. The RDBMS check the concurrency control tables before executing a query
language statement to ensure that it is not locked by another statement.

FILE MANAGER

File manager is responsible for a database’s physical input/output operations. It is
concerned with the physical address of data on a disk and is responsible for any
interaction, reads or writes with the host operating system.

 1 Databases 4

©Copyright 1995-2012 CASEMaker Inc. 4-1

4 Databases

With DBMaker, a user can easily create and manage a database. Extensive cross-
platform support and a unique open architecture allow the user to deploy a database
application across several platforms, and easily migrate to larger systems as the system
grows. Easily scale from a small single-user database on a notebook computer all the
way to a large multi-user database distributed around the world.

This book is intended to instruct you primarily on using the command-line utility
dmSQL to perform database management functions. DBMaker also provides JTools;
graphical utilities that simplify database management.

In this chapter you will learn:

 How to choose a valid name for a database

 How to partition data

 How to start the dmSQL command-line tool

 How other DBMaker utilities can be used to perform database management
routines

 How to create a database

 How to configure a database

 How to start and terminate a database

 How to connect to and disconnect from a database

 DBMaker Tutorial1

4.1 Naming Conventions

With DBMaker, it is possible to have several databases running on a single computer
at the same time. In order to tell DBMaker which database to connect to, you need
some way to identify one database from another. DBMaker does this using a naming
scheme.

DBMaker stores configuration information for all local and remote databases in the
dmconfig.ini file, using the same name for two different databases will cause a
conflict. DBMaker will not be able to tell which of the configuration sections is for
which database, and may write the configuration information in the wrong place.
Check the section headings in the dmconfig.ini file to see the database names that
already exist and choose a new unique database name.

Carefully choose a name from one to thirty-two characters in length to use before
executing the CREATE DB command. A database name can contain letters, numbers,
and the underscore character and cannot be changed once created.

 Example
Tutorial
Parts_db
Region_1
1_Region

Database names are not case-sensitive. This means that Tutorial can be entered when
creating the database and users can logon using tutorial and TUTORIAL. Tutorial is
the name of the database that will be used throughout this book.

©Copyright 1995-2012 CASEMaker Inc. 4-2

 1 Databases 4

©Copyright 1995-2012 CASEMaker Inc. 4-3

4.2 dmconfig.ini File

DBMaker stores all configuration information for each database, including the
database name, in a file called the dmconfig.ini file. This file contains a database
configuration section for each database that a user can connect. The dmconfig.ini file
is a regular ASCII text file, and can be edited with any text editor.

DBMaker also provides a GUI Tool, the JConfiguration Tool, to simplify
maintenance of the dmconfig.ini file. Its descriptive interface reduces the time needed
to become familiar with DBMaker configuration parameters, and organizes the
parameters into clearly defined categories.

In most cases, DBMaker looks at the configuration information when a database
starts. If you change this information after starting a database, it will not take effect
until the next time the database starts. However, there are some configuration
parameters that are only required when connecting to a database. You can change this
information anytime before connecting to the database, and the new values will be
used when the next connection is made.

The configuration parameters play an important role in the performance of DBMaker.
You should be aware of the effects of each configuration parameter and estimate the
best values to use to ensure DBMaker will run smoothly. Refer to the Database
Administrator’s Reference for a full description of the configuration parameters and the
keywords DBMaker uses to control them.

Creating

A user should not normally need to create a new dmconfig.ini file, since the
DBMaker installation program will automatically create one. When creating a
database, DBMaker will examine the dmconfig.ini file and look for a configuration
section name that corresponds to the name of the new database. If it finds a matching
configuration section, it will then check for any creation-time configuration options,
and use the values when it creates the new database.

 DBMaker Tutorial1

A user should create the database configuration section with a text editor before
creating a database, if any creation-time options use a value other than the default
value, so the parameters will take effect when creating the database. If DBMaker
cannot find a configuration section in dmconfig.ini while creating a database, it will
automatically create the section in the first dmconfig.ini file it finds or in a new
dmconfig.ini file if it cannot find an existing one. When DBMaker creates a new
configuration section, it uses the default values for all creation-time configuration
options. In general, the default values for the creation-time configuration options
should be fine for most databases.

Directory

On Windows systems, the dmconfig.ini file is in the Windows directory. When using
Windows 98, Windows ME, Windows NT 4.0 or Windows 2000, a user can also
open the dmconfig.ini file from the Start menu. Click the Start button, point to
Programs > DBMaker 5.3> DBMaker Configuration File (dmconfig.ini).

On UNIX systems, the dmconfig.ini configuration file can be in one of three
locations. When starting a database, DBMaker will scan these three locations in the
order listed below to locate a dmconfig.ini file with a section name that corresponds
to the database:

1. The current directory

2. The directory specified in the environment variable of DBMAKER

3. DBMaker’s installation directory: ~dbmaker/Version

If a dmconfig.ini file and the section name are found, the keywords defined in that
section will be used. If the section name cannot be found in that file, DBMaker will
continue searching for a dmconfig.ini file in the next directory until successful.

Format

The dmconfig.ini file is divided into sections called database configuration sections.
Every database has its own database configuration section, and the values in that
section control the configuration operations for that database.

©Copyright 1995-2012 CASEMaker Inc. 4-4

 1 Databases 4

©Copyright 1995-2012 CASEMaker Inc. 4-5

Each database configuration section is made up of a section header followed by one or
more keyword lines. The section header is the name of the database enclosed in square
brackets. The keyword lines consist of a keyword and a corresponding value or values.

 Example
[section_header_1]
keyword1 = value1 ;text following a semicolon is a comment
keyword2 = value2
 .
 .
[section_header_2]
keyword3 = value3 value4 ;spaces or commas may be used
keyword4 = value5 ;as delimiters between values
 .
 .

Keywords in the dmconfig.ini file are not case-sensitive. Values may or may not be
case-sensitive, depending on the keyword and the operating system the database is
running on.

Section Names

The name of each section corresponds to the name of the database that will use the
configuration options found in that section when it starts up. The section name
begins with a left square bracket ([) followed by the name of the database, and ends
with a right square bracket (]). The brackets are required to enclose the section name,
and the left bracket must be the first character on the line.

Keywords

Following each section name is a list of keywords and their values. These values will be
used by the database that corresponds to the section heading when it starts. The
statement keyword = value assigns the specified value to a keyword. If a keyword
requires or supports multiple values, separate individual values with either spaces or
commas. The value can be an integer or a string.

If DBMaker cannot find a keyword in dmconfig.ini, it will use a default value.
Depending on their purpose, keywords may be used at either start time or connect

 DBMaker Tutorial1

time. For a complete list of keywords and their values, refer to the Database
Administrator’s Guide, Appendix B.

Comments

Any string or symbol that is written after the semi-colon (;) is considered a comment
and ignored by DBMaker. You can use comments to remind a user what a keyword is
for, why you chose a specific value for a keyword, or what the original value for a
keyword was if changing it temporarily.

©Copyright 1995-2012 CASEMaker Inc. 4-6

 1 Databases 4

©Copyright 1995-2012 CASEMaker Inc. 4-7

4.3 dmSQL

dmSQL is a character-based, interactive user interface that utilizes the full power and
functionality of the SQL query language found in DBMaker. Use dmSQL to
manipulate the database, perform ad-hoc SQL queries, and to see result sets
immediately. dmSQL is often the only method of exploiting the full power of a
database without creating programs using a conventional programming language.

Starting

Most of the examples in this tutorial use dmSQL, you need to know how to start this
application, and should familiarize yourself with the program before using it. You will
learn how to configure a new database for client/server operation later in this chapter.

WINDOWS

On Windows platforms, the functionality of both dmsqls and dmsqlc has been
combined into a single program, dmsql32.exe.

 To start the dmSQL command-line utility in Windows98 or WinNT:

1. Click the Start button

2. Select Programs, then select DBMaker, and click dmSQL

3. The dmSQL application starts

UNIX

The UNIX versions of DBMaker provide a single-user version (dmsqls) and a
client/server version (dmsqlc) of the dmSQL application. Use dmsqls to create a
database in UNIX for a single-user or client/server database.

 To start the dmSQL command-line utility in UNIX:

1. At the command line, type:
cd ~DBMaker/<current version>/bin

 DBMaker Tutorial1

NOTE: Substitute <current version> for the version of DBMaker, e.g., 5.3.

2. Press ENTER

3. Type the following command on the command line:
dmsqls

4. Press ENTER

5. The dmSQL application starts

Workspace

After starting dmSQL, the dmSQL workspace displays on Windows systems, or the
dmSQL> command-line prompt on UNIX systems.

Figure 4-1: A Windows version of dmSQL

The dmSQL window contains the following areas:

 Title Bar—The title bar displays the program name (“dmSQL”) and the
Minimize, Maximize, and Close buttons

 Menu Bar — The menu bar displays dmSQL pull-down menu titles. Each menu
contains a list of related commands

©Copyright 1995-2012 CASEMaker Inc. 4-8

 1 Databases 4

©Copyright 1995-2012 CASEMaker Inc. 4-9

 Toolbar — The toolbar is a palette of command buttons and drop-down list
boxes for many commonly used functions

 Command Entry Area — The command entry area is the main window in the
dmSQL workspace to enter commands, and where dmSQL runs scripts and
displays text.

 Status Bar — The status bar describes the current activity in the workspace, and
displays the current time.

 DBMaker Tutorial1

4.4 JTools

DBMaker provides three Java-based, cross-platform utilities for managing databases.
The tools provide an easy-to-use, intuitive interface and are designed to quickly
familiarize you with the database. Each of the JTools comes with its own
documentation and content-sensitive on-line help. JTools can be used on any
operating system that supports ODBC. The following sections introduce these tools
and their functions, but further discussion is beyond the scope of this book. For more
information, refer to each tool’s respective documentation.

JConfiguration Tool

As mentioned in section 4.2 dmconfig.ini File, the JConfiguration tool manages the
database’s configuration parameters. JConfiguration tool provides a descriptive
interface that allows you to configure a database without needing to remember the
meanings of keywords in the dmconfig.ini file and their possible values. On Windows
operating systems, you can start the JConfiguration Tool by clicking
Start>Programs>DBMaker 5.3>JConfiguration Tool. For detailed instructions on
how to use JConfiguration Tool, refer to the JConfiguration Tool Reference or the help
provided with the tool.

JServer Manager

JServer Manager provides a simple graphical interface for performing the most
common database management routines: creating, starting, shutting down, deleting,
backing up, and restoring databases. Using JServer Manager is beyond the scope of
this book, however, examples of how to backup and restore a database using JServer
Manager are included in Chapter 9, Database Recovery. JServer Manager is highly
recommended to help simplify these routines. On Windows operating systems, you
can start the JServer Manager by clicking Start>Programs>DBMaker 5.3>JServer
Manager. For detailed instructions on how to use JServer Manager, refer to the JServer
Manager User’s Guide or the help provided with the tool.

©Copyright 1995-2012 CASEMaker Inc. 4-10

 1 Databases 4

©Copyright 1995-2012 CASEMaker Inc. 4-11

JDBA Tool

JDBA Tool gives a clear and functional view of the logical organization of an
individual database. Database administrators may use it to create, drop, and alter
schema objects. On Windows operating systems, you can start the JDBA Tool by
clicking Start>Programs>DBMaker 5.3>JDBA Tool. For detailed instructions on how
to use JDBA Tool, refer to the JDBA Tool User’s Guide or the help provided with the
tool.

 DBMaker Tutorial1

4.5 Creating a Database

Creating the database is probably the simplest part of designing and implementing a
database in DBMaker. To create the Tutorial database, simply type the CREATE
DATABASE command with Tutorial being the database name.

Tutorial Database

 To create the Tutorial database using dmSQL:

1. Type the following at the dmSQL command prompt:
CREATE DATABASE Tutorial;

2. Press ENTER.

3. The following line displays on the screen:
USE db #1 connected to db:<Tutorial> by user:<SYSADM>

The command creates an empty database named Tutorial. Before it creates the
database, it looks in the dmconfig.ini file to see if a section with the name already
exists. If it does already exist, DBMaker will use the keyword values for the creation-
time configuration options from that section to create the new database.

In the Tutorial example, you did not create a database configuration section before
creating the database; DBMaker will create one and use the default values for all
creation-time configuration options.

Connection Handles

A database can have as many as eight simultaneous connections using dmSQL.
DBMaker uses the term USE to indicate which database connection is currently
active.

This USE is also known as a connection handle. There are eight connection handles,
from USE#1 up to USE#8. The first database connection you make is on USE#1, the
second on USE#2, and all the way up to USE#8. To view all currently connected
databases in dmSQL, enter the USE command at the dmSQL command line.

©Copyright 1995-2012 CASEMaker Inc. 4-12

 1 Databases 4

©Copyright 1995-2012 CASEMaker Inc. 4-13

USE COMMAND

After executing this command, dmSQL will display a list of all databases currently
connected. In this case there is only one database so there is only one connection
handle (USE#1). This indicates that the database created named Tutorial has one
handle, USE#1, and a user connected with the username SYSADM.

 To view all currently connected databases using dmSQL:

1. Type USE at the dmSQL command prompt:
dmSQL> USE;

2. Press ENTER

3. The following displays:
dmSQL> USE;
USE db #1 connected to db:<TUTORIAL> by user:<SYSADM>(CURRENT)

4. The following shows more than one database connection:
dmSQL> use;
USE db #1 connected to db:<TUTORIAL> by user:<SYSADM>(CURRENT)
USE db #2 connected to db:<DBSAMPLE> by user:<SYSADM>
USE db #3 connected to db:<EXDM35> by user:<SYSADM>

In this example, you can see that the currently connected database is Tutorial,
indicated by the text (CURRENT) after the connection information.

To connect to a database with a connection handle other than USE#1, change to a
USE# to connect to before making the connection. To change to another connection
handle in dmSQL, enter the USE command followed by the number of the
connection handle at the dmSQL command line.

 To change to connection handle number two using dmSQL:

1. Type USE 2 at the dmSQL command prompt:
dmSQL> USE 2;

2. Press ENTER

Default User

When creating a database, a user automatically connects with the SYSADM
username. The SYSADM has the highest authority in a database and can create new

 DBMaker Tutorial1

user accounts, has all rights, and privileges on all database objects. However, since you
just created your database, there are not any database objects in the database.

When creating a new database it automatically starts in single-user mode, which only
allows one user connection at a time. This allows the opportunity to change the
SYSADM password from the default value (no password). If the SYSADM password
is not changed, anyone could use the SYSADM account to connect to the database
and gain full control over it. Details on changing the SYSADM password will appear
in a later section.

To allow other users to connect, run the database in one of the multiple-user modes.
This can be single-user mode on UNIX, multiple-connection mode on Windows, or
client/server mode on Windows and UNIX. To run the database in multiple-
connection mode, terminate the database and then restart it. To run it in client/server
mode, terminate the database and add some additional keywords in the dmconfig.ini
file.

 To terminate the Tutorial database using dmSQL:

1. Type TERMINATE DATABASE at the dmSQL command prompt:
TERMINATE DATABASE;

2. Press ENTER.

©Copyright 1995-2012 CASEMaker Inc. 4-14

 1 Databases 4

©Copyright 1995-2012 CASEMaker Inc. 4-15

4.6 Database Modes

DBMaker can start your database in several different modes. Each mode provides
different options for connecting to and accessing a database, adding the ability to up-
scale the database from a simple single-user system on one computer to a large multi-
user system distributed across several computers.

The database modes available depend upon the platform the database server runs on,
and how you want to connect. DBMaker has three database modes, single-user,
multiple-connection, and client/server.

Single-User Mode

Single-User mode is only available on UNIX or Linux platforms. This is a simplified
version of DBMaker for non-sharable databases. The main advantages of this mode
are the smaller application size and faster execution speed for most database
operations; locks, security, and network support are not required for a single user
database. A limitation of this mode is that only one connection can be made to the
database at a time and the database cannot run any of the extra servers or daemons;
backup server, replication server, or global transaction server. The database is not
available over the network so a user must access the database from the host machine.
There is no special configuration required for using single-user mode on UNIX, other
than remembering that there is no security.

Multiple-Connection Mode

Multiple-Connection mode is only available on the Windows platform. One
advantage of this mode is multiple connections to a database, with the full range of
security and reliability features of DBMaker. Similar to single-user mode, all
connections must access the database from the host machine, since there is no network
support. A limitation of this mode is that the database does not support any of the
extra servers or daemons: backup server, replication server, or global transaction server.

 DBMaker Tutorial1

There is no special configuration required for using multiple-connection mode on a
Windows platform, other than remembering that there is no network support.

Client/Server Mode

Client/Server mode is available on all platforms. This mode permits multiple
connections to a database from any computer connected to the host computer via a
TCP/IP network, and provides the full range of security, reliability, and concurrency
control features of DBMaker. In addition, data sent across the network can be
encrypted for additional security. This mode supports all of the extra servers and
daemons; backup server, replication server, and global transaction server. Client/server
mode requires some configuration to work properly. To run a database you must be
connected to a TCP/IP network, and have TCP/IP network protocol support installed
on all computers that will be used to connect to the database.

CHANGES TO DMCONFIG.INI

After making the changes to the dmconfig.ini file, restart the database in client-server
mode with the DBMaker server and then connect with a client application, such as
dmSQL.

Add these lines to the [Tutorial] section in the dmconfig.ini file for Client/server
mode:
[TUTORIAL]
DB_DBDIR=C:\DBMAKER\TUTORIAL\DATABASE
DB_USRID=SYSADM
DB_SVADR=127.0.0.1
DB_PTNUM=54321

DB_SVADR

The DB_SvAdr keyword is required on both the client and server sides when running
a database in client/server mode. This keyword specifies the IP address of the
computer that will be acting as the server for the database. You should replace the
number shown above with the IP address of your computer. Note, if your operating
system is using Domain Name System (DNS), you may use the DNS name of the
server you have installed DBMaker on in place of the IP address.

©Copyright 1995-2012 CASEMaker Inc. 4-16

 1 Databases 4

©Copyright 1995-2012 CASEMaker Inc. 4-17

DB_PTNUM

The DB_PtNum keyword is required on both the client and server sides when
running a database in client/server mode. This keyword specifies the port number the
server will listen for connection requests on.

STARTING CLIENT/SERVER

Use the DBMaker server to start a client/server database. The DBMaker server starts
the database and waits for database clients, such as dmSQL, to connect. After a client
connects, it accepts commands and returns the results. Only a user with DBA or
SYSADM authority can start a database. When running the DBMaker Server, provide
the name of the client/server database, a username, and password.

Use the CONNECT command to connect to a database. The command works for
single-user, multiple-connection, and client/server databases, but remember to start
the database first when using a client /server. The CONNECT command has three
parameters: the database name, the username, and the user password. Use the
SYSADM username with no password for now.

Use the DISCONNECT command to disconnect from a database in Windows and
the TERMINATE DB command in UNIX. The commands work for single-user,
multiple-connection, and client/server databases. The commands do not have any
parameters, they simply disconnect from the database on an active connection handle.

Windows

 To start a client/server database in Windows:

1. Click the Start button

2. Select Programs then select DBMaker, and click DBMaker Server

3. The DBMaker Server application starts and displays the Start Database dialog

4. In the Database Name box, select TUTORIAL

5. In the Username box, type SYSADM

6. Type the following command at the dmSQL command prompt:
dmSQL> CONNECT TO TUTORIAL SYSADM;

 DBMaker Tutorial1

7. Press ENTER

8. To close the database, at the dmSQL command prompt type:
dmSQL> DISCONNECT;

9. Press ENTER

UNIX

 To start dmServer in UNIX:

1. At the command line, type:
$ cd ~DBMaker/<current version>/bin

NOTE: Substitute <current version> for the DBMaker version number, e.g.,
5.3.

2. Press ENTER.

3. The current directory changes to the: ~dbmaker/version number/bin.

4. At the command line, type:
$ dmserver -u SYSADM TUTORIAL

5. Press ENTER

6. The DBMaker Server starts and runs the Tutorial database

7. The following message appears:
DBMaker (current version number)
Copyright 1995-2009 CASEMaker Inc. All rights reserved.
SQL Server bound to port 54321
The database has started successfully.
Database Server is running in the background mode.
Process ID = 28030

8. At the command line, type:
$ dmsqls

9. Press ENTER

10. The dmSQL application starts

11. Type the following command at the dmSQL command prompt:
dmSQL> CONNECT TO TUTORIAL SYSADM;

12. Press ENTER

13. To close the database, at the dmSQL command prompt type:
dmSQL> TERMINATE DB;

©Copyright 1995-2012 CASEMaker Inc. 4-18

14. Press ENTER

 1Tables 5

©Copyright 1995-2012 CASEMaker Inc. 5-1

5 Tables

The database exists and is ready for use, but there is no place to store data yet. Think
of this as an empty filing cabinet; without file folders, there is no place to store
information. In the database, you need to create tables before storing information.

Before creating tables, consider where to locate them and what type of data will be
placed in them.

 DBMaker Tutorial1

5.1 Tablespaces

A DBMaker database can be partitioned into several logical areas of storage known as
tablespaces. This allows the database to be divided into manageable areas for logical
reasons; tables contain related data, or physical reasons; data must be placed on
different disks. This groups data or splits data between different physical disks to
speed up access time.

Tablespaces can be either fixed in size or automatically extensible. Tablespaces that are
fixed in size are called regular tablespaces, and tablespaces that can have their size
automatically extended are called autoextend tablespaces. DBMaker also has special
tablespaces called the system tablespace and the Default User tablespace.

Regular Tablespaces

A regular tablespace has a fixed size and contains one or more data files. A file too
small to hold all data that you wish to store in it can be enlarged manually or
alternatively another file added. A regular tablespace can have up to 32,767 data files,
provided the total number of data pages in all files is 8 GB or less. A regular tablespace
can be changed to an autoextend tablespace.

Autoextend Tablespaces

An autoextend tablespace will grow to contain data in a file as it is added. An
autoextend tablespace can be converted to a regular tablespace if you don’t wish the
tablespace to expand any further or when it is reaching the 8 GB size limit. By default,
new tablespaces are autoextend tablespaces. The initial size of a data file in an
autoextend tablespace will be the number of pages specified in the dmconfig.ini.

System Tablespace

All DBMaker databases contain an autoextend system tablespace. Whenever a
database is created, DBMaker generates a system tablespace to record the system catalog

©Copyright 1995-2012 CASEMaker Inc. 5-2

 1Tables 5

©Copyright 1995-2012 CASEMaker Inc. 5-3

tables. The system catalog tables are managed by DBMaker and contain detailed
information and statistics about everything stored in the database. Other tables cannot
be stored in the system tablespace.

Default User Tablespace

All DBMaker databases also contain an autoextend default tablespace. Whenever
creating a database, DBMaker generates an empty tablespace to store user tables. All
tables created are stored there by default. Specify the tablespace directory when
creating a table to be stored within another tablespace.

The Temporary Tablespace

When users call “create temporary table” or “select into” statement, ETTs will be
generated and stored into “TMPTABLESPACE ”. Users can create temp tables in
TMPTABLESPACE(of course system will default store ETT in
TMPTABLESPACE), but users can’t create any permanent table in
TMPTABLESPACE. Users can do “ALTER TABLESPACE TMPTABLESPACE
SET AUTOEXTEND OFF/ON;” and “ALTER DATAFILE DB_TMPDB/
DB_TMPBB ADD n PAGES;” ,but users can not add files to TMPTABLESPACE or
drop files from TMPTABLESPACE TMPTABLESPACE will be created when a
database is created, and the size will be reset to default size when the database is started
up.

 Users can’t create temporary tables in any other tablespace which is not
TMPTABLESPACE

The temporary tablespace（TMPTABLESPACE）is only used to store external temp
tables(ETT). The temporary tablespace also is an auto-extend tablespace. It have
exactly two types of files: data files and BLOB files. Data files’ logical name is
DB_TMPDB, and the physical name is DB_TMPDIR/DBNAME.TDB; BLOB files’
logical name is DB_TMPBB, and the physical name is
DB_TMPDIR/DBNAME.TBB.

 DBMaker Tutorial1

 Users can’t create any permanent tables which is not ETT in
TMPTABLESPACE.

 Users can’t add files to TMPTABLESPACE and drop files from
TMPTABLESPACE

 Users can’t drop TMPTABLESPACE.

©Copyright 1995-2012 CASEMaker Inc. 5-4

 1Tables 5

©Copyright 1995-2012 CASEMaker Inc. 5-5

5.2 Data Types

Choose a data type when defining a field in a table. Choosing the wrong data type can
waste space, or make the application program take extra steps to convert data into a
usable form. DBMaker supports 22 different data types.

BIGINT

The BIGINT data type is an exact signed numeric data type with a precision of
nineteen and a scale of zero. The BIGINT data type uses 8 bytes of storage and has a
maximum value of 9,223,372,036,854,775,807 and a minimum value of
•9,223,372,036,854,775,808.

If attempting to move a value larger than the permitted maximum value from a data
type such as BIGINT or INTEGER, DBMaker displays a conversion error and does
not move the data.

e.g., 37654

 857823

BIGSERIAL (start)

The BIGSERIAL data type is a special data type that provides a sequence of
consecutive values. DBMaker allocates an integer number for each table contained in a
database and uses those numbers to generate a unique sequence for the corresponding
table. DBMaker manages and maintains these integer numbers internally. The value
of each integer value is automatically increased by one each time it is used.

Providing an integer value for the optional START parameter when defining a
BIGSERIAL column can specify the first value in a number sequence, or the START
parameter omitted to use the default value of 1. Each table in a database can have only
one column with the BIGSERIAL data type.

 DBMaker Tutorial1

The internal value used to generate a BIGSERIAL number is actually an integer value;
the BIGSERIAL data type shares all of the properties of the BIGINT data type. It is
an exact signed numeric data type with a precision of 19 and a scale of 0, which
occupies 8 bytes of storage. The BIGSERIAL data type also has the same range of
values as the BIGINT data type, with a maximum value of
9,223,372,036,854,775,806 and a minimum value of -9,223,372,036,854,775,808.

Place a NULL, or empty value in the BIGSERIAL column when inserting a new row
to insert a sequential number into a BIGSERIAL column. DBMaker will insert the
sequential number for that table into the BIGSERIAL column of the new record, and
automatically increase the internal value by one.

If inserting a new column, and supplying an integer value for the BIGSERIAL instead
of a NULL or empty value, DBMaker will use the supplied integer value instead of the
next sequential number; the internal value will not be incremented by 1. If the
supplied integer value is greater than the last sequential number generated, DBMaker
will reset the sequence of generated sequential numbers to start with the supplied
integer value.

e.g., 10000, 10001, 10002, 10003, 10004, 10005, 10006, 10007

10000, 10001, 5000, 10002, 10003, 11000, 11001, 11002

BINARY (size)

The BINARY data type is a fixed-length data type that can contain any binary value.
The minimum length of BINARY columns is 1 byte and the maximum length is 3992
bytes. Enter a value for the size parameter when creating a BINARY column. Any data
entered in a BINARY column shorter than the column length is padded with a zero-
value byte.

Enter character data by enclosing the data in single quotes (‘ ’), the same as when
entering CHAR data. However, in BINARY columns the data is stored as
hexadecimal values representing the ASCII code of the characters, not as the actual
characters entered.

©Copyright 1995-2012 CASEMaker Inc. 5-6

 1Tables 5

©Copyright 1995-2012 CASEMaker Inc. 5-7

Alternatively, enter hexadecimal values directly by enclosing them in single quotes and
appending the ‘x’ character (‘ ’x) to indicate the string contains a hexadecimal value. It
requires two digits to represent all possible values for each byte in hexadecimal; use an
even number of digits when entering values.

e.g., ‘AaBbCcDdEe’

 ‘41614262436344644565’x

CHAR (size)

The CHAR data type is a fixed-length data type that can contain any character from
the keyboard. CHAR columns can have a minimum length of 1 byte, and a maximum
length of 3992 bytes. Enter a value for the size parameter when creating a CHAR
column.

Any CHAR data in a column that is shorter than the column length is padded with
spaces. When entering CHAR data, enclose it in single quotes (‘ ’). Double-byte
characters occupy two bytes. If using double-byte characters, account for this when
specifying the length of the column.

e.g., ‘This is a CHAR string.’

 ‘This is another CHAR string.’

DATE

There are two types of DATE data; DATE literal and DATE constant. Date literal
represents the present date. DATE constant is a set point in time. The DATE data
type is a fixed-length that contains the calendar date (year, month, and day). The
DATE data type uses 4 bytes of storage. Valid values for the year are from 0001 to
9999.

The DATE data type has multiple input/output formats. If the values in the database
do not appear correctly, or you are not able to enter dates you think are valid, check
the date input/output formats to ensure that they are correct.

e.g., ‘0001/01/01’

 ‘1999/12/31’

 DBMaker Tutorial1

DECIMAL (NUMERIC)

The DECIMAL data type is an exact signed numeric value with a variable precision
and scale. Precision refers to the total number of digits in the mantissa, both to the left
and to the right of the decimal point. The default value for precision is 17 with a
maximum value of = 38. Scale refers to the number of digits to the right of the
decimal point. The default value for scale is 6.

The amount of storage used by a DECIMAL column is based on the actual value
entered, not on the default precision and scale values or the precision and scale values
entered when defining the column.

To calculate the amount of storage, use the following formula:

2
2

1
 bytes of # +

+
=

p

For example, the number 9283.83 would be stored as 6 bytes.

The actual calculation used is:

5.5

2
2

16

2
2

1
 bytes of #

=

+
+

=

+
+

=
p

If you attempt to move a value larger than the allowed maximum from a data type
such as FLOAT or DOUBLE, DBMaker displays a conversion error and does not
move the data. The DECIMAL data type may be abbreviated as DEC.

e.g., 3452.8373645

 736.383732652

©Copyright 1995-2012 CASEMaker Inc. 5-8

 1Tables 5

©Copyright 1995-2012 CASEMaker Inc. 5-9

DOUBLE

The DOUBLE data type is an approximate signed numeric data type with a mantissa
of precision 15. Precision refers to the total number of digits in the mantissa, both to
the left and to the right of the decimal point. The DOUBLE data type uses 8 bytes of
storage and has a valid input range from 1.0E308 to –1.0E308.

The smallest valid input values are 1.0E-308 and –1.0E-308.

e.g., 2.89837457884451E285

 -1.93873634847372E-174

FILE

The FILE data type is a structured data type that occupies 48 bytes of storage. This
data type is similar to the CLOB and BLOB data types and stores the contents of any
existing file as an external file that DBMaker can reference the same as any other data.
DBMaker stores the data externally as a file instead of internally as an object. This
allows third-party tools to access and manipulate the data in its native format, without
having to re-import the data to register any changes in the database. A file object has a
maximum path length of 255 characters.

The FILE column stores a reference to a record in the system catalog tables. The
system catalog contains information that the database uses to find the file object.
When you display a FILE column, you do not actually see what is stored in the FILE
column itself. Instead, DBMaker shows one of three views of information stored in
the system catalog or the file itself the filename, the file size, or the file contents.

The FILE data type can store data in two ways, as a system file object or as a user file
object. A system file object copies an existing file to the file object directory of the
database and gives it a unique name. The database manages this file, and deletes it
when there are no references to it in the database. A user file object creates a link to an
existing file, while leaving the file in the original location with the original name.
Since, the user created this file; it will not be deleted when there are no references
made to it in the database. DBMaker must have the read permission on a file before
you can insert it into the database as a user file object.

 DBMaker Tutorial1

When multiple records reference the same file, DBMaker will store only a single copy
of the file and share it between records to save disk space. However, from the user's
point of view, there is always a dedicated file for each record. DBMaker transparently
generates a new file when updating a shared file. Other records sharing that file are not
changed, and other users still see the original file. This prevents any changes made to a
file in one record from influencing any other records.

FLOAT

The FLOAT data type is an approximate signed numeric data type having a mantissa
with a precision of 15. Precision refers to the total number of digits to the left and to
the right of the decimal point. The default FLOAT data type uses 8 bytes of storage
and has a valid input range from 1.0E308 to –1.0E308. The default FLOAT type can
be specified as REAL or DOUBLE with the keyword DB_FLTDB.

The smallest valid input values are 1.0E-308 and –1.0E-308.

e.g., 3.583837E34

 -1.827362E-27

INTEGER

The INTEGER data type is an exact signed numeric data type with a precision of 10
and a scale of 0. The INTEGER data type uses 4 bytes of storage and has a maximum
value of 2,147,483,647 and a minimum value of -2,147,483,648.

If you attempt to move a value larger than the allowed maximum from a data type
such as DOUBLE, DBMaker displays a conversion error and does not move the data.
The INTEGER data type may be abbreviated as INT.

e.g., 393848

 -298376

©Copyright 1995-2012 CASEMaker Inc. 5-10

 1Tables 5

©Copyright 1995-2012 CASEMaker Inc. 5-11

LONG VARBINARY (BLOB)

The BLOB data type is a variable-length data type that can contain any binary value.
The maximum length of BLOB columns is 8 TB. Unlike the BINARY data type,
which uses zero-value bytes for padding, only the bytes entered are stored in the
database.

You can enter character data by enclosing the data in single quotes (‘ ’), the same as
when entering CHAR data. However, in BLOB columns the data is stored as
hexadecimal values representing the ASCII code of the characters, not as the actual
characters entered.

Alternately, enter hexadecimal values directly by enclosing the data in single quotes
and appending the ‘x’ character (‘ ’x) to indicate a string containing a hexadecimal
value. Two digits represent all possible values for each byte in hexadecimal; use an
even number of digits when entering values.

e.g., ‘AaBbCcDdEe’

 ‘41614262436344644565’x

LONG VARCHAR (CLOB)

The CLOB data type is a variable-length data type that can contain any character that
can be entered from the keyboard. The maximum length of CLOB columns is 8 TB.

Unlike the CHAR data type, which uses spaces for padding, only the characters
entered are stored in the database. When entering data in a CLOB column, enclose it
in single quotes (‘ ’). Double-byte characters occupy two bytes each, account for this
when specifying the length of the column.

e.g., ‘This is a VARCHAR string.’

 ‘This is another VARCHAR string.’

 DBMaker Tutorial1

NCHAR (size)

The NCHAR data type is a fixed-length data type that can contain any Unicode
character. Each Unicode character occupies two bytes of storage in UTF16 Little-
Endian (LE) encoding. The (size) parameter determines the number of 2 byte
characters in the column. The (size) parameter must be entered when creating an
NCHAR column, and may range from a minimum of 1 to a maximum of 1996.

If NCHAR data is entered into a column that is shorter than the column length, the
data will be padded with spaces. When entering NCHAR data, enclose the Unicode
character with single quotes and prefix the quotes with 'N'.

e.g., N'Unicode Data'

If NCHAR data is input in hexadecimal format, enclose the hexadecimal string with
quotes and append a 'u' character.

e.g., '610a620b63f1'u

When a character string is input to a Unicode column but is not prefixed by 'N', then
it will automatically be converted from local code to Unicode. If Unicode characters
are entered into a regular CHAR type column, then the Unicode character will be
converted to the local code defined by the dmconfig.ini parameter Db_LCode.
Characters that are not defined in the local code will be represented by .

Synonyms for the NCHAR data type include NATIONAL CHAR(size), and
NATIONAL CHARACTER(size).

NVARCHAR (size)

The NVARCHAR data type is a variable-length data type that can contain any
Unicode character. Each Unicode character occupies two bytes of storage in UTF16
Little-Endian (LE) encoding. The (size) parameter determines the number of 2 byte
characters in the column. The (size) parameter must be entered when creating an
NVARCHAR column, and may range from a minimum of 1 to a maximum of 1996.

©Copyright 1995-2012 CASEMaker Inc. 5-12

 1Tables 5

©Copyright 1995-2012 CASEMaker Inc. 5-13

If NVARCHAR data is entered into a column that is shorter than the column length,
the data is not padded with spaces. When entering NVARCHAR data, enclose the
Unicode character with single quotes and prefix the quotes with 'N'.

e.g., N'Unicode Data'

If NVARCHAR data is input in hexadecimal format, enclose the hexadecimal string
with quotes and append a 'u' character.

e.g., '610a620b63f1'u

When a character string is input to a Unicode column but is not prefixed by 'N', then
it will automatically be converted from local code to Unicode. If Unicode characters
are entered into a regular VARCHAR type column, then the Unicode character will
be converted to the local code defined by the dmconfig.ini parameter Db_LCode.
Characters that are not defined in the local code will be represented by .

Synonyms for the NVARCHAR data type include NATIONAL CHAR
VARYING(size), NCHAR VARYING(size), NATIONAL VARCHAR(size), and
NATIONAL CHARACTER VARYING(size).

OID

The OID (object identifier) data type is a special data type that provides a unique ID
for each object, record or BLOB, stored in a database. A structured data type has a
precision of 10 and a scale of 0, and occupies 8 bytes of storage. DBMaker
automatically generates and inserts an OID with each record. The OID is internally
managed and maintained by DBMaker and cannot be used directly.

The value generated for an OID is related to the storage location of objects in the
database. This means that two OIDs generated consecutively may not necessarily be
sequential.

The OID values act as a hidden pseudo-column in tables, and will not appear in
queries such as SELECT * FROM CUSTOMERS. Explicitly select the OID column
by using ‘OID’ as a column name in a query.

 DBMaker Tutorial1

Although it is possible to use an OID in a query to select data from a table and then
use the OIDs to update the table data, this is not common practice when using the
SQL language. OIDs are usually used in the internal programming interface, and not
directly in the interactive dmSQL environments.

REAL

The REAL data type is an approximate signed numeric data type having a mantissa
with a precision of 7. Precision refers to the total number of digits to the left and to
the right of the decimal point. The REAL data type uses 4 bytes of storage and has a
valid input range from 3.402823466E38 to –3.402823466E38. The smallest error
range are 1.175494351E-38 to –1.175494351E-38. A move involving a value larger
than the allowed maximum, from a data type such as DOUBLE, fails and DBMaker
displays a conversion error.

e.g., 3.583837E34

 -1.873653E-21

SERIAL (start)

The SERIAL data type is a special data type that provides a sequence of consecutive
values. DBMaker allocates an integer number for each table contained in a database
and uses those numbers to generate a unique sequence for the corresponding table.
DBMaker manages and maintains these integer numbers internally. The value of each
integer value is automatically increased by one each time it is used.

Providing an integer value for the optional START parameter when defining a
SERIAL column to specify the first value of the column SERIAL in a number
sequence, or the START parameter omitted to use the default value of 1. Each table in
a database can have only one column with the SERIAL data type.

The internal value used to generate a SERIAL number is actually an integer value; the
SERIAL data type shares all of the properties of the INTEGER data type. It is an
exact signed numeric data type with a precision of 10 and a scale of 0, which occupies
4 bytes of storage. The SERIAL data type also has the same range of values as the

©Copyright 1995-2012 CASEMaker Inc. 5-14

 1Tables 5

©Copyright 1995-2012 CASEMaker Inc. 5-15

INTEGER data type, with a maximum value of 2,147,483,646 and a minimum value
of –2,147,483,648.

Place a NULL, or empty value in the SERIAL column when inserting a new row to
insert a sequential number into a SERIAL column. DBMaker will insert the sequential
number for that table into the SERIAL column of the new record, and automatically
increase the internal value by one.

If inserting a new column, and supplying an integer value for the SERIAL instead of a
NULL or empty value, DBMaker will use the supplied integer value instead of the
next sequential number; the internal value will not be incremented by 1. If the
supplied integer value is greater than the last sequential number generated, DBMaker
will reset the sequence of generated sequential numbers to start with the supplied
integer value.

e.g., 100, 101, 102, 103, 104, 105, 106, 107

 100, 101, 50, 102, 103, 110, 111, 112

SMALLINT

The SMALLINT data type is an exact signed numeric data type with a precision of
five and a scale of zero. The SMALLINT data type uses two bytes of storage and has a
maximum value of 32,767 and a minimum value of -32,768.

If attempting to move a value larger than the permitted maximum value from a data
type such as INTEGER or DOUBLE, DBMaker displays a conversion error and does
not move the data.

e.g., 4769

 8376

TIME

There are two types of TIME data, TIME literal, and TIME constant. A TIME literal
displays the present time, which is an ever-changing value. A TIME constant is a fixed
moment in time. Both TIME data type settings are fixed-lengths, and use 4 bytes of

 DBMaker Tutorial1

storage. All time values are entered in twenty-four hour format by default unless the
optional ‘AM’ or ‘PM’ values are specified.

Both TIME data types have multiple input/output formats. If the values in the
database do not appear correctly or you are unable to enter perceived valid times then,
check the time input/output formats for validity.

e.g., ‘22:04:05.666’

 ‘10:04:05.666 PM’

TIMESTAMP

There are two types of TIMESTAMP, TIMESTAMP literal, and TIMESTAMP
constant. A TIMESTAMP literal displays the present time, which is an ever-changing
value. A TIMESTAMP constant is a fixed moment in time.

Both TIMESTAMP data type settings are a fixed-length data type that contains
calendar data and the time-of-day. Both TIMESTAMP data type settings use 11 bytes
of storage, has a precision of 17, and a scale of 10. Valid years range from 0001 to
9999. All time values are entered in twenty-four hour format by default unless the
optional ‘AM’ or ‘PM’ values are specified.

Both TIMESTAMP data type settings use the input and output formats for the TIME
and DATE data types to display values and determine if input values are valid. If the
values in the database do not appear correctly or you are unable to enter perceived
valid times then, check the time input and output formats for validity.

e.g., ‘1997/01/01 10:02:03.444 PM’

 ’01.01.1997 22:02:03.444’

VARCHAR (size)

The VARCHAR data type is a variable-length data type that can contain any character
that can be entered from the keyboard. VARCHAR columns have a minimum length
of 1 character and a maximum length of 3992 characters. Enter a value for the size
parameter when creating a VARCHAR column.

©Copyright 1995-2012 CASEMaker Inc. 5-16

 1Tables 5

©Copyright 1995-2012 CASEMaker Inc. 5-17

Only the VARCHAR characters entered are stored in the database. When entering
data in a column, use single quotes (‘ ’). If using double-byte characters, account for
two bytes for each character when specifying the length of a column.

e.g., ‘This is a VARCHAR string.’

 ‘This is another VARCHAR string.’

Media Types

Large object columns may also be specified as media types to aid in media process
functions such as full text search for Microsoft Word documents. The following
media types are available: MsWordType, HtmlType, XmlType, MsPPTType,
MsExcelType, PDFType, MsWordFileType, HtmlFileType, XmlFileType,
MsPPTFileType, MsExcelFileType, and PDFFileType.

Media types are domains of existing data types; MsWordType, MsPPTType,
MsExcelType, PDFType, HtmlType, and XmlType are derived from LONG
VARBINARY, and MsWordFileType, HtmlFileType, XmlFileType,
MsPPTFileType, MsExcelFileType, and PDFFileType are derived from FILE type
columns. This is important to consider if you choose to use the ALTER TABLE
function to change a column from one data type to another. The characteristics of
each of the media types are similar to the characteristics of the data type from which it
is derived.

The features of XMLTYPE include:

 Well-formed XML checking: inserted/updated xml content must be well-formed

 XML validation: optionally specify a validation udf when creating an xmltype
column and DBMaker will validate the xml content with it

 XML data is stored in the original format

 Query with XPath search: optionally specify an xpath and use extract functions to
query/locate nodes in an XML data

 Update XML content specified by XPath

 DBMaker Tutorial1

 Build index on XPath extract: speed up xpath queries with indexes on frequent
query xpath expression

 Altering an xmltype column or other data types to the xmltype is not allowed

e.g.,

CREATE TABLE minutes (id INT, meeting_date DATE, doc
MSWORDFILETYPE);

INSERT INTO minutes VALUES (1, 3/3/2003, ‘c:\meeting\20030303.doc’);

©Copyright 1995-2012 CASEMaker Inc. 5-18

 1Tables 5

©Copyright 1995-2012 CASEMaker Inc. 5-19

5.3 Creating a Table

Every table is defined with a name and a set of columns. There can be up to 2000
columns in each table. Each column contains a column name and a data type. A
column length might be predetermined by the data type INTEGER or a precision and
scale of the DECIMAL data type only, or a starting number for columns of the
SERIAL data type.

To create a table, provide the table name, column definitions, and the name of the
associated tablespace. By default, if a table is not associated with a tablespace it is
placed in the default user tablespace.

 Example 1

To create a table named Employee, enter the following:
dmSQL> CREATE TABLE Employee (Number SERIAL, FirstName CHAR(15),
 LastName CHAR(20), Manager INT,
 Phone CHAR(15), HireDate DATE,
 BirthDate DATE);

The command string creates the table Employee containing seven columns: Number,
FirstName, LastName, Manager, Phone, BirthDate, and HireDate. The Number
column uses a SERIAL number to provide an employee numbering schema that will
increment automatically every time a new employee is added. FirstName, LastName,
and Phone use the CHAR data type. CHAR is used for the Phone column as well as
the names, because the phone number may have brackets, dashes, or periods in it. The
last two columns, BirthDate and HireDate, use the DATE data type.

 Example 2

To create the remaining tables in the Tutorial database, enter the following:
dmSQL> CREATE TABLE Regions (Number INT NOT NULL, Name CHAR(40))

dmSQL> CREATE TABLE IDTypes (Number INT NOT NULL, Type CHAR(50),
 Description CHAR(255))

dmSQL> CREATE TABLE Customers (Number SERIAL, FirstName CHAR(15),
 LastName CHAR(20), Phone CHAR(15),
 IDType INT, IDRegion INT,
 IDNumber CHAR(20), Credit SMALLINT)

 DBMaker Tutorial1

dmSQL> CREATE TABLE Suppliers (Number SERIAL, Name CHAR (50),
 Phone CHAR(15), Contact CHAR(35))

dmSQL> CREATE TABLE MovieTypes (Number INT NOT NULL, Type CHAR(30),
 Description CHAR(255))

dmSQL> CREATE TABLE Movies (Number SERIAL, Name CHAR(75),
 Year CHAR(4), Country CHAR(30),
 Type1 INT, Type2 INT,
 Type3 INT, Type4 INT,
 Rating CHAR(10), Length SMALLINT,
 Color CHAR(3), BW CHAR(3),
 Tape CHAR(3), Disc CHAR(3),
 Quantity SMALLINT, Supplier INT,
 Data DATE, Price FLOAT,
 Rate SMALLINT)

dmSQL> CREATE TABLE Receipts (Number SERIAL, Customer INT,
 Employee INT)

dmSQL> CREATE TABLE LineItems (Receipt INT NOT NULL, LineItem INT NOT NULL,
 Movie INT, Quantity SMALLINT,
 Amount SMALLINT)

In some of the newly created tables shown above, the keyword NOT NULL is used,
indicating that the column must contain data when inserting a new record. Several
other keywords can also be used when creating a table.

©Copyright 1995-2012 CASEMaker Inc. 5-20

 1Tables 5

CHECK boolean_expression

LOCK MODE

TABLE

PAGE

ROW

CREATE table_nameTABLE

TEMPORARY

FILLFACTOR number NO CACHE

UPDATE STATISTICS EVERY number DAYS

(

IN tablespace_name

)

column_definition

,

,

foreign_key_definition

primary_key_definition

Figure 5-1: Syntax diagram for the CREATE TABLE command

Default Values for Columns

A column can be assigned a default value. When a new row is inserted and no value is
provided for a column or the column is omitted, the default value is automatically
supplied. A different default value for each column in a table can be specified. If a
default value is not defined for a column, the default value will be set to NULL.
Acceptable default values can be constants or built-in functions.

 Example

To specify the default value of the Contact column in the Suppliers table, enter:
dmSQL> CREATE TABLE Suppliers (Number SERIAL,
 Name CHAR (50),
 Phone CHAR(15),
 Contact CHAR(35) DEFAULT ‘Unknown’)

©Copyright 1995-2012 CASEMaker Inc. 5-21

 DBMaker Tutorial1

Lock Mode

The LOCK MODE option identifies the type of lock that DBMaker automatically
places on objects when accessing the database. DBMaker supports three levels of lock
modes table, page, and row. The page lock mode is used by default if a lock mode is
not specified when a table is created.

If the lock mode is set to a higher level, such as table, the level of concurrency on
database accesses will be lower, but the required lock resources and shared memory
will also be smaller. If the lock mode is set to a lower level, such as row, the level of
concurrency on database accesses will be higher, but the required lock resources and
shared memory will be larger. In other words, if you insert or modify rows in a table
with the lock mode set to table, no one else can access the table.

 Example

To specify a lock mode for a table, enter the following:
dmSQL> CREATE TABLE Suppliers (Number SERIAL,
 Name CHAR (50),
 Phone CHAR(15),
 Contact CHAR(35) default ‘Unknown’)
 LOCK MODE ROW;

Fillfactor

The FILLFACTOR option is used to optimize the utilization of space on data pages
by reserving space on a data page to allow for the expansion of individual records. It
specifies the percentage of a page that can be filled before it will no longer permit new
records to be inserted. This method ensures that the records can be accessed more
efficiently by avoiding the need to retrieve information for one record from multiple
pages.

 Example

To specify a FILLFACTOR of 80% for the Suppliers table, enter the following:
dmSQL> CREATE TABLE Suppliers (Number SERIAL,
 Name CHAR (50),
 Phone CHAR(15),
 Contact CHAR(35) default ‘Unknown’)
 LOCK MODE ROW FILLFACTOR 80;

©Copyright 1995-2012 CASEMaker Inc. 5-22

 1Tables 5

©Copyright 1995-2012 CASEMaker Inc. 5-23

In this case, no new rows can be inserted in the data page after 80% of the page space
has been filled. The value for a FILLFACTOR can be from 50% to 100 %.

NOCACHE

The NOCACHE feature is useful when accessing large tables with a table scan.
DBMaker uses page buffers in shared memory to cache retrieved data and avoid
frequent disk I/O. A table scan with a larger number of data pages than the number of
page buffers can exhaust all of the page buffers, causing frequent disk I/O activity.
DBMaker uses one page buffer to cache the data retrieved from a table during a table
scan, after the NOCACHE option has been specified when creating a table. The page
buffers will not be exhausted after one large table scan.

 Example

To specify the NOCACHE option, enter the following:
dmSQL> CREATE TABLE Suppliers (Number SERIAL,
 Name CHAR (50),
 Phone CHAR(15),
 Contact CHAR(35) default ‘Unknown’)
 LOCK MODE ROW FILLFACTOR 80 NOCACHE;

Temporary Tables

A temporary table for temporary data storage can be created. Temporary tables exist
during a single session, and DBMaker will automatically drop the table when you
disconnect from the database. Temporary tables support fast data operations and can
be used only by the creator.

 Example

To create a temporary table named test, enter the following:
dmSQL> CREATE TEMPORARY TABLE test (Number SERIAL,
 Name CHAR(50),
 Phone DATE)

 DBMaker Tutorial1

©Copyright 1995-2012 CASEMaker Inc. 5-24

 1Data 6

©Copyright 1995-2012 CASEMaker Inc. 6-1

6 Data

The tables are now created, and the schema for the database is set. The database is
now ready to accept data. The metaphorical filing cabinet now has files and file
folders, but no information is contained in them.

In this chapter you will learn:

 How to insert data into the database by adding records, or rows

 How to change, or update data in existing records

 How to query a table to find out what data it contains

 How to remove unnecessary data from a table

 DBMaker Tutorial1

6.1 Inserting

There are two ways to insert data into a table using SQL. The first method uses the
standard SQL syntax, and the other uses host variables. Host variables set up an insert
statement; where the data to be inserted is not known at the time the command
executes. DBMaker will enter into a value state, allowing values for multiple records to
be entered.

 Example 1

To use the SQL INSERT command, enter the following:
dmSQL> INSERT INTO Employee VALUES (10000, ‘Gabriel’, ‘Davis’, 10000, ‘228-6932’,
‘1/21/57’, ‘4/24/95’);
1 row inserted

Where Employee is the table name. The statement inserts the values 10000, Gabriel,
Davis, 10000, 228-6932, 1/21/57, and 4/24/95 into the columns Number,
FirstName, LastName, Manager, Phone, BirthDate and HireDate.

 Example 2

To use the SQL INSERT command for specified columns, enter the following:
dmSQL> INSERT INTO Employee (FirstName, LastName, Manager) values (‘Greg’,
‘Carter’, 10002);
1 row inserted

This statement inserts the values Greg, Carter, and 10002 into the FirstName,
LastName and Manager columns respectively. Unspecified column values are NULL.

 Example 3

To use the SQL INSERT command with NULL, enter the following:
dmSQL> INSERT INTO Employee VALUES (NULL, ‘Dean’, ‘Cougar’);
1 row inserted

This statement inserts the next SERIAL value in the serial number sequence, and the
values Dean and Cougar into the FirstName and LastName columns. Columns were
not specified, so the values are automatically entered into the first three columns.
Several other keywords may also be used with the INSERT command.

©Copyright 1995-2012 CASEMaker Inc. 6-2

 1Data 6

VALUES)

,

constant

NULL

bind_variable

literal(

select_statement

INSERT INTO table_name

column_name

,

)(

Figure 6-1: Syntax for the INSERT statement

Inserting Using Host Variables

The syntax of INSERT with the host variables is the same as the SQL standard. An
INSERT statement with host variables makes dmSQL enter into the value state with
the screen prompt of dmSQL/Val>.

 Example 1

To use host variables, enter the following:
dmSQL> INSERT INTO Employee VALUES (?,?,?,?,?,?,?);

dmSQL/Val> NULL, ‘Benson’, ‘Armstrong’, 10002, ‘918-3517’, ‘12/9/70’, ‘3/2/93’;
1 row inserted

dmSQL/Val> NULL, ‘Lyn’, ‘Belger’, 10000, ‘363-4511’, ‘5/9/59’, ‘12/6/91’;
1 row inserted

dmSQL/Val> end;

dmSQL>

 Example 2

To use the equivalent SQL insert command, enter the following:
dmSQL> insert into Employee values (NULL, ‘Benson’, ‘Armstrong’, 10002, ‘918-
3517’, ‘12/9/70’, ‘3/2/93’);

©Copyright 1995-2012 CASEMaker Inc. 6-3

 DBMaker Tutorial1

dmSQL> insert into Employee values (NULL, ‘Lyn’, ‘Belger’, 10000, ‘363-4511’,
‘5/9/59’, ‘12/6/91’);

 Example 3

To use insert and host variables for values, enter the following:
dmSQL> insert into Employee values (NULL, ?, ?, 10002, ?, ?, ?);

dmSQL/Val> 'Murphy', ‘Flaherty’, ‘575-8846’, ‘10/17/77’, ‘11/17/90’;
1 row inserted

dmSQL/Val> 'Taylor', ‘Galbreath’, ‘648-6633’, ‘2/9/75’, ‘10/22/94’;
1 row inserted

dmSQL/Val> end;

dmSQL>

 Example 4

To use the equivalent SQL insert command, enter the following:
dmSQL> insert into Employee values (NULL, 'Murphy', ‘Flaherty’, 10002, ‘575-8846’,
‘10/17/77’, ‘11/17/90’);

dmSQL> insert into Employee values (NULL, 'Taylor', ‘Galbreath’, 10002, ‘648-
6633’, ‘2/9/75’, ‘10/22/94’);

Different Data Types

DBMaker requires the following input data types.

SMALLINT and INTEGER:
123, -252783

FLOAT and DOUBLE:
float: 30000.05, -234.56
double: 234.56e-257, 6.04E+23

CHAR and VARCHAR:
'Hello', 'DBMaker is a powerful database !'

BINARY:

dmSQL has two formats to identify binary types. One type is the hex format and the
other is the same as the CHAR type.

©Copyright 1995-2012 CASEMaker Inc. 6-4

 1Data 6

©Copyright 1995-2012 CASEMaker Inc. 6-5

Example, the binary data '61'x is the ASCII value of 'a', for the hex format:
'0001020304'x, '3f2eff5c'x

In CHAR format, every character represents one byte. However, the value stored in
the database is an ASCII value of the character.

CHAR:
'abcedf', '!@#$%'

In hex format, every two hex codes represent one byte. Use hex codes 0-9, a-f (or
A F) to represent binary data. Binary data in hex format must be enclosed by single
quotes and followed by a character x or X.

DATE and TIME:
'1994-12-20'd, '14:10:20't

DECIMAL:
 12.34, 0.123

Inserting Blob Data

DBMaker supports BLOB data. These data types are LONG VARCHAR and LONG
VARBINARY. The difference between LONG VARCHAR and LONG
VARBINARY is the same as the difference between CHAR and BINARY. In dmSQL,
there are several ways to insert BLOB data.

 Example 1

To insert BLOB data with an SQL command, enter the following:
dmSQL> CREATE TABLE blob_table VALUES (lcharcol long varchar,
 2> lbincol long varbinary);

dmSQL> INSERT INTO blob_table ('this is blob data', '2d2d2d2d'x);

1 row inserted

 Example 2

To insert BLOB data with host variables, enter the following:
dmSQL> INSERT INTO blob_table VALUES (?,'5f5f5f5f5f'x);

 DBMaker Tutorial1

 Example 3

To bind BLOB data to host variables, enter the following:
dmSQL/Val> 'blob using host variable';

1 row inserted

Alternatively, you can insert BLOB data from an external file.

 Example 4

To insert BLOB data from an external file, type the file_name in INSERT mode:
dmSQL/Val> &comment.txt;

1 row inserted

NOTE: comment.txt is a file in the current directory.

©Copyright 1995-2012 CASEMaker Inc. 6-6

 1Data 6

6.2 Updating

After data has been inserted into the database, it may be necessary to change some of
the values. The SQL UPDATE command is used for this purpose. DBMaker provides
three ways to update column data: standard SQL, host variables or OIDs. Figure 6-2
shows the syntax for the UPDATE statement.

UPDATE SETtable_name

WHERE

search_condition

CURRENT OF cursor_name

,

column_name =
constant

NULL

expression

literal

Figure 6-2: Syntax for the UPDATE statement

Updating Using Standard SQL

 Example

To update the manager file using standard SQL, enter the following:
dmSQL> update Employee set Manager = 10000 where LastName = 'Carter';

1 row updated

Where Employee is the table name. This statement changes the manager to Greg
Carter.

Updating Using Host Variables

An update statement with host variables makes dmSQL enter into the value state with
the dmSQL/Val> prompt. In the value state, you can enter data for the corresponding

©Copyright 1995-2012 CASEMaker Inc. 6-7

 DBMaker Tutorial1

host variables. Use the END command to exit the value state and complete the update
statement.

 Example

To update the Employee table using host variables, enter the following:
dmSQL> update Employee set Phone = ? where FirstName = ? and LastName = ?;

dmSQL/Val> ‘736-8376’, ‘Gabriel’, ‘Davis’;

1 row updated

dmSQL/Val> ‘837-7847’, ‘Lyn’, ‘Belger’;

1 row updated

dmSQL/Val> end;

dmSQL>

 Example

To update the employee file using standard SQL, enter the following:
dmSQL> update Employee set Phone = ‘736-8376’ where FirstName = ‘Gabriel’ and
LastName = ‘Davis’;

dmSQL> update Employee set Phone = ‘837-7847’ where FirstName = ‘Lyn’ and LastName
= ‘Belger’;

The preceding entries update the Phone column entries on the Employee table for
employees Gabriel Davis and Lyn Belger.

Updating Using OIDs

The OID (object id) is a special binary data type that contains the record ID of an
object. Each row in a table has a unique OID. You can select an OID from a table,
and then update its data. OIDs are used in the internal programming interface, and
not directly in the interactive dmSQL environment.

©Copyright 1995-2012 CASEMaker Inc. 6-8

 1Data 6

©Copyright 1995-2012 CASEMaker Inc. 6-9

 Example

To use an OID to update the Employee table, enter the following:
dmSQL> select oid from Employee where FirstName = ‘Dean’ and LastName = ‘Cougar’;

 oid
================
0200000002000200

1 rows selected

dmSQL> update Employee set BirthDate = ‘12/8/70’ where oid='0200000002000200'x;

The entry updates the employee file for Dean Cougar’s birth date.

 DBMaker Tutorial1

6.3 Result Sets

The output of the SELECT statement is called a result set. The result set contains all
data that meets the conditions specified in the SELECT command.

order by into for browse

UNION ALL

UNION

fromselect

having

group bywhere

Figure 6-3: Syntax for the SELECT statement

Selecting Tables

The simplest SELECT statement can select all information in a table.

 Example 1

To select all information in a table, enter the following:
select * from <table_name>

The command selects data from all the columns in the specified table. The asterisk
(‘*’) is used to represent all columns in a table.

Use the command shown below to select all data from the Employee table.

 Example 2

To select all data for employees in the Employee table, enter the following:
dmSQL> SELECT * from Employee;

The following is an example of returned data:
dmSQL> SELECT * from Employee;

©Copyright 1995-2012 CASEMaker Inc. 6-10

 1Data 6

©Copyright 1995-2012 CASEMaker Inc. 6-11

dmSQL> SELECT * from Employee;

 Number FirstName LastName Manager Phone BirthDa* HireDate
======== =========== =============== ======== =========== ======== ========
 10000 Gabriel Davis 10000 736-8376 1957-01* 1995-04*
 10001 Greg Carter 10000 NULL NULL NULL
 10002 Dean Cougar NULL NULL 1970-12* NULL
 10003 Benson Armstrong 10002 918-3517 1970-12* 1993-03*
 10004 Lyn Belger 10000 837-7847 2059-05* 1991-12*
 10005 Murphy Flaherty 10002 575-8846 1977-10* 1990-11*
 10006 Taylor Galbreath 10002 648-6633 1975-02* 1994-10*

7 rows selected

dmSQL will display the name of the columns, the data in each of those columns and
the number of rows displayed.

This provides a convenient method of finding column names in a table, when you do
not remember them, instead of having to deal with system tables. It also provides a
faster way to view data if you do want to see all of the columns.

You can see from the sample output that not all of the columns are fully displayed.
The width of the dmSQL display line is set to 80 by default and will be used
throughout the tutorial for formatting reasons.

 Example 3

To turn off the LINEWIDTH feature and to see all column data, enter the following:
dmSQL> SET LINEWIDTH off;

Use all of the column names in the SELECT statement to view all data in every
column. In the Employee table, the column names are: Number, FirstName,
LastName, Manager, Phone, BirthDate, and HireDate.

 Example 4

To view all data in every column, enter the following:
dmSQL> SELECT Number, FirstName, LastName, Manager, Phone, BirthDate, HireDate
from Employee;

The following is an example of returned data:
SELECT * from Employee;
 Number FirstName LastName Manager Phone
=========== =============== ==================== =========== ===============

 DBMaker Tutorial1

 BirthDate HireDate
=========== ===========
 10000 Gabriel Davis 10000 736-8376
1957-01-21 1995-04-24

10001 Greg Carter 10000 NULL
NULL NULL
 10002 Dean Cougar NULL NULL
1970-12-08 NULL
 10003 Benson Armstrong 10002 918-3517
1970-12-09 1993-03-02
 10004 Lyn Belger 10000 837-7847
2059-05-09 1991-12-06
 10005 Murphy Flaherty 10002 575-8846
1977-10-17 1990-11-17
 10006 Taylor Galbreath 10002 648-6633
1975-02-09 1994-10-22

7 rows selected

NOTE: Names in a database are case sensitive by default.

If a spelling mistake occurs or the wrong case is used when entering the name of a
column, an error will be returned.

 Example 5

dmSQL> select numbe, FirstName, LastName, Manager, Phone, HireDate, BirthDate from
Employee;
ERROR (6523): invalid column name: NUMBE

Only the first error encountered will be returned. After correcting an error, another
error will be returned if more than one has been made until all errors have been
corrected.

If a table name is wrong, an error will be returned.

 Example 6

dmSQL> SELECT Number, FirstName, LastName, Manager, Phone, HireDate, BirthDate
FROM employee;
ERROR (6521): table or view does not exist: SYSADM.employee

Selecting Columns

You can also select specific columns from a table by specifying the columns to be
viewed.

©Copyright 1995-2012 CASEMaker Inc. 6-12

 1Data 6

©Copyright 1995-2012 CASEMaker Inc. 6-13

 Example 1

To specify columns, enter the following:
dmSQL> SELECT <column_name>, <column_name>, ... FROM <table_name>

The command selects data in the columns specified in the table.

 Example 2

To view a list of Employees select the FirstName, LastName, and Phone columns:
dmSQL> SELECT FirstName, LastName, Phone FROM Employee;

The following is an example of returned data:
dmSQL> SELECT FirstName, LastName, Phone FROM Employee;

 FirstName LastName Phone
=============== ==================== ===============
Gabriel Davis 736-8376
Greg Carter NULL
Dean Cougar NULL
Benson Armstrong 918-3517
Lyn Belger 837-7847
Murphy Flaherty 575-8846
Taylor Galbreath 648-6633

7 rows selected

Selecting Rows

SQL allows us to select specific records in a database as well as selecting specific
columns. This is done with the WHERE clause.

Data must meet the conditional expression defined in a WHERE clause in order to be
included in the result set. Data not meeting the conditions will be excluded. Section
6.4, Operator Types describes the use of the WHERE clause in more detail.

 Example

dmSQL> SELECT * FROM Employee where <expression>;

 DBMaker Tutorial1

6.4 Operator Types

There are three types of operators used in the expression of a WHERE clause,
arithmetic operators, comparison operators, and logical operators. Each operator is
used for different purposes. The comparison operators are the most frequently used.

Comparison Operators

Comparison operators are used to compare the values of two operators, and are
generally used to determine whether a row should be included in a result set.

OPERATOR DESCRIPTION

= Specifies the Equal to mathematical sign

> Specifies the Greater than mathematical sign

< Specifies the Less than mathematical sign

>= Specifies the Greater than or equal to mathematical sign

<= Specifies the Less than or equal to mathematical sign

<> Specifies the equivalent of a Not equal to mathematical sign

BETWEEN Specifies a range of values

LIKE Specifies a matching pattern

IN Specifies a record in a database

IS Specifies a test for special values

Figure 6-4 Comparison Operators

First, we will try a very simple conditional clause with a comparison operator to
demonstrate how this works.

 Example 1

To use a comparison operator, enter the following:
dmSQL> SELECT * FROM Employee WHERE Number = 10006;

©Copyright 1995-2012 CASEMaker Inc. 6-14

 1Data 6

©Copyright 1995-2012 CASEMaker Inc. 6-15

The following is an example of returned data:
Number FirstName LastName Manager Phone BirthDa* HireDate
======== =========== =============== ======== =========== ======== ========
 10006 Taylor Galbreath 10002 648-6633 1975-02* 1994-10*

1 rows selected

The query will select all columns from the Employee table by using the asterisk (‘*’) in
the column list. The WHERE clause specifies that only employee record numbers =
10006 will be returned in the result set. In this case, records of Taylor Galbreath
whose employee number is 10006 is returned. This type of query is useful when you
know a single piece of data from a record and want to display the remaining data.

 Example 2

To retrieve all Employee names beginning with A, B, and C, enter the following:
dmSQL> SELECT * FROM Employee WHERE LastName BETWEEN 'Aa' and 'Cz';

The following is an example of returned data:
Number FirstName LastName Manager Phone BirthDa* HireDate
======== =========== =============== ======== =========== ======== ========
 10001 Greg Carter 10000 NULL NULL NULL
 10002 Dean Cougar NULL NULL 1970-12* NULL
 10003 Benson Armstrong 10002 918-3517 1970-12* 1993-03*
 10004 Lyn Belger 10000 837-7847 2059-05* 1991-12*

4 rows selected

This query will select all columns from the Employee table by using the asterisk (‘*’)
in the column list. The BETWEEN keyword used in the WHERE clause specifies
that only records of an employee having a name that starts with the letters A, B, or C
are returned in the result set. It does this using the BETWEEN comparison operator,
which takes two arguments separated by AND. Note that although AND is used in
the same way as the logical operator AND shown below, it is not a logical operator
but part of the BETWEEN keyword. In order to get all names that start with: A, B, or
C; the query uses the values ‘Aa’ and ‘Cz’. If you only use the values ‘A’ and ‘C’, you
will only get names that begin with A and B, and will not retrieve names that begin
with the letter C. By using ‘Cz’ you get all the names between Aa and Cz. Someone
with the names A or Czar, will not be included because they are outside the range.

 DBMaker Tutorial1

 Example 3

To retrieve last names of employees that begin with ‘C’, enter the following:
dmSQL> SELECT * FROM Employee WHERE LastName LIKE ‘C%’;

The following is an example of returned data:

Number FirstName LastName Manager Phone BirthDa* HireDate
======== =========== =============== ======== =========== ======== ========
 10001 Greg Carter 10000 NULL NULL NULL
 10002 Dean Cougar NULL NULL 1970-12* NULL

2 rows selected

This query will select all columns from the Employee table by using the asterisk (‘*’)
in the column list. The LIKE keyword used in the WHERE clause specifies that only
records with an employee name starting with the letters “C” be returned. The wild
card character ‘%’ is used to indicate that any sort of character may follow the letter C
in the string. If this wildcard is omitted, the SELECT statement will only return
employees with the last name of ‘C’.

Logical Operators

Logical operators are used to connect two expressions in a WHERE clause to show
that there is some relationship between them.

OPERATOR DESCRIPTION

AND Specifies that both expressions must be true.

OR Specifies that either expression must be true.

NOT Specifies that an expression be excluded from an equation.

Figure 6-5 Logical Operators

 Example

To retrieve the names of movies made in Canada in 1995, enter the following:
dmSQL> SELECT LastName FROM Employee WHERE HireDate > 01/01/1995 AND Manager =
10000;

©Copyright 1995-2012 CASEMaker Inc. 6-16

 1Data 6

©Copyright 1995-2012 CASEMaker Inc. 6-17

The following is an example of returned data:

 LastName
====================
Davis
Belger

2 rows selected

Arithmetic Operators

Arithmetic operators are used to perform mathematical calculations. They are usually
part of a comparison operation, and the result of calculation expressions is known
until after some calculation is performed.

OPERATOR DESCRIPTION

+ Specifies a mathematical addition.

- Specifies a mathematical subtraction/unary negation.

* Specifies a mathematical multiplication.

/ Specifies a mathematical division.

Figure 6-6 Arithmetic Operators

 DBMaker Tutorial1

6.5 Deleting

To delete rows from a table, dmSQL provides three methods standard SQL, host
variables, or OIDs.

Deleting Using Standard SQL

The following command deletes all rows in the Employee table.

 Example

To delete all rows from the Employee table, enter the following:
dmSQL> DELETE FROM Employee;

The following command deletes all rows meeting the condition Number > 10030
from the Employee table.

 Example

To delete rows from the Employee table, enter the following:
dmSQL> DELETE FROM Employee where Number > 10030;

Deleting Using Host Variables

A delete statement with host variables makes dmSQL enter into the value state with
the dmSQL/Val> prompt. In the value state, you can enter data for the corresponding
host variables. Use END to exit the value state and complete the update statement.

 Example 1

To use host variables to delete employees from the Employee table:
dmSQL> DELETE FROM Employee WHERE FirstName = ?;

dmSQL/Val> ‘Benson’;

dmQL/Val> ‘Murphy’;

dmSQL/Val> END;

©Copyright 1995-2012 CASEMaker Inc. 6-18

 1Data 6

©Copyright 1995-2012 CASEMaker Inc. 6-19

dmSQL>

 Example 2

To use standard SQL with conditions for the preceding statements:
dmSQL> DELETE FROM Employee WHERE FirstName = ‘Benson’;

dmSQL> DELETE FROM Employee WHERE FirstName = ‘Murphy’;

Deleting Using OIDs

Although it is possible to manipulate data using OIDs, OID is a special binary data
type used internally by the database. It is unusual to use OIDs directly in dmSQL.

 Example

To use an OID to delete employee Taylor from the Employee table:
dmSQL> SELECT OID FROM Employee WHERE FirstName = ‘Taylor’;

 OID
================
0100000002000800

1 rows selected

dmSQL> DELETE FROM Employee WHERE OID='0100000002000800'x;

 DBMaker Tutorial1

©Copyright 1995-2012 CASEMaker Inc. 6-20

 1Database Objects 7

©Copyright 1995-2012 CASEMaker Inc. 7-1

7 Database Objects

A database may be divided into logical structures called objects. Tables, tablespaces,
views, synonyms, and indexes are examples of database objects. Views, synonyms, and
indexes provide convenient methods of customizing and speeding up access to data.
Views and synonyms are supported to allow user-defined views and names for
database objects. Indexes provide a much faster method of retrieving data from a table
when querying a column with an index.

 DBMaker Tutorial1

7.1 Views

DBMaker provides the ability to define a virtual table, called a view. Based on existing
tables and stored in the database as a definition and a user-defined view name. The
view definition is stored persistently in the database, but the actual data that you will
see, is not physically stored anywhere. Rather, the data is stored in the base tables,
where the viewed rows reside. A view is defined by a query, which references one or
more tables or other views.

Views are a very helpful mechanism for using a database. For example, you can define
complex queries once and use them repeatedly without having to re-invent them. In
addition, views can be used to enhance the security of a database by restricting access
to a predetermined set of rows and/or columns in a table.

Since views are derived from querying tables, views can only be queried. Users cannot
update, insert, or delete from views.

Creating Views

Each view is defined by a name together with a query that references tables or other
views. You can specify column names for a view that is different from them in the
original table. If you do not specify any new column names, the view will use the
column names from the underlying tables.

Figure 7-1 Syntax for the CREATE VIEW statement

©Copyright 1995-2012 CASEMaker Inc. 7-2

CREATE. OR REPLACE

VIEW view-name

(
,

)
AS

select-statement

(select-statement) .
cloumn-name

 1Database Objects 7

©Copyright 1995-2012 CASEMaker Inc. 7-3

 Example

To create a view on three columns in the Employee table, enter the following:
dmSQL> CREATE VIEW empView (FirstName, LastName, Telephone) AS
 SELECT FirstName, LastName, Phone FROM Employee;

Users can then only view the FirstName, LastName, and Telephone columns of the
Employee table through empView.

NOTE: The query that defines a view cannot contain the UNION operator.

Use CREATE OR REPLACE VIEW syntax. For example, a view named vi_staff
already exists, it will allow other users to see only two columns , (name and ID), from
the tb_staff table, but we need to change the view definition to allow the same users to
see only three columns from the tb_staff table, but not change the privileges on the
view. Replace the view with the SQL command shown below. Users can view three
columns, (name, ID and age), from the tb_staff table through the view vi_staff.

 Example

To view the three columns: name, ID and age, users can recreate the view vi_staff with
the following statement:
dmSQL> CREATE OR REPLACE VIEW vi_staff (empName, empId, empAge) AS
 SELECT name, ID, age FROM tb_staff;

Dropping Views

You can drop a view when it is no longer required. When you drop a view, only the
definition stored in the system catalog is removed with no effect on the base tables.

 Example

To drop a view, enter the following:
dmSQL> DROP VIEW empView;

The empView is removed from the Employee table.

 Example

To drop the view vi_staff use the DROP VIEW IF EXISTS command:
dmSQL> DROP VIEW IF EXISTS vi_staff;

 DBMaker Tutorial1

7.2 Synonyms

A synonym is an alias, or alternate name, for any table or view. Since a synonym is
simply an alias, it requires no storage other than its definition in the system catalog.

Synonyms are useful for simplifying a fully qualified table or view name. DBMaker
normally identifies tables and views with fully qualified names that are composites of
the owner and object names. By using a synonym, anyone can access a table or view
through the corresponding synonym without having to use the fully qualified name.
All synonyms in a database must be unique for DBMaker to identify them.

Creating Synonyms

If the owner of the table Employee is the SYSADM, this command creates an alias-
named Employee for the table SYSADM.Employee. All database users can directly
reference the table SYSADM.Employee through the synonym Employee.

Figure 7-2 Syntax for the CREATE SYNONYM statement

 Example

Use CREATE SYNONYM command:
dmSQL> CREATE SYNONYM staff FOR SYSADM.tb_staff;

Assume that the owner of the table tb_staff is SYSADM. This command creates the
alias staff for the table SYSAMD.tb_staff. All database users can directly reference the
table SYSAMD.tb_staff through the synonym staff.

©Copyright 1995-2012 CASEMaker Inc. 7-4

CREATE. OR REPLACE

SYNONYM synonym-name

View-name

table-name .FOR

 1Database Objects 7

©Copyright 1995-2012 CASEMaker Inc. 7-5

 Example

Use CREATE OR REPLACE command:
dmSQL> CREATE OR REPLACE SYNONYM staff FOR SYSADM.tb_staff;

Assume that an alias staff for the table SYSAMD.tb_staff is already exists, you can
replace it without drop it.

Dropping Synonyms

You can drop a synonym that is no longer required. When you drop a synonym, only
its definition is removed from the system catalog.

 Example

To drop the staff synonym with the DROP SYNONYM command::
dmSQL> DROP SYNONYM staff;

 Example

To drop the staff synonym with the DROP SYNONYM IF EXISTS command:
dmSQL> DROP SYNONYM IF EXISTS staff;

 DBMaker Tutorial1

7.3 Indexes

An index provides support for fast random access to a row. You can build indexes on a
table to speed up searching. For example, when you execute the query: “SELECT
Name FROM Employee WHERE Number = 10005”, it is possible to retrieve the
data in a much shorter time if there is an index created on the Number column.

An index can be composed of more than one column, up to a maximum of 32. All the
columns in a table can be used in an index.

An index can be unique or non-unique. In a unique index, no more than one row can
have the same key value, with the exception that any number of rows may have NULL
values. If you create a unique index on a non-empty table, DBMaker will check
whether all existing keys are distinct or not. If there are duplicate keys, DBMaker will
return an error message. After creating a unique index on a table, you can insert a row
in the table and DBMaker will certify that no existing row already has the same key.

When creating an index, you can specify the sort order of each index column as
ascending or descending. For example, suppose there are five keys in a table with the
values: 1, 3, 9, 2 and 6. In ascending order, the sequence of keys in the index is: 1, 2,
3, 6 and 9, and in descending order the sequence of keys in the index is: 9, 6, 3, 2 and
1.

When you implement a query, the index order will occasionally affect the order of the
data output.

 Example

If you have a table named friends with name and age columns, and have built an
index in descending order on the age column, then executing the following query:
dmSQL> SELECT name, age FROM friends WHERE AGE > 20

 Result
 name age
---------------- ----------------
Jeff 49
Kevin 40
Jerry 38

©Copyright 1995-2012 CASEMaker Inc. 7-6

 1Database Objects 7

©Copyright 1995-2012 CASEMaker Inc. 7-7

Hughes 30
Cathy 22

When creating an index specify the fillfactor for it. The fillfactor denotes how dense
the keys will be in the index pages. The legal fill factor values are in the range from
1% to 100%, and the default is 100%. If you update data often after creating the
index, you can set a loose fill factor in the index, for example 60%. If you never
update the data in this table, you can leave the fill factor at the default value.

It is far more efficient to create an index after loading a large amount of data than to
create the index before loading is finished. Before creating indexes on a table, it is
recommended that you load all data first, especially if that table holds a large amount
of data. If you create an index before loading the data into a table, the indexes update
each time you load a new row.

Creating Indexes

To create an index on a table, specify the index name and index columns. Specify the
sort order of each column as ascending (ASC) or descending (DESC). The default sort
order is ascending.

In DBMaker 5.3, user can move a table to another tablespace, if the index and the
table in the same tablespace, then the index will be moved to another tablespace. If the
index and the table in different tablespaces, then the index will not be moved to
another tablespace，so we can rebuild index in another tablespace.

 DBMaker Tutorial1

ON table_name

column_name

DESC

ASC

,

()

CREATE index_nameINDEX

UNIQUE

FILLFACTOR numberIN tablespace_name

Figure 7-3: Syntax for the CREATE INDEX statement

 Example 1

To create a descending index, idx1, on the Number column in the Employee table,
enter the following:
dmSQL> CREATE INDEX idx1 ON Employee (Number desc);

In addition, to create a unique index you have to specify it. Otherwise, DBMaker
creates non-unique indexes.

 Example 2

To create the unique index, idx1, on the Number column in the Employee table,
enter the following:
dmSQL> CREATE UNIQUE INDEX idx1 ON Employee (Number);

 Example 3

To create an index with a specified fill factor, enter the following:
dmSQL> CREATE INDEX idx2 ON Employee(Number, LastName DESC) FILLFACTOR 60;

Dropping Indexes

You can drop indexes using the DROP INDEX statement. In general, you might
need to drop an index if it becomes fragmented, which reduces its efficiency.

©Copyright 1995-2012 CASEMaker Inc. 7-8

 7 1Database Objects

©Copyright 1995-2012 CASEMaker Inc. 7-9

Rebuilding the index will create a denser index that is not fragmented. If the index is a
primary key and referenced by other tables, you cannot drop it.

 Example

To drop the index idx1 from the Employee table, enter the following:
dmSQL> DROP INDEX idx1 FROM Employee;

 DBMaker Tutorial1

©Copyright 1995-2012 CASEMaker Inc. 7-10

 1 Users and Privileges 8

©Copyright 1995-2012 CASEMaker Inc. 8-1

8 Users and Privileges

Protecting information is an important part of any database. Users should not have
free access to all areas of the database, and they should not be capable of changing data
at will. DBMaker provides several means of protecting data and managing access.

 DBMaker Tutorial1

8.1 Security Management

Security management is important for restricting data access to only those users whom
require it.

Security management provided with DBMaker:

 User accounts — uses user ID’s and passwords to control access to the database.

 Authority levels — controls actions that can be performed by different users.

 Table privileges — lets users share some data while keeping other data private.

 Nested groups — simplifies granting privileges by organizing users into groups.
A unique user ID and an optional password identify each user able to access the
database. All users have an authority level for their user accounts. These user authority
levels specify the type of access permitted. There are four authority levels in DBMaker:
CONNECT, RESOURCE, DBA (Database Administrator) and SYSADM (System
Administrator). There may be any number of CONNECT, RESOURCE and DBA
user accounts, but there is only one SYSADM account. The SYSADM account is
reserved for the person who sets up and maintains the database and user accounts.

Table privileges control access to data. By using table privileges, users can access data
created in the tables. Use table permissions to allow users to perform operations on the
table data which determines if they can view, insert, delete, and update data, create an
index, reference a table, or alter a table by adding new columns. Table privileges can
also be granted to everyone; by using the PUBLIC keyword, the privileges on a table
are granted to all users.

©Copyright 1995-2012 CASEMaker Inc. 8-2

 1 Users and Privileges 8

©Copyright 1995-2012 CASEMaker Inc. 8-3

8.2 Authority Levels

To connect to a database, a user must be granted authority. A user with connect
authority has very limited access to the database. They cannot create any new objects,
such as tables or views. They can only view or alter data in tables that have privileges
granted to the PUBLIC table. They cannot alter or view any tables created by other
users until the owner of the table or a user with DBA authority has granted table
privileges to them. After table privileges have been granted, they may use any table
privileges that have been granted to them or to the PUBLIC table.

Resource

Resource authority allows a user to create new tables in the database and drop any
tables they previously created. As the owner of a table, they may also create and drop
views and indices on tables they created. They may also grant and revoke table
privileges on any tables they own. They cannot alter or view any tables created by
other users until the owner of the table or a DBA has granted authority to them or to
the PUBLIC table.

DBA

DBA authority allows a much greater degree of control over the database. It gives a
user all privileges on all tables and views in the database. A DBA can create new tables
or view, alter, and grant, table permissions on all tables. A DBA can also create new
database structures, for instance tablespaces and data files. To control access for a
number of users at a time, a DBA can also create and remove groups and add and
remove users from those groups. However, a DBA user cannot change the authority
level of a current user, grant new users permission to connect to the database, or
change user passwords.

 DBMaker Tutorial1

SYSADM

There is only one SYSADM for each database. The SYSADM ID is assigned by
default to the user who created the database. The SYSADM has complete control over
the database and can add new tables, views, alter and drop the tables of any user, grant
table permissions for any tables, create new tablespaces, or data files. Only the
SYSADM can grant, revoke, or change user authority levels, and change a user’s
password.

©Copyright 1995-2012 CASEMaker Inc. 8-4

 1 Users and Privileges 8

8.3 New Users

Only the SYSADM can grant CONNECT authority and add new users to a database.

 To add new users to the database:

1. Start the database and log in as SYSADM
dmSQL> START DB tutorial SYSADM <password>;

2. Connect to Tutorial with the SYSADM password
dmSQL> CONNECT TO tutorial SYSADM <password>;

3. Choose one of the following to create a new user account without a password
dmSQL> GRANT CONNECT TO Judy;
dmSQL> GRANT CONNECT TO Judy NULL;
dmSQL> GRANT CONNECT TO Judy “”;

4. Alternatively, create a new user account with a password
dmSQL> GRANT CONNECT TO Judy secret;

User Access

When you have connected to the database as the SYSADM, you are ready to add a
new user. Add new users using the GRANT keyword. The GRANT command
specifies usernames, passwords, and their authority levels.

CONNECT TO

TO

RESOURCE

DBA user_name

,

,

password
user_name

GRANT

Figure 8-1: Syntax of the GRANT statement

The user ID may contain a maximum of 128 alphanumeric characters. If the first
character of the user ID is a number, enclose the entire user ID in double quotes (“”).
The user ID’s case sensitivity is dependent on the database configuration parameter
DB_IDCap: if DB_IDCap = 0 all identifiers (table names, usernames, and passwords)

©Copyright 1995-2012 CASEMaker Inc. 8-5

 DBMaker Tutorial1

are case-sensitive. It is possible to have two different user accounts with the names
judy and Judy. The default setting of DB_IDCap is 1, so unless this parameter is
specified all identifiers will be case-insensitive.

Like the user ID, the password may also contain a maximum of sixteen alphanumeric
characters. If the first character is a number, enclose the password in double quotes.

Grant all new users the CONNECT authority before promoting them a higher
authority level of RESOURCE or DBA. When creating a new user account, choose to
assign a password or create the account with no password and let the user create one
later. For security reasons, assign a temporary password when you create the account,
ask the user to change it when they first log on.

Every time a user logs on to the database, they must type the username exactly as it
appears. For consistency, it is best to use the same format when you create new user
accounts.

Multiple Users

Create new user accounts for multiple users at the same time. The syntax is the same
as adding one user, apart from specifying multiple usernames and passwords on the
command line.

 To add two new users without assigning passwords:

1. Start the database and log in as SYSADM
dmSQL> START DB tutorial SYSADM <password>;

2. Connect to Tutorial with the SYSADM password
dmSQL> CONNECT TO connect to tutorial SYSADM <password>;

3. Choose one of the following to create new user accounts without a password
dmSQL> GRANT CONNECT TO Tom, Judy;
dmSQL> GRANT CONNECT TO Tom “”, Judy “”;
dmSQL> GRANT CONNECT TO Tom NULL, Judy NULL;

4. Alternatively, create new user accounts with passwords
dmSQL> GRANT CONNECT TO Tom secret1, Judy secret2;

©Copyright 1995-2012 CASEMaker Inc. 8-6

 1 Users and Privileges 8

©Copyright 1995-2012 CASEMaker Inc. 8-7

8.4 Promoting Authority Level

The GRANT keyword is also used to promote an existing user’s authority level. The
procedure is the same as granting CONNECT authority to a new user. A user may
already have a password for their user account, do not specify a new password unless a
new person is going to use the account.

 Example

To promote a user from CONNECT authority to RESOURCE or DBA authority:
dmSQL> GRANT RESOURCE TO Judy;
dmSQL> GRANT DBA TO Judy;

Granting DBA authority to a user does not automatically give them RESOURCE
authority. This becomes important when demoting a user authority level. If you want
to give a user both RESOURCE and DBA authority, use the grant command twice,
once to grant the RESOURCE authority level, and again to grant the DBA authority
level.

Multiple Users

You can also promote multiple users at the same time. The syntax is the same as for
promoting one user, but specify multiple usernames on the command line. The users
must be promoted to the same authority level. It is not possible to promote multiple
users to different authority levels with one command.

 Example

To promote two new users:
dmSQL> GRANT RESOURCE TO Tom, Judy;
dmSQL> GRANT DBA TO Tom, Judy;

 DBMaker Tutorial1

8.5 Demoting Authority Level

Demoting a user authority level is similar to promoting user authority level; use the
REVOKE keyword instead.

REVOKE FROM

CONNECT

DBA

RESOURCE

user_name

,

Figure 8-2: Syntax of the REVOKE statement

When revoking an authority level from a user, that user drops to the next lower
authority level granted to them. For example, a new user granted CONNECT
authority and then granted DBA authority, without RESOURCE authority. After
revoking DBA authority from the user, they will only have CONNECT authority.

 Example 1

To demote a user from DBA to the next lower authority level:
dmSQL> REVOKE DBA FROM Judy;

 Example 2

To demote a user from RESOURCE to CONNECT authority:
dmSQL> REVOKE RESOURCE FROM Judy;

NOTE: If a user was granted RESOURCE authority and then DBA, revoke both
DBA and RESOURCE authority to demote the user to CONNECT
authority.

 Example 3

To demote a user from DBA authority to CONNECT authority:
dmSQL> REVOKE DBA FROM Judy;
dmSQL> REVOKE RESOURCE FROM Judy;

©Copyright 1995-2012 CASEMaker Inc. 8-8

 1 Users and Privileges 8

©Copyright 1995-2012 CASEMaker Inc. 8-9

8.6 Removing Users

Use the REVOKE keyword to remove an existing user. The procedure for removing
an existing user is the same as for demoting a user’s authority level. Once a user has
had CONNECT authority revoked, that user is removed from the list of people who
can connect to the database.

 Example

To remove a user from a database:
dmSQL> REVOKE CONNECT FROM Judy;

 DBMaker Tutorial1

8.7 Passwords

The SYSADM assigns a temporary password to a new user when creating their user
account. If the user wants to change this password or if the SYSADM did not assign a
temporary password, the user can change the password or set a new password by using
the ALTER PASSWORD command. The SYSADM can also reassign a new password
to a user. Use this method when a user forgets a password.

ALTER PASSWORD

OF user_name

NULL

old_password

new_password

NULL

TO

Figure 8-3: Syntax for the ALTER PASSWORD statement

 Example

To create a password a user would enter:
dmSQL> ALTER PASSWORD NULL TO newpass;
dmSQL> ALTER PASSWORD ““ TO newpass;

 Example

To change a temporary password a user would enter:
dmSQL> ALTER PASSWORD X9elx4 TO newpass;

A user can also remove a password by changing their current password to NULL.

 Example

To change a password to NULL, enter:
dmSQL> ALTER PASSWORD oldpass TO NULL;
dmSQL> ALTER PASSWORD oldpass TO “”;

The SYSADM can change or remove any user password. No other users can change
someone else’s user password. To change a user password, the SYSADM does not have
to know the current password.

©Copyright 1995-2012 CASEMaker Inc. 8-10

 1 Users and Privileges 8

©Copyright 1995-2012 CASEMaker Inc. 8-11

 Example

To change a user password, a SYSADM would choose one of the following:
dmSQL> ALTER PASSWORD OF Judy TO newpass;
dmSQL> ALTER PASSWORD OF Judy TO NULL;
dmSQL> ALTER PASSWORD OF Judy TO “”;

 DBMaker Tutorial1

8.8 Managing Groups

When a database becomes very large and has many users, it becomes increasingly
difficult to grant user privileges on an individual basis. To solve this problem,
DBMaker defines users in groups. Using groups, you can collect all users whom
require the same database privileges to simplify authorization management. Table
privileges can be granted or revoked for all users in a group at the same time and rights
to a number of users at the same time, simplifying authorization management.

Creating

To create a new group, use the CREATE GROUP command.

CREATE GROUP group_name

Figure 8-4: Syntax for the CREATE GROUP statement

The group name may contain alphanumeric characters. The group name can be any
length, but only the first eight characters are used. Be careful when naming groups,
both of the groups CompanyEmployee and CompanyExecutives would have the
same significant characters CompanyE. Trying to create the second group with the
same significant characters will result in an error.

The group name is also case sensitive, so the names companyExecutives and
CompanyExecutives create two different groups, companyE and CompanyE. To
avoid these situations, limit group names to eight or less characters and avoid long
descriptive names.

 Example

To create a group for all marketing personnel, use:
dmSQL> CREATE GROUP marketing；

Add all marketing department personnel to the new group called marketing. Then
grant privileges to the group and all members will have access to the same objects.

©Copyright 1995-2012 CASEMaker Inc. 8-12

 1 Users and Privileges 8

Adding Members

Add one or several users a time.

ADD

user_name

,

TO GROUP group_name

Figure 8-5: Syntax for the ADD TO GROUP statement

 Example

To add one user, Judy, to the group SalesRep:
dmSQL> ADD Judy TO GROUP SalesRep;

 Example

To add the users Judy, Jeff, and Trent to the SalesRep group:
dmSQL> ADD Judy, Jeff, Trent TO GROUP SalesRep;

Removing Members

Use the REMOVE GROUP command to remove a single user or to remove multiple
users.

REMOVE FROM GROUP group_name

user_name

,

Figure 8-6: Syntax for the REMOVE FROM GROUP statement

 Example 1

To remove one user, Judy, from the SalesRep group:
dmSQL> REMOVE Judy FROM GROUP SalesRep;

 Example 2

To remove the users Judy, Jeff, and Trent from the SalesRep group:
dmSQL> REMOVE Judy, Jeff, Trent FROM GROUP SalesRep;

©Copyright 1995-2012 CASEMaker Inc. 8-13

 DBMaker Tutorial1

Dropping

If a group of users is empty or is no longer required, drop the group by using the
DROP GROUP command.

DROP GROUP group_name

Figure 8-7: Syntax for the DROP GROUP statement

If the group is not yet empty, remove all users with the REMOVE FROM GROUP
command above.

 Example

To drop the SalesRep group, ensure that it is empty and enter:
dmSQL> DROP GROUP SalesRep;

Nested Groups

Nested groups further enhance the functionality of groups. To create a nested group,
use a group name as a user ID and use the ADD TO GROUP command. To remove
the nested group, use the REMOVE FROM GROUP command.

 To create a group named NYSales:

1. Type the following command
dmSQL> CREATE GROUP NYSales;

2. Add it to the SalesRep group
dmSQL> ADD NYSales TO GROUP SalesRep;

3. Then remove it
dmSQL> REMOVE NYSales FROM GROUP SalesRep;

©Copyright 1995-2012 CASEMaker Inc. 8-14

 1 Users and Privileges 8

©Copyright 1995-2012 CASEMaker Inc. 8-15

8.9 Table Level Privileges

There are seven table privileges that the owner of a table or users with DBA authority
can use. Four of the privileges, SELECT, INSERT, DELETE, and UPDATE, allow
users to view and alter the data in a table. The three remaining privileges permit users
to create indexes-INDEX, change the table definition-ALTER, and place referential
integrity constraints on the table-REFERENCE. Table privileges can also be used to
set changes to specified columns.

Select

The SELECT privilege permits users to view any data in a table or view. The table
owner or users with DBA authority may grant the SELECT privilege.

Insert

INSERT privilege permits users to insert new data in a table. Grant INSERT privilege
for an entire table or for specified columns by including a column name list after the
INSERT keyword. The table owner or users with DBA authority may grant the
INSERT privilege.

Delete

The DELETE privilege permits a user to delete data from a table. The table owner or
users with DBA authority may grant the DELETE privilege.

Update

UPDATE privilege permits users to update any of the values in a table. You can grant
UPDATE privilege for an entire table or for specified columns by including a column
name list after the UPDATE keyword. The table owner or users with DBA authority
may grant the UPDATE privilege.

 DBMaker Tutorial1

Index

The INDEX privilege permits users to create an index for a table. The table owner or
users with DBA authority may grant the INDEX privilege.

Alter

The ALTER privilege permits users to alter the table definition for a table. The table
owner or users with DBA authority may grant the ALTER privilege.

Reference

The REFERENCE privilege permits users to create foreign keys for a table. Grant the
REFERENCE privilege for an entire table or for specified columns. To grant the
REFERENCE privilege on specified columns, include a column name list after the
REFERENCE keyword. The table owner or users with DBA authority may grant the
REFERENCE privilege.

©Copyright 1995-2012 CASEMaker Inc. 8-16

 1 Users and Privileges 8

8.10 GRANT Privileges

The owner of the table or users with DBA authority may grant table privileges to any
user. Grant the privileges for an entire table or for specified columns.

Use the GRANT command to assign privileges for tables.

GRANT column_name

,

)(

,

UPDATE

REFERENCE

INSERT

,

DELETE

INDEX

UPDATE

SELECT

REFERENCE

ALTER

INSERT

ALL
PRIVILEGES

ON table_name TO

,

user_name

PUBLIC
group_name

Figure 8-8: Syntax for the GRANT statement

Privileges cannot be granted on a table and specified columns at the same time. Use
two commands to grant privileges on the entire table and privileges on specified
columns. Privileges can be granted to a single user, groups, or to all users by using the
PUBLIC keyword.

©Copyright 1995-2012 CASEMaker Inc. 8-17

 DBMaker Tutorial1

GRANT Table Privileges

 Example 1

To grant the SELECT privilege on the SalesRep table to Judy, enter the following:
dmSQL> GRANT SELECT ON SalesRep TO Judy;

It is also possible to grant more than one privilege at the same time. List the privileges
on the command line, separated with a comma.

 Example 2

To grant the SELECT and UPDATE privileges on the SalesRep table to Judy, enter
the following:
dmSQL> GRANT SELECT, UPDATE ON SalesRep TO Judy;

Grant all table privileges to a user by listing all of the keywords on the command line,
or use the ALL keyword provided by DBMaker.

 Example 3

To grant the entire table list of privileges: SELECT, INSERT, UPDATE, DELETE,
ALTER, INDEX, AND REFERENCE on the SalesRep table to Judy:
dmSQL> GRANT ALL ON SalesRep TO Judy;

Grant privileges to multiple users by specifying multiple usernames, separated by
commas.

 Example 4

To grant the SELECT and UPDATE privilege on the SalesRep table to Judy and Jeff,
enter the following:
dmSQL> GRANT SELECT, UPDATE ON SalesRep TO Judy, Jeff;

Grant privileges to a group of users or multiple groups by specifying group names,
separated by commas.

 Example 5

To grant the SELECT and UPDATE privileges on the SalesRep table to the groups
Personnel and SalesMgr, enter the following:
dmSQL> GRANT SELECT, UPDATE ON SalesRep TO Personnel, SalesMgr;

©Copyright 1995-2012 CASEMaker Inc. 8-18

 1 Users and Privileges 8

©Copyright 1995-2012 CASEMaker Inc. 8-19

NOTE: It is not possible to grant privileges on multiple tables at the same time.

GRANT Column Privileges

It is possible to grant the INSERT, UPDATE, and REFERENCE privileges only on
specified columns. When granting privileges on columns, it is not possible to grant
other privileges on the entire table in the same command.

 Example 1

To grant the INSERT privilege on the Name column of the SalesRep table to Judy,
enter the following:
dmSQL> GRANT INSERT (Name) ON SalesRep TO Judy;

 Example 2

To grant the INSERT privilege on more than one column to Judy, list the columns
separated by commas:
dmSQL> GRANT INSERT (Name, Age, RepOffice, Title) ON SalesRep TO Judy;

When granting multiple privileges with one command, all of the privileges must act
on the same columns. DBMaker does not support granting privileges on different
columns in a single command.

 Example 3

To grant Judy the UPDATE, INSERT and REFERENCE privileges on the Name
and Age columns of the SalesRep table , enter:
dmSQL> GRANT INSERT, UPDATE, REFERENCE (Name, Age) ON SalesRep TO Judy;

Grant privileges to multiple users and groups for columns the same way as granting
privileges on tables; list the user or group names separated by commas.

 DBMaker Tutorial1

8.11 REVOKE Privileges

The table owner or users with DBA authority can revoke privileges from any user on a
table or from specified columns. Use the REVOKE command to remove privileges.

REVOKE column_name

,

)(

,

UPDATE

REFERENCE

INSERT

,

DELETE

INDEX

UPDATE

SELECT

REFERENCE

ALTER

INSERT

ALL
PRIVILEGES

ON table_name FROM

,

user_name

PUBLIC

group_name

Figure 8-9: Syntax for the REVOKE statement

Privileges on a table and specified columns may not be revoked at the same time. Use
two commands to revoke privileges on the entire table and privileges on specified
columns. Use the PUBLIC keyword to revoke privileges for a single user, group, or all
users.

REVOKE Table Privileges

 Example 1

To revoke from Judy the SELECT privilege on the SalesRep table, enter:
dmSQL> REVOKE SELECT ON SalesRep TO Judy;

©Copyright 1995-2012 CASEMaker Inc. 8-20

 1 Users and Privileges 8

©Copyright 1995-2012 CASEMaker Inc. 8-21

Revoke more than one privilege by listing the privileges to be revoked on the
command line, separated with a comma.

 Example 2

To revoke from Judy the SELECT and UPDATE privileges on the SalesRep table,
enter:
dmSQL> REVOKE SELECT, UPDATE ON SalesRep TO Judy;

Revoke all table privileges, (SELECT, INSERT, UPDATE, DELETE, ALTER,
INDEX and REFERENCE), from a user by listing all of the keywords, or use the
ALL keyword provided by DBMaker.

 Example 3

To revoke from Judy the entire list of table privileges on the SalesRep table, enter:
dmSQL> REVOKE ALL ON SalesRep TO Judy;

Revoke privileges from multiple users by specifying multiple usernames, separated by
commas.

 Example 4

To revoke from Judy and Jeff the SELECT and UPDATE privileges from the
SalesRep table, enter:
dmSQL> REVOKE SELECT, UPDATE ON SalesRep TO Judy, Jeff;

Revoke privileges from a group of users or multiple groups by replacing the usernames
with the group names.

 Example 5

To revoke from the Personnel and SalesMgr groups the SELECT and UPDATE
privileges on the SalesRep table, enter:
dmSQL> REVOKE SELECT, UPDATE ON SalesRep TO Personnel, SalesMgr;

NOTE: It is not possible to grant or revoke privileges on multiple tables at the same
time.

 DBMaker Tutorial1

©Copyright 1995-2012 CASEMaker Inc. 8-22

REVOKE Column Privileges

It is possible to revoke the INSERT, UPDATE and REFERENCE privileges on
specified columns. If you are revoking privileges on columns, it is not possible to
revoke other privileges on the entire table with the same command.

 Example 1

To revoke from Judy the INSERT privilege on the Name column of the SalesRep
table, enter:
dmSQL> REVOKE INSERT (Name) ON SalesRep TO Judy;

 Example 2

To revoke from Judy the INSERT privilege on more than one column of the
SalesRep table, list the columns separated by commas:
dmSQL> REVOKE INSERT (Name, Age, RepOffice, Title) ON SalesRep TO Judy;

When revoking more than one privilege with one command, all of the privileges must
be in use on all of the columns.

 Example 3

To revoke from Judy the UPDATE, INSERT, and REFERENCE privileges on the
Name and Age columns of the SalesRep table, enter:
dmSQL> REVOKE INSERT, UPDATE, REFERENCE (Name, Age) ON SalesRep TO Judy;

Revoke privileges on columns for multiple users and groups in the same way as
revoking privileges on tables; list the user or group names separated by commas.

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-1

9 Database Recovery

In every database management system, the possibility of a hardware or software failure
always exists. A RDBMS may fall victim to these types of failures without warning.
After a failure occurs, a RDBMS should have some method of recovering the
information. This is one of the main advantages that a RDBMS has over the file-based
systems they replaced.

DBMaker incorporates advanced data protection features to prevent data loss and
downtime due to failures. These features allow DBMaker to ensure the reliability of a
database and the consistency of data by providing recovery, backup, and restoration
features.

This chapter will introduce you to the types of failures that may occur in a database,
and what steps you should take to prevent the loss of data. As in previous chapters,
examples are given using the dmSQL command line tool, however, this chapter also
contains examples of how to use the JServer Manager Tool to backup and restore a
database.

 DBMaker Tutorial1

9.1 Types of Failures

Two of the most common types of database failures are system failures and media
failures. When a failure occurs, there is the possibility of data inconsistency or data loss
from a database. A RDBMS should provide facilities to recover from a failure and for
replacing a damaged database with a backup copy.

System

A system failure, known as an instance failure, is a failure of the main memory. System
failures may be caused by a power failure, an application or operating system crash, a
memory error, or some other reason. This results in the unexpected termination of a
database management system.

When a system failure occurs, applications and active transactions may terminate
abnormally. The exact state of a transaction in progress or a transaction not
completely written to disk cannot reliably be determined after a system failure; these
types of transactions require recovery. The most common method of protecting
against system failures is the use of a transaction log or a journal file.

Media

Media failure, known as disk failure, is the failure of a disk storage system. Media
failures are caused by physical trauma to the disk, a head crash, fire, or exposure to
vibration or g-forces outside of its physical operating limits.

When a media failure occurs, there is generally nothing to prevent data loss on the
affected disk. Backup and restoration facilities can still successfully restore a database.

©Copyright 1995-2012 CASEMaker Inc. 9-2

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-3

9.2 Recovery Methods

The goals of recovery after a database failure are to ensure committed transactions are
reflected in the database, ensure that uncommitted transactions are not reflected in the
database, and to return to normal operation as quickly as possible while insulating
users from problems caused by the failure.

DBMaker uses journal files and checkpoints to achieve these goals. The journal files
and checkpoints work together to ensure recovery of all transactions in as short a time
as possible.

Journal Files

Journal files provide a real-time and historical record of all changes made to a database
and the status of each change. In the event of a system failure, the historical record of
changes maintained in the journal files allows DBMaker to recover and redo changes
made by transactions that completed but were not written to disk, or undo changes
made by transactions that terminated abnormally.

If a database is running in backup mode, the journal files will also store additional
information that DBMaker can use. This information will remain in the journal files
until they backed up; after backing up the journal files DBMaker will free the space
for use by new transactions. During the restoration process, DBMaker will add the
information from the backup journal files to a backup copy of the database. This
allows you to backup only the journal files that contain the changes made to the
database between full backups.

Checkpoint Events

A checkpoint is a system event in which the database is brought to a clean state.
DBMaker writes all journal records and all dirty data pages from its internal memory
buffers to disk and reclaims journal blocks that are no longer required for backup or

 DBMaker Tutorial1

recovery purposes. DBMaker can reclaim journal blocks that contain non-active
transactions completed before the start of the oldest active transaction.

Startup time reduces when taking a checkpoint after an instance failure. DBMaker
writes the time of the last checkpoint and a list of all active transactions at the time of
the checkpoint, to the journal file header. During database recovery, DBMaker uses
information to determine which transactions should be undone, redone, and ignored.

DBMaker will automatically take a checkpoint when the journal files are full to try to
reclaim some journal blocks for reuse. If the checkpoint cannot reclaim enough space
to complete the current transaction, the transaction will be aborted. DBMaker will
also automatically take a checkpoint when the database starts and shuts down, and
during an online backup.

Database administrators can initiate a checkpoint manually by executing the
CHECKPOINT command. The optimal interval between two checkpoints depends
on the frequency of activity in the database, the average size of transactions, and the
size and number of journal files. Since these factors may vary significantly from
database to database, you may only be able to determine the optimal interval through
experience. Manual checkpoints reduce the amount of time required to start,
terminate, and backup a database or a full journal.

Checkpoints may require a significant amount of time to complete, depending on the
size and number of transactions since the last checkpoint. Any transactions that are
active when a checkpoint occurs are paused while DBMaker calculates which journal
records it can reclaim. When DBMaker starts to write journal records and dirty data
pages to disk the transactions proceed.

Recovery Steps

DBMaker provides support for automatic recovery when you try to start a database
after a system failure or when an error occurs during startup. During the recovery
process, DBMaker always performs two separate steps redo and undo.

The first step in the recovery process is to redo all changes made to the database that
are recorded in the journal. It is possible for a transaction to have completed before
the system failure without having all of the changes made by the transaction written to

©Copyright 1995-2012 CASEMaker Inc. 9-4

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-5

the database. However, these changes are stored in the journal and can be written to
the database during this step. At the end of this step, the database contains the changes
made by all committed transactions and the changes made by all uncommitted
transactions.

The second step in the recovery process is to undo all of the changes made by
transactions that were not completed before the system failure occurred. The exact
state of a transaction in progress cannot be reliably determined in the event of a system
failure, so it cannot continue to completion. These incomplete transactions must be
removed since a transaction is self-contained by definition and must either complete
successfully and change the data, or fail and leave the data unchanged. At the end of
this step, the database contains the changes made by all committed transactions, but
does not contain any changes made by uncommitted transactions.

DBMaker also provides support for starting a database after a media failure or after a
system failure, which causes inconsistencies in a database that cannot be repaired
during the automatic recovery process. In these cases, the database will fail to start and
you would normally need to restore a database from a backup copy. However, if you
have never backed up your database, you can force the database to start by setting the
forced-start mode using the DB_ForcS keyword in the dmconfig.ini file. This will
allow you to start the database and unload the unaffected data. For more information
on the forced-start mode, refer to the Database Administrator’s Guide.

 DBMaker Tutorial1

9.3 Types of Backup

Backups are used to protect your database from media failures or other media errors.
After a media failure, one or more of your database files may be physically damaged
and unusable. You can use the most recent backup to replace the damaged files and
reconstruct a database in a case like this.

There are three main types of database backups: full backups, differential backups and
incremental backups. When you want to perform a backup, there are two different
states a database may be in, online or offline. DBMaker supports several different
combinations of backup types and database states.

Full Backup

A full backup creates a copy of all data and journal files, providing a copy of the entire
database at one point in time. You can optionally create a backup copy of the
dmconfig.ini file as well, preserving any custom configuration settings you may have
for a database. DBMaker allows you to perform a full backup while a database is
online or offline.

Full backups archive the entire database, so they require a large amount of storage
space. However, you can restore a database relatively quickly using a full backup since
you can simply copy the backup files over the damaged originals. A full backup to can
restore a database to the point in time that the last full backup was performed and
database files copied.

Differential Backups

A differential backup is based on the latest full backup of the data. This is known as
the base of the differential or the differential base. A differential base must exist before
making a differential backup.

Differential backups contain only data that has changed since the differential base was
generated. Typically, a differential base is used for several successive differential

©Copyright 1995-2012 CASEMaker Inc. 9-6

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-7

backups. During a restore, the full backup and its corresponding differential backup
will produce a full database.

Differential backups include data files(all DB files and BB files）. Journal files are
excluded because they change too frequently. Only useful journal blocks are copied
during differential backups.

Incremental Backup

An incremental backup creates a copy of only the journal files that have changed since
the last backup. These files provide a copy of the changes made to the database since
the last backup. Since an incremental backup only contains changes made to the
database, you must perform a full or differential backup before the incremental
backup in order to restore a database. DBMaker allows you to perform an incremental
backup only while a database is online.

Note that an incremental backup is composed of journal files which record all
transactions since the backup mode (DB_BMODE) is on. When DBMaker Database
is running on normal mode (DB_SMODE = 1), before doing an incremental backup,
a full backup or a differential backup must has been done; when on replication mode
(DB_SMODE = 4) , an incremental backup can be done without a full backup or a
differential backup.

Incremental backups archive only journal files, so they require a small amount of
storage space. However, it may take more time than a full backup to restore a database
since the RDBMS must take the time to roll over all transactions in the backup
journal files. You can use an incremental backup together with a full or differential
backup to restore a database to any point in time between the previous full or
differential backup and when the incremental backup completed.

Offline Backup

An offline backup must be performed after a database has been shut down. The
Database Administrator must schedule a time to shut down the database, and notify
all users so they can disconnect from the database. Offline backups can be

 DBMaker Tutorial1

inconvenient for users, since they must remember to complete all active transactions
and disconnect from the database before it is shut down. A database must be offline
during a full backup.

An RDBMS does not need to provide the capability to backup a database offline,
since you can backup the database with operating system commands after it is shut
down. DBMaker allows you to perform an offline backup using this method, but also
provides Server Manager, an easy-to-use graphical tool that allows you to perform
offline backups without resorting to using operating system commands.

Online Backup

An online backup can be performed while a database is running. The Database
Administrator does not have to shut down the database, and users do not need to
disconnect. Online backups are more convenient for users, since no action is required
on their part. DBMaker can perform full, differential and incremental backups while
online.

An RDBMS must provide the capability to backup a database online, since it is still
running and still has users connected. DBMaker allows you to perform online
backups manually using dmSQL and operating system commands, but also provides
Server Manager, an easy-to-use graphical tool that allows you to perform online
backups without resorting to operating system commands.

Backup Combinations

You can perform full, differential and incremental backups using DBMaker, but they
are mutually exclusive; you cannot perform a full, a differential and an incremental
backup together. Similarly, DBMaker supports backup execution while the database is
offline or online. Additionally, DBMaker allows various combinations of full,
differential and incremental backups with online or offline backups.

DBMaker supports the following backup combinations: offline full backups, online
full backups, online differential backups and online incremental backups. DBMaker
also supports an additional backup type known as online incremental to current.

©Copyright 1995-2012 CASEMaker Inc. 9-8

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-9

The difference between an online incremental backup and an online incremental to
current backup in a database with multiple journal files is minor, but very significant.
In an online incremental backup DBMaker will backup all journal files that have been
used since the last backup, excluding the active journal file. In an online incremental
to current backup, DBMaker will backup all journal files that have been used
including the active journal file. This means that an online incremental backup can
restore a database up to the point in time the last committed transaction was written
to the last full journal file, while an online incremental to current backup can restore a
database up to the point in time the active journal file was backed up.

In a database with only a single journal file, an online incremental backup, and an
online incremental to current backup are the same. In this case, the only journal file is
the active journal file. DBMaker will backup this single journal file in both types of
incremental backup.

 DBMaker Tutorial1

9.4 Backup Modes

Backup mode determines whether DBMaker can perform online incremental backups,
and the type of data that will be backed up during an incremental backup. It also
determines when DBMaker will free journal blocks that belong to inactive
transactions for use by other transactions. DBMaker has three backup modes,
NONBACKUP, BACKUP-DATA, and BACKUP-DATA-AND-BLOB.

NONBACKUP Mode

NONBACKUP mode does not provide protection for data inserted or updated since
the last full backup. In this mode, a database cannot perform online incremental
backups. A database can use the journal to fully recover from instance failure, but a
media failure may result in loss of data. Journal blocks not in use by an active
transaction can be reused immediately after a checkpoint, but once they are
overwritten, you can only restore the database to the point in time of the last full
backup.

BACKUP-DATA Mode

BACKUP-DATA mode provides protection for data, excluding BLOB data, inserted
or updated since the last full backup. In this mode, a database can perform an online
incremental backup, but only non-BLOB data will be stored in the backup files. A
database can use the journal to fully recover from instance failure, and can partially
recover from media failure. Although you can use the last backup to restore the
database to the point in time of the media failure, any changes to BLOB data will be
lost. Journal blocks not in use by an active transaction can only be reused after a
checkpoint has taken place and the journal file has been backed up.

©Copyright 1995-2012 CASEMaker Inc. 9-10

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-11

BACKUP-DATA-AND-BLOB Mode

BACKUP-DATA-AND-BLOB mode provides protection for all data, including
BLOB data, inserted or updated since the last full backup. In this mode, a database
can perform an online incremental backup, and all data will be stored in the backup
files. A database can use the journal to fully recover from instance failure, and can also
fully recover from disk failure. You can use the last backup to completely restore the
database to the point in time of the media failure, including all BLOB data. Journal
blocks not in use by an active transaction can only be reused after a checkpoint has
taken place and the journal file has been backed up.

Tablespace BLOB Backup Mode

DBMaker normally applies the backup mode setting to the entire database, applying
all tablespaces in the database with the same backup mode. If the database is in
BACKUP-DATA-AND-BLOB mode, DBMaker will record all changes to data,
(including BLOB data), in the journal. Recording BLOB data in the journal can
quickly exhaust journal space, producing frequent backups and large backup file sizes.

This may be necessary if you cannot afford to lose any BLOB data. In many cases, you
may also be backing up non-critical BLOB data at the same time. Situations like this
make it difficult for you to decide which backup mode to choose. To prevent this type
of situation from occurring, DBMaker allows you to modify the database backup
mode for individual tablespaces when you create them.

If you want to backup BLOB data in a specific tablespace, you can use the BACKUP
BLOB ON option when you execute the CREATE TABLESPACE command. If you
do not want to backup BLOB data in a specific tablespace, you can use the BACKUP
BLOB OFF option when you execute the CREATE TABLESPACE command.

The backup mode of each tablespace will then depend on the combination of database
backup mode and tablespace backup mode as follows:

 If the database is running in BACKUP-DATA-AND-BLOB mode and a
tablespace was created with the BACKUP BLOB ON option, DBMaker will
backup BLOB data in that tablespace.

 DBMaker Tutorial1

 If the database is running in BACKUP-DATA-AND-BLOB mode and a
tablespace was created with the BACKUP BLOB OFF option, DBMaker will not
backup BLOB data in that tablespace.

 If the database is running in BACKUP-DATA mode, DBMaker will not backup
BLOB data regardless of whether a tablespace was created with the BACKUP
BLOB ON or BACKUP BLOB OFF option.

DBMaker will use BACKUP BLOB ON by default. All changes to BLOB data in a
tablespace will be recorded in the journal file when the database is in BACKUP-
DATA-AND-BLOB mode.

Backup File Object Mode

In addition to backing up regular and BLOB data in the database, users may choose to
back up file objects. File objects are backed up only during automatic full backups
initiated by the backup daemon. Users should first start the backup server, set the full
backup schedule, and set the backup directory.

There are two types of file objects: user file objects and system file objects. The
database administrator may choose to back up user file objects, system and user file
objects, or neither. The dmconfig.ini keyword DB_BkFoM specifies the file object
backup mode.

 DB_BkFoM = 0: Do not backup file objects

 DB_BkFoM = 1: Backup system file objects only

 DB_BkFoM = 2: Backup both system and user file objects

When backing up file objects (DB_BkFoM = 1, 2), the backup server copies all
external files of file objects to the “fo” subdirectory under the directory specified by
DB_BkDir keyword. The schedule follows the full backup schedule specified by
DB_FBkTm and DB_FBkTv.

 Example

An excerpt from a dmconfig.ini file containing related keywords:
[MyDB]

©Copyright 1995-2012 CASEMaker Inc. 9-12

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-13

DB_BkSvr = 1 ; starts the backup server
DB_FBKTm = 01/05/01 00:00:00 ; begins from midnight at May 1, 2001.
DB_FBKTV = 1-00:00:00 ; interval is every one day.
DB_BkDir = /home/dbmaker/backup ; backup directory
DB_BkFoM = 2 ; backup both system and user file objects

Since the file object backup mode is 2, the backup server will copy all external
database file objects to the “/home/dbmaker/backup/FO” directory. If the FO
subdirectory does not exist, the backup server will create it.

The files in FO subdirectory are renamed with a sequential number. For example, if
the name of the original external file is “/DBMaker/mydb/fo/ZZ000123.bmp”, the
backup server would copy it to the FO subdirectory and rename it
'fo0000000344.bak', meaning it is the 344th file object. The mapping between the
source full file name and its new name is recorded in the file object mapping list file,
dmFoMap.his. For more information about the file object mapping list file, refer to
section 14.7, Backup History Files

The backup server will also move the previous version of file objects to the FO
subdirectory under the old backup directory specified by DB_BkOdr.

Database administrators should consider that enabling file object backup requires
more time for a full backup. The cost of complete full backup includes (1) copying the
previous full backup if DB_BkOdr is set; (2) copying all database files; (3) copying all
journal files; and (4) copying all file objects if DB_BkFoM is set. Also, ensure that
there is enough disk space in the backup directory specified by DB_BkDir for all
backup files to avoid backup failure.

Setting Backup Mode

DBMaker provides several different methods to set the backup mode. The method
you choose depends on whether your database is online or offline, and whether you
are more comfortable editing the configuration file directly, using the dmSQL
command line utility, or using the JServer Manager graphical utility.

Modifying the backup mode of a database to provide a higher level of backup
protection has an effect on journal usage. The journal begins recording previously
unrecorded changes to data, before modifying the backup mode. As a result, it is

 DBMaker Tutorial1

necessary to perform a full or differential backup when you change the backup mode.
This provides a starting point for the backup journal files to update during the
restoration process.

No extra steps are required when modifying the backup mode of a database to provide
a lower level of backup protection. The journal simply stops recording changes to
data. DBMaker will use the previous full or differential backup as a starting point for
the backup journal files to update during the restoration process. However, some
changes to data may be lost if you restore a database after changing to a lower level of
backup protection.

You can change the backup mode of a database offline using the dmconfig.ini file or
JServer Manager. Since the backup mode affects journal usage, you must perform an
offline full backup before you start the database with the new backup mode setting.
When changing the backup mode offline, you may change from any backup mode to
any other backup mode without restriction, providing you make a full backup when
going from a lower level of backup protection to a higher level. To learn how to use
JServer Manager to change the backup mode, refer to the JServer Manager User’s
Guide.

You can change the backup mode of a database online using dmSQL. Since the
backup mode will affect journal usage, you must change the backup mode from a
lower level of backup protection to a higher level (i.e., from NONBACKUP to
BACKUP-DATA or BACKUP-DATA-AND-BLOB mode, or from BACKUP-
DATA to BACKUP-DATA-AND-BLOB mode) between the start and finish of a full
backup period.

 Example

To BEGIN BACKUP, SET DATA BACKUP ON, END BACKUP DATAFILE,
and END BACKUP JOURNAL, enter:
dmSQL> BEGIN BACKUP;
dmSQL> SET DATA BACKUP ON;
dmSQL> END BACKUP DATAFILE;
dmSQL> END BACKUP JOURNAL;

©Copyright 1995-2012 CASEMaker Inc. 9-14

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-15

 Example

To BEGIN BACKUP, END BACKUP DATAFILE, SET DATA BACKUP ON,
and END BACKUP JOURNAL, enter:
dmSQL> BEGIN BACKUP;
dmSQL> END BACKUP DATAFILE;
dmSQL> SET DATA BACKUP ON;
dmSQL> END BACKUP JOURNAL;

DBMaker does not allow you to go from a higher level of backup protection to a
lower level unless you change to NONBACKUP mode first. If you want to change
from BACKUP-DATA-AND-BLOB to BACKUP-DATA mode, you must first
change to NONBACKUP mode and then follow the rules above for changing from a
lower level of backup protection to a higher level. You may change the backup mode
from BACKUP-DATA-AND-BLOB or BACKUP-DATA to NONBACKUP at any
time; you do not need to do this between the start and finish of a full backup period.
However, during runtime, users can’t directly change backup mode from
NONBACKUP to BACKUP-DATA-AND-BLOB mode, or from BACKUP-DATA-
AND-BLOB to BACKUP-DATA mode. For more information on performing an
online full backup, see “Online Full Backups” later in this chapter.

USING THE DMCONFIG.INI FILE TO SET THE BACKUP MODE

If the database is offline, you can change the backup mode directly using the
DB_BMODE keyword in the dmconfig.ini file. The next time you start the database,
the new backup mode will be used. If the database is online, changing the value of the
DB_BMODE keyword will have no effect until the database is shut down and
restarted. You must remember to perform an offline full backup if you are going from
NONBACKUP to BACKUP-DATA or BACKUP-DATA-AND-BLOB mode, or
from BACKUP-DATA to BACKUP-DATA-AND-BLOB mode.

 To set the backup mode using the dmconfig.ini configuration file:

1. Using any ASCII text editor, open the dmconfig.ini file on the database server.

2. To change the backup mode, locate the database configuration section for the
database.

3. Change the value of the DB_BMODE keyword to one of the following values:
0 - NONBACKUP mode

 DBMaker Tutorial1

1 - BACKUP-DATA mode
2 - BACKUP-DATA-AND-BLOB mode

4. To begin using the new backup mode, restart the database.

If the DB_BMODE keyword is not present in the database configuration section for
the database you want to change the backup mode for, you will have to add it to the
database configuration section. You can add the keyword on a separate line anywhere
between the start of the database configuration section and the start of the next
configuration section; the order the keywords appear in is not important. If you do
not specify a value for DB_BMODE, the default value of 0 (NONBACKUP mode)
will be used.

USING DMSQL TO SET THE BACKUP MODE

If the database is online and you are comfortable using the dmSQL command line
utility, you can change the backup mode using the SQL SET command. You must
execute this command during an online full or differential backup. The new backup
mode will be enabled as soon as the command is executed.

 To set the backup mode using the dmSQL command line utility:

1. Using dmSQL, connect to a database.

2. Using the BEGIN BACKUP command, begin an online full backup.

3. Change the backup mode during the full backup period by issuing one of the
following SET commands:
dmSQL> SET BACKUP OFF;
dmSQL> SET DATA BACKUP ON;
dmSQL> SET BLOB BACKUP ON;

4. Complete the online full backup.

NOTE: The SET BACKUP OFF command corresponds to NONBACKUP mode,
the SET DATA BACKUP ON corresponds to BACKUP-DATA mode, and
the SET BLOB BACKUP ON command corresponds to BACKUP-DATA-
AND-BLOB mode.

©Copyright 1995-2012 CASEMaker Inc. 9-16

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-17

9.5 Offline Full Backup

To perform an offline full backup, you must have read permission on the database
files from the operating system, and write permission on the backup directory from
the operating system. If you have to shut down the database first, you must have DBA
or SYSADM security privileges.

You can perform an offline full backup regardless of the backup mode; the database
may be running in NON-BACKUP, BACKUP-DATA, or BACKUP-DATA-AND-
BLOB mode. Using an offline full backup, you can restore the database to the point
in time the database was shut down.

Offline Full Backup using dmSQL

 To perform an offline full backup using dmSQL:

1. Notify all users that the database will be shut down at a specified time and ask
them to disconnect from the database before the specified time.

2. If the database is running, shut down the database using the TERMINATE DB
command. If there are any errors while shutting down the database, restart the
database, correct the problem, and shut it down again.

3. Examine the dmconfig.ini file and determine which files and directories, including
the file object directory, require backup.

4. Use operating system commands or utilities to copy the database files, (including
data files, journal files, file objects, and the dmconfig.ini file), to the backup
directory or backup device.

Offline Full Backup Using JServer Manager

 To perform an offline full backup using JServer Manager:

1. Start the JServer Manager application on the database server

2. Select Backup Database from the main console to see the list of different backup
options

 DBMaker Tutorial1

3. Select Off Line Full Backup from the Backup window. The Off Line Full Backup
window appears.

4. Select a database from the Database Name drop-down list box. JServer Manager
will prompt you to log onto the database.

5. Enter your User-ID in the User ID field

NOTE Any user with the DBA security privilege can back up the database.

6. Enter a password in the Password field

7. Click OK. A single user connection is established to the database. The Off Line
Full Backup window is displayed with a list of operating system files to be backed
up.

8. Select a new path for the backup directory by clicking the browse button (…).

9. Select OK to save all files in the backup directory.

NOTE If the files already exist in the backup directory, the database administrator
may choose to overwrite them.

10. Examine the dmconfig.ini file and determine the location of the file object directory

11. Use operating system commands or utilities to copy all file objects to the backup
directory or backup device

©Copyright 1995-2012 CASEMaker Inc. 9-18

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-19

9.6 Backup Server

Although DBMaker provides methods for backing up a database manually, you must
still remember to perform the backups on a regular basis. To solve this problem,
DBMaker provides a convenient and easy way to perform fully automated online full,
differential and incremental backups using Backup Server. Please note that Backup
Server can only perform an online backup, since only after database startup, Backup
server can startup .

The database administrator may also perform backups during runtime with the
JServer Manager utility ‘Backup by Backup Server’

Backup Server runs in the background and performs online full, differential and
incremental backups on a regular schedule, as journal files become full, or both. This
flexibility is possible because Backup Server and the database server communicate to
determine when a backup should occur, the type of incremental backup to perform,
and which backup options to change. Backup Server starts at the same time as the
database server, and continues running until you either stop it or shut down the
database server. The backup server is

When performing full backups, Backup Server will copy the last full backup from the
backup directory to the old directory. Then, it will copy all database files including
journal files and dmconfig.ini to the backup directory, over writing the previous full
backup.

When performing differential backups, Backup Server copies only data (all DB files
and BB files) files. Journal files are excluded because the journal files change more
frequently. So, when doing differential backup, only useful journal blocks are copied.
Data files in read-only tablespaces are excluded for differential backup.

When performing incremental backups, Backup Server will copy necessary journal
files to the backup directory.

There are several options used to configure Backup Server. These options control the
filename format of the backup files, the location of the backup directory, the location
of the old directory, the schedule Backup Server uses to perform backups, interval and

 DBMaker Tutorial1

maximum number of differential backup to retain after a full backup, the amount a
journal file must fill before Backup Server performs an incremental backup, and the
way Backup Server saves backup files.

Backup Server also allows backup-related configuration settings to be made during the
run time with the dmSQL SetSystemOption stored procedure.

Starting Backup Server

Backup Server is a daemon and its life cycle is as long as the database server. Users do
not have to explicitly start Backup Server after setting the DB_BkSvr keyword, since
DBMaker will automatically start Backup Server while starting the database. Backup
Server is disabled by default. Backup server will only be started when the database is
starting in muti-user mode.

Backup Server has two states: inactive and active.Users can control the state of backup
server with DB_BkSvr When DB_BkSvr is set to 0, the Backup Server is inactive.
Backup Server will not respond to any backup request, namely the Backup Server will
not perform any backup; when DB_BKSvr is set to 1, the Backup Server is active.
Backup Server will response to a variety of backup requests, and then users can do any
backup.

To activate the backup server, there are three methods: setting the value of the
DB_BkSvr keyword to 1 in the dmconfig.ini file, changing BkSvr to 1 with call
setsystemoption(‘bksvr’,’1’) after the database is started and using Run Time Setting in
Jserver Manager to change the backup setting when the dataase is running.

Before doing backup with Backup Server, users need to set some parameters to specify
how to do a backup. For example, backup directory, compact backup mode and so
on.

The following is how to set these parameters:

 Users can set related keywords in dmconfig.ini before starting the database. The
next time users start the database, backup server will use these keywords to
initialize associated parameters.

©Copyright 1995-2012 CASEMaker Inc. 9-20

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-21

 If the database has been started, users can use Run Time Setting in Jserver
Manage to alter values of parameters. Additionally, users can set parameters with
call SetSystemOption('option_name','value') to set parameters. Please note that
individual parameters only can be set with set syntax, such as set backup OFF; set
data backup ON; set blob backup ON.

When Backup Server is activated, and the appropriate backup parameters is set in the
dmconfig.ini configuration file, you can call the system stored procedure
SetSystemOption to begin a backup. The stored procedure can be used by any client
tool or user application.

The syntax to do online full, differential and incremental backup is:
dmSQL> Call SetSystemOption(‘STARTBACKUP’,’1’); //do full backup
dmSQL> Call SetSystemOption(’STARTBACKUP’,’2’); //do incremential backup
dmSQL> Call SetSystemOption(’STARTBACKUP’,’3’); //do differential backup

STARTING BACKUP SERVER USING DMCONFIG.INI

If the database is offline, you can enable Backup Server directly using the DB_BkSvr
keyword in the dmconfig.ini file. The next time you start the database, Backup Server
will also start. If the database is online, changing the value of the DB_BkSvr keyword
by dmconfig.ini configuration file will have no effect until the database is shut down
and restarted.

 To start Backup Server using the dmconfig.ini file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor.

2. Locate the database configuration section for a database to enable Backup Server.

3. Ensure the backup mode of the database is either BACKUP-DATA or BACKUP-
DATA-AND-BLOB mode. The database is in BACKUP-DATA mode if the value
of DB_BMode is set to 1, and it is in BACKUP-DATA-AND-BLOB mode if the
value of DB_BMode is set to 2.

4. Change the value of the DB_BkSvr keyword to 1 to enable Backup Server.

5. Restart the database to begin using Backup Server.

 DBMaker Tutorial1

STARTING BACKUP SERVER USING DMSQL

When a database is online, the Backup Server can be dynamically enabled using the
dmSQL command line tool as shown below.
dmSQL> Call SetSystemOption(‘BKSVR’,’1’);

Users can change BkSvr with Call SetSytemOption(‘BkSvr’, ‘1’). To change BkSvr and
the value of DB_BkSvr in the dmconfig.ini configuration file at the same time, users
can using Call SetSystemOptionW('option','value'). If the database is offline, the next
time you start the database, Backup Server also starts.

When Backup Server is activated, and the appropriate backup parameters is set in the
dmconfig.ini configuration file, you can call the system stored procedure
SetSystemOption to begin a backup. The stored procedure can be used by any client
tools and user applications.
dmSQL> Call SetSystemOption(‘STARTBACKUP’,’1’) ; //do full backup
dmSQL> Call SetSystemOption(’STARTBACKUP’,’2’); //do incremential backup
dmSQL> Call SetSystemOption(’STARTBACKUP’,’3’); //do differential backup

The syntax to change incremental backup interval is:
dmSQL> Call SetSystemOption(‘bkitv’, ‘Interval’)

STARTING BACKUP SERVER USING JSERVER MANAGER

When the database is online, users can enable Backup Server with Run Time Setting
in Jserver Manager graphical utility. JServer Manager automatically changes the value
of the DB_BkSvr keyword in the dmconfig.ini configuration file. When the database
is running, users also can change the backup setting with Run Time Setting in the
Jserver Manger graphical utility.Jserver Manger automatically changes the
corresponding keyword values in dmconfig.ini

 To start Backup Server while offline using JServer Manager:

1. Select Start Database from the main console or the Database pull-down menu.
The Start Database dialog box opens.

2. Select the database to modify from the Database Name drop-down list box.

3. Click the Setup button. The Start Database Advanced Settings window opens.

4. Click the Backup tab.

5. To start the backup server, select the Start Backup Server check box.

©Copyright 1995-2012 CASEMaker Inc. 9-22

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-23

6. Select a backup mode:

7. To select data backups only, select the Backup Data Only option button.

8. To backup data and BLOB files, select the Backup Data and BLOB option button.

9. Click the Save button.

10. Click the Cancel button to return to the Start Database window

NOTE: If the DB_BkSvr keyword is not present in the database configuration section
for the database you want to enable Backup Server for, JServer Manager will
add it automatically.

Differential Backup Filename Format

The following is differential backup filename format:

DTimeStamp_DataFileName.dif(2)

D — differential backup identification (required)

TimeStamp — number of seconds since January 1, 1970 (00:00:00 GMT)

DataFileName — name of the database the data file belongs to

.dif — differential backup file objects are appended with the file extension .dif. If no
differential backup source file exists with the full backup, the file extension name must
be .dif2.

Support the first differential backup is performed at 2009/12/01 14:11, then
generated differential backup filenames are D1259647860_DBNAME.BB.dif,
D1259647860_DBNAME.DB.dif, D1259647860_DBNAME.SBB.dif and
D1259647860_DBNAME.SDB.dif, journal filename is
D1259647860_DBNAME.JNL.

Incremental Backup Filename Format

Backup filename format is <I><TimeStamp><_><DB_BKFRM>, e.g.,
I1234567890_%2F%4N%4B.JNL. The total length of the filename cann’t exceed
256 characters.The timestamp is a system 10 digits valid time numeric data, and the

 DBMaker Tutorial1

<DB_BKFRM> may include both text constants and format sequences (e.g., escape
sequences), that represent special character strings.

An incremental backup file name must consist of at least three special character
strings: the full backup id, the database name, and the backup identification number.
Backup Server assigns a full backup ID when naming incremental files in a backup
sequence. When restoring a database, DBMaker uses the full backup ID to recreate
the backup sequence. The database name identifies which database the incremental
backup file belongs to. The backup identification number identifies the relative
position of the incremental backup file in the backup sequence.

Format sequences have three parts: the escape character, the length value, and the
format character. Valid format sequences are:

%[x]F — The full backup ID. The variable x may have values 1 through 4 where the
values represent the following formats;

1: full backup id shown as YYYYMMDD, e.g., 20010917

2: full backup id shown as MMDD, e.g., 0917

3: full backup id shown as MMDDhhmm, e.g., 09171305

4: full backup id shown as DDhhmmss, e.g., 17130558

%[n]B — backup identification number

%[n]N — name of the database the journal file belongs to

The escape character identifies the start of the format sequence, and is represented by
the % symbol. If you want to include the % symbol as a text constant in the backup
filename format, you must use two % symbols together (i.e., %%). A single digit or
one of the valid format characters shown above must immediately follow the %
symbol. If any other characters follow the % symbol the backup filename format is
invalid, and DBMaker will return an error.

The length value n is an integer value between one and nine that determines the
length of the character string generated by the format sequence. If the format sequence
returns a string that can be represented in fewer characters than the length value
provides then zeros will be appended to it. The database name has zeroes added to the

©Copyright 1995-2012 CASEMaker Inc. 9-24

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-25

right of the name, while all other values have zeroes added to the left. If the format
sequence returns a string that requires more characters than the length value provides,
it will be truncated. The database name is truncated from the right, while all other
values are truncated from the left. The square brackets enclosing the length value
indicate the length value is optional; do not include the square brackets when entering
the format sequence. If you do not provide a value for the length, Backup Server will
use the full length of the character string generated by the format sequence.

The format character identifies the type of special character string the format sequence
will return. The format character must be either F, B or N; using any other character
will result in an invalid backup filename format, and DBMaker will return an error. A
valid format character that does not immediately follow either the escape character or
the escape character and a single digit will be treated as a text constant.

The values for the date and time are taken from the system, and will only be correct if
the system date and time are correct. The value for the backup identification number
is the ordinal position of the backup journal file in the backup sequence. DBMaker
automatically provides this number for each journal file that is backed up by Backup
Server.

DBMaker provides several different methods to set the backup filename format. The
method you choose depends on whether you are more comfortable editing the
configuration file directly or using the JServer Manager graphical utility.

USING DMCONFIG.INI TO SET BACKUP FILE NAME FORMAT

If the database is offline, you can set the backup filename format used by Backup
Server directly using the DB_BkFrm keyword in the dmconfig.ini file. The next time
you start the database, Backup Server will apply this backup filename format to all
backup journal files. If the database is online, changing the value of the DB_BkDir
keyword will have no effect until the database is shut down and restarted.

 To set the backup file format using the dmconfig.ini configuration file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor

2. Locate the database configuration section for a database.

 DBMaker Tutorial1

3. Change the value of the DB_BkFrm keyword to a string containing the format to
use for the backup filename format.

NOTE: The string may contain any valid format sequences and text constants, but the
total length of the resulting filename must not exceed 256 characters in length.

4. Restart the database to begin using the new backup filename format.

SETTING BACKUP FILE NAME FORMAT WITH JSERVER
MANAGER

You can set the backup filename format, used by Backup Server, with JServer
Manager regardless of the database’s offline or online status. JServer Manager
automatically changes the value of the DB_BkFrm keyword in the dmconfig.ini file.
The next time you start the database, Backup Server applies this backup filename
format to all backup journal files.

 To set the backup file format using JServer Manager:

1. Select Start Database from the main console or the Database pull-down menu.
The Start Database dialog box opens.

2. Select the database to modify from the Database Name drop-down list box.

3. Click the Setup button. The Start Database Advanced Settings window opens.

4. Click the Backup tab.

5. To start the backup server, select the Start Backup Server check box.

6. Enter a format, following the for backup journal files in the Backup File Format
field.

7. Click the Save button.

8. Click the Cancel button to return to the Start Database window

NOTE: If the DB_BkFrm keyword is not present in the database configuration section
for the database you want to set the backup directory for, JServer Manager
will add it automatically.

©Copyright 1995-2012 CASEMaker Inc. 9-26

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-27

Backup Directory

The backup directory specifies where the Backup Server will place backup files.
DBMaker supports single backup file path and multiple backup file paths for users.
Backup Server will automatically create BkDir. However, you should choose one or
more backup directory on a different disk than the database files to prevent the loss of
both the database and the backup files in the event of a media error.

The backup directory is specified by the DB_BkDir keyword in the dmconfig.ini file.
The value of the DB_BkDir keyword may contain either a full or a relative path to the
backup directory. If you do not specify a backup directory, the Backup Server will
automatically create a default backup directory named backup under the database
directory. The database directory is specified by the DB_DbDir keyword in the
dmconfig.ini file. The total length of the backup directory path must not exceed 256
characters in length.

However, if DBMaker database is running on replication mode (master or salve), only
the sigle BkDir directory can be used. If you set BKDIR multi-path, the only first is
used and path size is ignored. Furthermore, it is not a good idea to allow the Backup
Server to create and use the default backup directory if you have more than one
database in the same directory. In this case, the backup history information from one
database may overwrite or append to the backup history information from another
database, rendering one or both of the backups unusable. To avoid this type of
problem you can put each database in a different database directory, or explicitly
specify a backup directory for each database. Placing each database in a different
database directory is the preferred method, since this allows you to see exactly which
files belong to which database.

DBMaker provides several different methods to set the backup directory. The method
you choose depends on whether your database is online or offline, and whether you
are more comfortable editing the configuration file directly or using the JServer
Manager graphical utility.

 DBMaker Tutorial1

USING DMCONFIG.INI TO SET BACKUP DIRECTORY

If the database is offline, you can set the backup directory used by Backup Server
directly using the DB_BkDir keyword in the dmconfig.ini file. The next time you
start the database, Backup Server will use this directory as the backup directory. If the
database is online, changing the value of the DB_BkDir keyword will have no effect
until the database is shut down and restarted.

 To set the backup directory using the dmconfig.ini configuration file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor.

2. Locate the database configuration section for a database.

3. Change the value of the DB_BkDir keyword to a string containing the name of an
existing directory to set the backup directory.

4. Restart the database to begin using the new backup directory.

USING DMSQL TO SET BACKUP DIRECTORY ON LINE

The procedure SetSystemOption can be used to change the backup directory while
the database is running.

 Syntax

SetSystemOption(‘bkdir’, ‘path’)

Where path is the full path of the new backup directory. The length of the string in
path should not exceed 256 characters.

 Example

To change the directory path to E:/storage/database/backup/WebDB, enter the
following line at the dmSQL command prompt.
dmSQL> SetSystemOption(‘bkdir’, ‘E:/storage/database/backup/WebDB’);

USING JSERVER MANAGER TO SET BACKUP DIRECTORY

If the database is offline, you can set the offline backup directory used by Backup
Server using the JServer Manager graphical utility. JServer Manager will automatically
change the value of the DB_BkDir keyword in the dmconfig.ini file. The next time
you start the database, Backup Server will use this directory as the backup directory. If

©Copyright 1995-2012 CASEMaker Inc. 9-28

 1Database Recovery 9

the database is online, JServer Manager can change the backup directory immediately
with Run Time Setting or delay the change until the next time you restart the
database when the database making an interactive backup. In either case, JServer
Manager will also make a copy of the backup history file in the new backup directory.

 To set the backup directory while offline using JServer Manager:

1. Select Start Database from the main console or the Database pull-down menu.
The Start Database dialog box opens.

2. Select the database to modify from the Database Name drop-down list box.

3. Click the Setup button. The Start Database Advanced Settings window opens.

4. Click the Backup tab.

5. To start the backup server, select the Start Backup Server check box.

6. Enter a path into or select the browse button next to the Directory of Backup
Files field to indicate the location of the backup directory.

7. Click the Save button.

8. Click the Cancel button to return to the Start Database window

 To set the backup directory while online using JServer Manager:

1. Select Run Time Setting from the database drop down menu.

2. The Backup page of the Run Time Setting window appears.

3. Select a database from the Database Name drop-down list box.

4. The Login dialog box is displayed

5. Click OK, the database you logged into appears in the Database Name field of the
Run Time Setting dialog box.

6. To use the updated settings in the next session, make sure that the write to
dmconfig.ini check box is enabled.

7. To allow the updated settings to apply to the current session only, clear the
checkmark in the dmconfig.ini check box.

8. Enter a path into or select the browse button next to the Backup Directory
field to indicate a location for the backup files to be copied to.

©Copyright 1995-2012 CASEMaker Inc. 9-29

 DBMaker Tutorial1

9. Select OK from the bottom of the Run Time Settings window.

NOTE: If the DB_BkDir keyword is not present in the database configuration section
for the database you want to set the backup directory for, JServer Manager
will add it automatically.

Setting the Old Directory

The old directory is one directory or a group of directories (up to 32), and it is used to
saving a backup sequence which is one just before the last one..You should choose it
on a different disk than the database files to prevent the loss of both the database and
the backup files in the event of a media error.

The old directory is specified by the DB_BkOdr keyword in the dmconfig.ini file. If
you do not specify it, the Backup Server will discard the previous backup sequence.

USING DMCONFIG.INI TO SET THE OLD DIRECTORY

You can set the old directory used by Backup Server directly using the DB_BkOdr
keyword in the dmconfig.ini file. The next time you start the database, Backup Server
will use this directory as the old directory. If the database is online, changing the value
of the DB_BkOdr keyword will have no effect until the database is shut down and
restarted.

USING JSERVER MANAGER TO SET THE OLD DIRECTORY

If the database is offline, you can set the location for the previous backup using the
JServer Manager graphical utility. JServer Manager will automatically change the value
of the DB_BkODr keyword in the dmconfig.ini file. The next time you start the
database, Backup Server will use this directory as the backup directory. If the database
is online, JServer Manager can change the old backup directory immediately or delay
the change until the next time you restart the database.

 To set the old backup directory while offline using JServer Manager:

1. Select Start Database from the main console or the Database pull-down menu.
The Start Database dialog box opens.

©Copyright 1995-2012 CASEMaker Inc. 9-30

 1Database Recovery 9

2. Select the database to modify from the Database Name drop-down list box.

3. Click Setup. The Start Database Advanced Settings window opens.

4. Click the Backup tab.

5. Enter a path into or select the browse button next to the Directory of Previous
Full Backup field to indicate a location for the last full backup files to be copied to.

6. Click the Save button.

7. Click the Cancel button to return to the Start Database window

NOTE: If the DB_BkODr keyword is not present in the database configuration
section for the database you want to set the backup directory for, JServer
Manager will add it automatically.

Differential Backup Settings

The differential backup schedule specifies times when Backup Server performs online
differential backups. The schedule time is composed of two parts: an initial backup
time and an interval time. The initial backup time specifies the date and time Backup
Server will perform the first differential backup. The interval time specifies the time to
wait between subsequent differential backups.

The initial full backup time is set by the DB_FBKTM keyword in the dmconfig.ini
file. You must enter the value of the DB_FBKTM keyword as a date and time in the
format YY/MM/DD HH:MM:SS. There is no default value for the initial backup
time. However, when using JServer Manager to enable Backup Server, a default value
is set in the dmconfig.ini file.

The interval time is specified by the DB_DBKTV keyword and is found in the
dmconfig.ini file. The first differential backup is performed at DB_FBKTM +
DB_DBKTV. You must enter the DB_DBKTV keyword as a time interval in the
format D-HH:MM:SS. There is no default value. However, when using JServer
Manager to enable Backup Server, a default value of 1-00:00:00 is set in the
dmconfig.ini file.

©Copyright 1995-2012 CASEMaker Inc. 9-31

 DBMaker Tutorial1

The keyword DB_DBKMX specifies the maximum number of differential backups to
retain after a full backup. Backup Server removes the oldest differential backup when
the number of differential backups after a full backup exceeds DB_DBKMX.

USING DMCONFIG.INI TO CHANGE DIFFERENTIAL BACKUP
SETTINGS

A backup schedule can set using the Backup Server when a database is offline. This
can be directly set using the DB_FBKTM and DB_DBKTV keywords found in the
dmconfig.ini configuration file. The next time you start the database, Backup Server
will use these settings for the differential backup schedule. If the database is online,
changing the value of the DB_FBKTM and DB_DBKTV keywords have no effect
until the database is shut down and restarted.

 To set the backup schedule using the dmconfig.ini file:

1. Open the dmconfig.ini file on the database server using an ASCII text editor.

2. Locate the database configuration section and then the backup schedule portion.

3. Change the value of keyword DB_FBKTM to a date and time value using this
format YY/MM/DD HH:MM:SS.

4. Change the value of keyword DB_DBKTV to an interval value using this format
ndays-HH:MM:SS.

5. Restart the database to activate the new backup schedule.

USING DMSQL TO CHANGE DIFFERENTIAL BACKUP SETTINGS

The procedure SetSystemOption can be used to activate the backup server. The syntax
is:
dmSQL> CALL SETSYSTEMOPTION(‘BKSVR’,’1’);

When Backup Server is activated, calling system stored procedure SetSystemOption
notifies it to perform a differential backup.
dmSQL> Call SetSystemOption(‘STARTBACKUP’,’3’)

The syntax to change a differential backup interval is:
dmSQL> Call SetSystemOption(‘dbktv’, ‘Interval’)

©Copyright 1995-2012 CASEMaker Inc. 9-32

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-33

USING JSERVER MANAGER TO CHANGE DIFFERENTIAL BACKUP
SETTINGS

When the database is online, JServer Manager can change the backup schedule
immediately or delay activating the change until the next time the database is
restarted. For directions on setting differential backup schedules using JServer
Manager, refer to the JServer Manager User’s Guide.

Incremental Backup Settings

The incremental backup schedule specifies the times when Backup Server will perform
an online incremental backup. The schedule is composed of two parts: the initial
backup time and the interval time. The initial backup time determines the date and
time Backup Server will perform the first incremental backup, and the interval time
determines the length of time to wait between subsequent incremental backups.

You can combine the incremental backup schedule with the journal trigger value to
backup your database both on a regular schedule and when journal files fill to a
specified percentage. If you do not specify an incremental backup schedule, Backup
Server will not backup the database on a regular schedule.

The initial backup time is specified by the DB_BkTim keyword in the dmconfig.ini
file. You must enter the value of the DB_BkTim keyword as a date and time in the
format YY/MM/DD HH:MM:SS. There is no default value for the initial backup
time.

The interval time is specified by the DB_BkItv keyword in the dmconfig.ini file. You
must enter the value of the DB_BkItv keyword as a time interval in the format D-
HH: MM:SS. There is no default value for the interval time. However, if you use
JServer Manager to enable Backup Server, JServer Manager will provide a default value
of 1-00:00:00 for you and write this value into the dmconfig.ini file.

DBMaker provides several different methods to set the incremental backup schedule.
The method you choose depends on whether your database is online or offline, and
whether you are more comfortable editing the configuration file directly or using the
JServer Manager graphical utility.

 DBMaker Tutorial1

USING DMCONFIG.INI TO CHANGE INCREMENTAL BACKUP
SETTINGS

If the database is offline, you can set the backup schedule used by Backup Server
directly using the DB_BkTim and DB_BkItv keywords in the dmconfig.ini
configuration file. The next time you start the database, Backup Server will use these
settings for the incremental backup schedule. If the database is online, changing the
value of the DB_BkTim and DB_BkItv keywords will have no effect until the
database is shut down and restarted.

 To set the backup schedule using the dmconfig.ini file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor.

2. Locate the database configuration section for a database to change the backup
schedule.

3. Change the value of the DB_BkTim keyword to a date and time using the
YY/MM/DD HH:MM:SS value format.

4. Change the value of the DB_BkItv keyword to a time interval using the DDDDD-
HH:MM:SS value format.

5. Restart the database to begin using the new backup schedule.

USING DMSQL TO CHANGE INCREMENTAL BACKUP SETTINGS

The procedure SetSystemOption can be used to change the incremental backup start
time and interval while the database is running. The general syntax to change the
incremental backup start time is:
SetSystemOption(‘bktim’, ‘StartTime’)

The general syntax to change the incremental backup interval is:
SetSystemOption(‘bkitv’, ‘Interval’)

StartTime is the time to start the first incremental backup, and has the format
YY:MM:DD HH:MM:SS. Interval is the time interval that incremental backups
occur, and has the format D-HH:MM:SS.

When Backup Server is activated, calling system stored procedure SetSystemOption
notifies it to perform an incremental backup.
dmSQL> Call SetSystemOption(‘STARTBACKUP’,’2’)

©Copyright 1995-2012 CASEMaker Inc. 9-34

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-35

 Example

To set the incremental backup interval to 1 hour, enter the following line at the
dmSQL command prompt.
dmSQL> SetSystemOption(‘bkitv’, ‘0-1:00:00’);

USING JSERVER MANAGER TO CHANGE INCREMENTAL BACKUP
SETTINGS

When the database is online, JServer Manager can change the backup schedule
immediately or delay the change until the next time you restart the database. For
directions on setting incremental backup schedules using JServer Manager, refer to the
JServer Manager User’s Guide.

 To set the backup schedule while offline using JServer Manager:

1. Select Start Database from the main console or the Database pull-down menu.
The Start Database dialog box opens.

2. Select the database to modify from the Database Name drop-down list box.

3. Click the Setup button. The Start Database Advanced Settings window opens.

4. Click the Backup tab.

5. To start the backup server, select the Start Backup Server check box.

6. Indicate a date and a time in the Start Time of Incremental Backup time fields.

7. Enter the number of days, hours, minutes, and seconds between each successive full
backup in the Time Interval to Start Incremental Backup time fields.

8. Click the Save button.

9. Click the Cancel button to return to the Start Database window

 To set the backup schedule while online using JServer Manager:

1. Select Run Time Setting from the database drop down menu.

2. The Run Time Setting window appears.

3. Select a database from the Database Name drop-down list box.

4. The Login dialog box is displayed

 DBMaker Tutorial1

5. Click OK, the database you logged into appears in the Database Name field of the
Run Time Setting dialog box.

6. To use the updated settings in the next session, make sure that the write to
dmconfig.ini check box is enabled.

7. To allow the updated settings to apply to the current session only, clear the
checkmark in the dmconfig.ini check box.

8. Indicate a date and a time for incremental backups to begin in the Begin Time
fields.

9. Enter the number of days, hours, minutes, and seconds between each successive
incremental backup in the Interval_Time time fields.

10. Select OK from the bottom of the Run Time Settings window.

Journal Trigger Value Settings

The journal trigger value specifies the percentage a journal file must fill before Backup
Server will perform an online incremental backup. You can combine the journal
trigger value with the backup schedule to backup your database on a regular schedule
and when journal files fill to the specified percentage.

The journal trigger value is specified by the DB_BkFul keyword in the dmconfig.ini
file. The value of the DB_BkFul keyword may be an integer value in the range 50
through 100, or zero. Values between 50 and 100 represent the percentage a journal
file must fill before Backup Server performs a backup. A value of zero causes Backup
Server to perform a backup whenever a journal file fills completely. Setting the value
to 0 is effectively the same as setting it to a value of 100, since both will cause Backup
Server to perform a backup whenever a journal file fills completely (e.g., 100% is full).
If you do not specify a value for the journal trigger value, Backup Server will use the
default value of 90.

DBMaker provides several different methods to set the journal trigger value. The
method you choose depends on whether your database is online or offline, and
whether you are more comfortable editing the configuration file directly or using the
JServer Manager graphical utility.

©Copyright 1995-2012 CASEMaker Inc. 9-36

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-37

USING DMCONFIG.INI TO CHANGE THE JOURNAL TRIGGER
VALUE

If the database is offline, you can set the journal trigger value used by Backup Server
directly using the DB_BkFul keyword in the dmconfig.ini file. The next time you
start the database, Backup Server will use this setting for the journal trigger value. If
the database is online, changing the value of the DB_BkFul keyword will have no
effect until the database is shut down and restarted.

 To set the journal trigger value using the dmconfig.ini file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor.

2. Locate the database configuration section for a database to change the journal
trigger value.

3. Change the value of the DB_BkFul keyword to an integer value between 50 and
100, or set it to zero.

4. Restart the database to begin using the new journal trigger value.

USING DMSQL TO CHANGE THE JOURNAL TRIGGER VALUE

The procedure SetSystemOption can be used to change the journal trigger value while
the database is running. The general syntax to change the incremental backup start
time is:
SetSystemOption(‘bkful’, ‘n’)

Where n is either 0 or 50 through 100. Setting n to 0 will trigger the backup server
whenever a journal file is full. Setting n to a value between 50 and 100 specifies the
percentage a journal file fills to before the backup server activates.

 Example

To set the journal trigger value to 75 percent, enter the following line at the dmSQL
command prompt.
dmSQL> SetSystemOption(‘bkful’, ‘75’);

 DBMaker Tutorial1

USING JSERVER MANAGER TO CHANGE THE JOURNAL TRIGGER
VALUE

When the database is online, JServer Manager can change the journal trigger value
immediately or delay the change until the next time you restart the database. For
directions on how to set the journal trigger value using JServer Manager, refer to the
JServer Manager User’s Guide.

 To set the journal trigger value while offline using JServer Manager:

1. Select Start Database from the main console or the Database pull-down menu.
The Start Database dialog box opens.

2. Select the database to modify from the Database Name drop-down list box.

3. Click the Setup button. The Start Database Advanced Settings window opens.

4. Click the Backup tab.

5. Incremental backups can be set to automatically execute when journal files have
filled to a set percentage. Select one of the following:

a) Select the Backup when any Journal File is Full option button to set
incremental backups to execute when any journal file is filled.

b) Enter a value from 50 to 100 in the % Full field to set incremental
backups to execute when any journal file is filled to the value entered.

6. Click the Save button.

7. Click the Cancel button to return to the Start Database window

 To set the journal trigger value while online using JServer Manager:

1. Select Run Time Setting from the database drop down menu.

2. The Run Time Setting window appears.

3. Select a database from the Database Name drop-down list box.

4. The Login dialog box is displayed

5. Click OK, the database you logged into appears in the Database Name field of the
Run Time Setting dialog box.

©Copyright 1995-2012 CASEMaker Inc. 9-38

 1Database Recovery 9

6. To use the updated settings in the next session, make sure that the write to
dmconfig.ini check box is enabled.

7. To allow the updated settings to apply to the current session only, clear the
checkmark in the dmconfig.ini check box.

8. Incremental backups can be set to automatically execute when journal files have
filled to a set percentage. Next to Journal Full Percentage:

a) Select the Use Default Value option button to set incremental backups to
execute when any journal file is completely filled.

b) Enter a value from 50 to 100 in the 50 – 100 % field to set incremental
backups to execute when any journal file is filled to the value entered.

9. Select OK from the bottom of the Run Time Settings window.

Compact Backup Mode Settings

Compact backup mode specifies whether Backup Server will backup entire journal
files or only full journal blocks when it performs an online incremental or differential
backup. This is possible since not every journal block contains data needed to restore a
database, so Backup Server will only backup the necessary journal blocks when it
performs a backup. This allows you to save storage space on your backup device, but it
also means restoring a database may take more time.

Non-Compact Mode:
Backup entire Journal files

Compact Mode:
Backup necessary Journal blocks

Non-Compact Mode:
Backup entire Journal files

Compact Mode:
Backup necessary Journal blocks

The compact backup mode setting is specified by the DB_BkCmp keyword in the
dmconfig.ini configuration file. The value of the DB_BkCmp keyword may be zero
or one. Setting the value to one enables compact backup mode, and setting it to zero

©Copyright 1995-2012 CASEMaker Inc. 9-39

 DBMaker Tutorial1

disables compact backup mode. If you do not specify a value for the compact backup
mode, Backup Server will use the default value of one (enabled).

DBMaker provides several different methods to set the compact backup mode. The
method you choose depends on whether your database is online or offline, and
whether you are more comfortable editing the configuration file directly or using the
JServer Manager graphical utility.

USING DMCONFIG.INI TO SET COMPACT BACKUP MODE

If the database is offline, you can set the compact backup mode setting used by
Backup Server directly using the DB_BkCmp keyword in the dmconfig.ini file. The
next time you start the database, Backup Server will use this setting for the compact
backup mode. If the database is online, changing the value of the DB_BkCmp
keyword will have no effect until the database is shut down and restarted.

 To set the Compact Backup Mode using the dmconfig.ini configuration file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor.

2. Locate the database configuration section for a database to change the compact
backup mode.

3. Change the value of the DB_BkCmp keyword to one to enable compact backup
mode, or zero to disable compact backup mode.

4. Restart the database to begin using the new compact backup mode.

USING JSERVER MANAGER TO SET COMPACT BACKUP MODE

When the database is online, JServer Manager can change compact backup mode
setting immediately or delay the change until the next time you restart the database.
For directions on how to set the Compact Backup Mode using JServer Manager, refer
to the JServer Manager User’s Guide.

 To set the Compact Backup Mode while offline using JServer Manager:

1. Select Start Database from the main console or the Database pull-down menu.
The Start Database dialog box opens.

2. Select the database to modify from the Database Name drop-down list box.

©Copyright 1995-2012 CASEMaker Inc. 9-40

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-41

3. Click the Setup button. The Start Database Advanced Settings window opens.

4. Click the Backup tab.

5. To start the backup server, select the Start Backup Server check box.

6. To enable compact backup, Click the Enable Compact Backup check box

7. Click the Save button.

8. Click the Cancel button to return to the Start Database window

 To set the Compact Backup Mode while online using JServer Manager:

1. Select Run Time Setting from the database drop down menu.

2. The Run Time Setting window appears.

3. Select a database from the Database Name drop-down list box.

4. The Login dialog box is displayed

5. Click OK, the database you logged into appears in the Database Name field of the
Run Time Setting dialog box.

6. To use the updated settings in the next session, make sure that the write to
dmconfig.ini check box is enabled.

7. To allow the updated settings to apply to the current session only, clear the
checkmark in the dmconfig.ini check box.

8. To enable compact backup, click the Use Compact Backup Mode check box.

9. Select OK from the bottom of the Run Time Settings window..

Full Backup Schedule

The full backup schedule specifies the times when Backup Server will perform an
online full backup. The schedule is composed of two parts: the initial backup time
and the interval time. The initial backup time determines the date and time Backup
Server will perform the first full backup, and the interval time determines the length of
time to wait between subsequent full backups.

 DBMaker Tutorial1

You can combine full or differential backup schedules with an incremental backup
schedule to backup your database. If you do not specify a full backup schedule,
Backup Server does not perform full backups on a regular schedule.

The initial backup time is specified by the DB_FBkTm keyword in the dmconfig.ini
file. You must enter the value of the DB_FBkTm keyword as a date and time in the
format YY/MM/DD HH:MM:SS. There is no default value for the initial backup
time.

The interval time is specified by the DB_FBkTv keyword in the dmconfig.ini file.
Enter the value of the DB_FBkTv keyword as a time interval in the format D-
HH:MM:SS. There is no default value for the interval time.

USING DMCONFIG.INI TO SET THE FULL BACKUP MODE

If the database is offline, you can set the full backup schedule used by Backup Server
directly using the DB_FBkTm and DB_FBkTv keywords in the dmconfig.ini file.
The next time you start the database, Backup Server will use these settings for the full
backup schedule. If the database is online, changing the value of the DB_FBkTm and
DB_FBkTv keywords will have no effect until the database is shut down and
restarted.

 To set the full backup schedule using the dmconfig.ini configuration file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor.

2. Locate the database configuration section for a database to change the full backup
schedule.

3. Set the configuration parameter DB_FBkTm to a value of the format YY/MM/DD
HH:MM:SS, and DB_FBkTv to a value of the format D-HH:MM:SS.

4. Restart the database to begin using the new full backup schedule.

USING JSERVER MANAGER TO SET THE FULL BACKUP MODE

If the database is offline, you can set the full backup schedule with the JServer
Manager graphical utility. JServer Manager will automatically change the value of the
DB_FBkTm and DB_FBkTv keywords in the dmconfig.ini file. The next time you
start the database, Backup Server will use this setting as the new full backup schedule.

©Copyright 1995-2012 CASEMaker Inc. 9-42

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-43

 To set the full backup schedule using JServer Manager:

1. Select Start Database from the main console or the Database pull-down menu.
The Start Database dialog box opens.

2. Select the database to modify from the Database Name drop-down list box.

3. Click the Setup button. The Start Database Advanced Settings window opens.

4. Click the Backup tab.

5. To start the backup server, select the Start Backup Server check box.

6. Indicate a date and a time in the Start Time of Full Backup time fields.

7. Enter the number of days, hours, minutes, and seconds between each successive full
backup in the Full Backup Daemon Interval days and time fields.

8. Click the Save button.

9. Click the Cancel button to return to the Start Database window

File Object Backup Mode

The file object backup mode lets the database administrator decide whether Backup
Server will back up file objects during a full backup. It is also possible to specify
Backup Server to back up just system file objects or system and user file objects.

It is possible to set the file object backup mode in a number of ways. The
configuration keyword DB_BkFoM determines the setting during database startup,
but it may also be modified during runtime with dmSQL or the JServer Manager
utility.

The backup server will move all files from the previous backup to the old backup
directory specified by DB_BkOdr.

Starting file object backup will cause the database to require more time to complete a
full backup, depending on how many file objects are in the database. The total cost of
a complete full backup includes (1) copying the previous full backup if DB_BkOdr is
set; (2) copying all database files; (3) copying all journal files; and (4) copying all file
objects if DB_BkFoM is set. Be sure that enough disk space is available in the backup

 DBMaker Tutorial1

directory specified by DB_BkDir (and DB_BkOdr if applicable) for all mentioned
backup files to avoid backup failure.

File objects are copied into an FO directory that is created in the backup directory at
the time a full backup is performed. File objects are renamed sequentially when they
are copied to the backup file object directory. The files in the /FO subdirectory are
renamed starting with the letters FO followed by a ten digit serial number. All backup
file objects are appended with the file extension .BAK. The mapping between the
source file name and path, and the backup file name is recorded in the object-
mapping file, i.e., dmFoMap.his.

THE BACKUP FILE OBJECT MAPPING FILE

The file object mapping file dmFoMap.his is created in the "DB_BkDir/ FO"
directory. It is a pure ASCII text file that records the original external file name and
backup file name.

 Syntax

Database Name: MYDB
Begin Backup FO Time: 2001.5.13 2:33
FO Backup Directory: /DBMaker/mydb/backup/FO (i.e., DB_BkDir/FO)
[Mapping List]
s, fo0000000000.bak, "/DBMaker/mydb/fo/ZZ000001.bmp"
u, fo0000000001.bak, "/home2/data/image.jpg"
....
s, fo0000002345.bak, "/DBMaker/mydb/fo/ZZ00AB32.txt"

The content before “[Mapping List]” is only a description for user reference. Each line
after "[Mapping List]" represents a record that shows the file object type (s = system
file object, u = user file object), the new file in FO subdirectory and its original file
name and path. This mapping file is necessary for restoration of file objects.

SETTING THE FILE OBJECT BACKUP MODE WITH
DMCONFIG.INI

The configuration file keyword DB_BkFoM determines the file object backup mode:

DB_BkFoM = 0: Not backup file objects

DB_BkFoM = 1: Backup system file objects only

©Copyright 1995-2012 CASEMaker Inc. 9-44

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-45

DB_BkFoM = 2: Backup both system and user file objects

For backup file object mode (DB_BkFoM = 1, 2), the backup server will copy all file
objects to the “fo” subdirectory under the backup directory. The schedule follows the
full backup schedule.

 Example

An entry in a dmconfig.ini file for specifying the file object backup parameters looks
like this.
[MyDB]
DB_BkSvr = 1 ; starts the backup server
DB_FBKTm = 01/05/01 00:00:00 ; begins at midnight, May 1, 2001.
DB_FBKTV = 1-00:00:00 ; interval is once every day.
DB_BkDir = /home/dbmaker/backup ; backup directory
DB_BkFoM = 2 ; backup both system and user file objects

Since the backup mode is 2, the backup server will copy all external files (user file
objects) and system file objects to the /home/dbmaker/backup/FO directory. If the
FO subdirectory does not exist, the Backup Server will create it.

USING DMSQL TO SET THE FILE OBJECT BACKUP MODE

The procedure SetSystemOption can be used to change the file object backup mode
while the database is running. The general syntax to change the file object backup
mode is:
SetSystemOption(‘bkfom’, ‘n’)

Where n is 0, 1, or 2. Setting n to 0 will turn the file object backup mode to off.
Setting n to 1 configures backup server to back up all system file objects during a full
backup. Setting n to 2 configures backup server to back up all system and user file
objects during a full backup.

 Example

To configure Backup Server to perform a full backup on all user and system file
objects, enter the following line at the dmSQL command prompt.
dmSQL> SetSystemOption(‘bkfom’, ‘2’);

 DBMaker Tutorial1

SETTING THE FILE OBJECT BACKUP MODE WITH JSERVER
MANAGER

The settings under the Backup File Object Mode effect how file objects are copied
during the full backup process. Selecting Do Not Backup File Objects disables file
backup during the full backup process. Selecting Backup System File Objects Only
will result in system file objects being backed up during automatic full backups.
Selecting Backup System and User File Objects will result in both system file objects
and user file objects being copied to the backup directory during automatic full
backups.

 To set the file object backup mode during database startup:

1. Click Setup in the Start Database window. The Start Database Advanced
Settings window appears.

2. Click the Backup tab in the Start Database Advanced Settings window.

3. Enable the Start Backup Server check box.

4. To enable full backups to be performed by the backup server,

a) Enter a path or select the browse button next to the Directory of
Backup Files field to indicate the location of the backup directory.

b) Indicate a date and a time in the Start Time of Full Backup time fields.

c) Enter the number of days, hours, minutes, and seconds between each
successive full backup in the Full Backup Daemon Interval time fields.

5. To select what types of file objects are backed up during the backup process:

a) Select Do not backup file objects to prevent file objects from being backed up.

b) Select Backup system file objects only to only back up system file objects.

c) Select Backup system and user file objects to back up all file objects.

6. Click Save.

7. Click Cancel to return to the Start Database window, and click Start to start the
database.

©Copyright 1995-2012 CASEMaker Inc. 9-46

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-47

Inactivate Backup Server

DBMaker will automatically start Backup Server while starting the database. Backup
Server is disabled by default. You can control the state of backup server with
DB_BkSvr. When DB_BkSvr is set to 0, the backup server is inactive; when
DB_BkSvr is set to 1, the backup server is active. When you no longer want the
backup server is active, you can set the value of the DB_BkSvr keyword to 0 in the
dmconfig.ini file or change BkSvr with call setsystemoption(‘bksvr’,’0’) after the
database is started.

INACTIVATE BACKUP SERVER USING DMCONFIG.INI

If the database is offline, you can disable Backup Server directly using the DB_BkSvr
keyword in the dmconfig.ini file. The next time you start the database, Backup Server
will not start. If the database is online, changing the value of the DB_BkSvr keyword
will have no effect until the database is shut down and restarted.

 inactivate Backup Server using the dmconfig.ini file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor.

2. Locate the database configuration section for a database to change the backup
mode.

3. Change the value of the DB_BkSvr keyword to 0 to disable the Backup Server.

4. Restart the database.

INACTIVATE BACKUP SERVER USING JSERVER MANAGER

When the database is online, disabling Backup Server will have no effect until the
database is shut down and restarted.

 To inactivate Backup Server while offline using JServer Manager:

1. Select Start Database from the main console or the Database pull-down menu.
The Start Database dialog box opens.

2. Select the database to modify from the Database Name drop-down list box.

3. Click the Setup button. The Start Database Advanced Settings window opens.

 DBMaker Tutorial1

4. Click the Backup tab.

5. To stop the backup server, clear the Start Backup Server check box.

6. Click the Save button.

7. Click the Cancel button to return to the Start Database window.

©Copyright 1995-2012 CASEMaker Inc. 9-48

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-49

9.7 Backup History Files

Automatic backups using the backup server can store the information about which
journal files were backed up, when they were backed up, and where the backup files
are located in the backup history file by automatically.

Locating the Backup History File

Backup history file is a text file located in the first directory of DB_BKDIR keyword
in the dmconfig.ini file. This file is created in the online backup path and named
dmBackup.his. The file is automatically used during restoration of a database, but the
offline backup is recorded with offBackup.his.

Understanding the Backup History File

Backup history files contain all information pertaining to the id number, file names,
and time and date that backups were made. DBMaker uses the backup history file to
track backup sequences and ensure the consistency of full, differential and incremental
backups within each sequence.

The following is the backup history file format:
<backup_id>: file_name -> archive_file_name, time, event

This denotes that a file named file_name was copied to an archive file named
archive_file_name at time because of event. The event is a text string indicating the
reason for the backup. This string can be JOURNAL-FULL, TIME-OUT, ON-
LINE-FULL-BACKUP-BEGIN, ON-LINE-FULL-BACKUP, or ON-LINE-FULL-
BACKUP-END. The string JOURNAL-FULL indicates an incremental backup was
performed because the journal was full. The string TIME-OUT indicates a differential
or an incremental backup was performed because the scheduled backup interval
elapsed. The string ON-LINE-FULL-BACKUPxxxx means it is a full backup.

 DBMaker Tutorial1

Using the Backup History File

If journal full occurs frequently, lower the backup journal full percentage or shorten
the time interval. Also, find out if the backup interval is too short by checking the
backup history file. If the same journal file is backed up consecutively in the backup
history file, the time interval may be too short. This situation will waste disk space
because each file may only contain a few changed blocks. To avoid this, enable
compact backup mode or lengthen the backup time interval.

If many journal files are backed up every time, it may mean the time interval is too
long. This situation is more dangerous because of the possibility of losing more data
when a disk fails. To avoid this, users should shorten the backup time interval.

To shorten the time of recovery from media failures, perform full backups regularly,
even if you are using the backup server. In addition, this will also reduce the amount
of backup storage needed.

Understanding the File Object Backup History File

The file-object backup history file, dmFoMap.his, keeps a record of all file objects that
have been backed up by setting the file object backup configuration parameter on.
dmFoMap.his is placed in the "<DB_BkDir>/FO" directory, is a pure ASCII text file
that records the original external file name and backup file name.

The following is the file format:
Database Name: MYDB
Begin Backup FO Time: 2001.5.13 2:33
FO Backup Directory: /DBMaker/mydb/backup/FO (i.e. DB_BkDir/FO)
[Mapping List]
s, fo0000000000.bak, "/DBMaker/mydb/fo/ZZ000001.bmp"
u, fo0000000001.bak, "/home2/data/image.jpg"
....
s, fo0000002345.bak, "/DBMaker/mydb/fo/ZZ00AB32.txt"

In the first column, s or u represent system or user file objects, respectively. The
second column gives the backup name, and the third column gives the full name and
path of the original file object.

©Copyright 1995-2012 CASEMaker Inc. 9-50

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-51

9.8 Backup on Replication
Databases

On both normal database and master, but not slave database, users can do full backup,
differential backup and incremental backup. The method is same as before. However,
JServerManager can’t do incremental backup interactively on master database.
Furthermore, it can’t clear incremental backup files when doing full backup
interactively on master database.

Please note that on a master database, potentially,many incremental backup files ahead
of a full backup is still remained in backup sequence for replication. Meanwhile the
replication server may not clear incremental backup files because of full backup, so
maybe a large number of files exist in DB_BKDIR if next full backup will not be
done on a long duration.

In one word, the replication sever must cooperate with the backup sever well, and they
can’t disturb each other. On the one hand ,backup should not damage the replication,
in other words, replication server always can replication all transactions to slave sites
regardless of whether a full backup or a differential backup has been done or is being
done, on the other hand, replication can’t damage backup sequence.

It is doable to restore the master database with backup sequence. However, after the
master database restored, the database replication will not confinue. If users want to
continue replicating the database, all slave databases must have been replaced by new
master database, that is to say, users must copy the master database files to replace all
slave databases files.

There are some constraints for backup on replication database:

 When the master database started up, BMODE and BKSVR must be on.

 BMODE, BKSVR, BKDIR can’t be changed during runtime both on master and
slave databases, for example, call setsystemoption (‘bkdir’,’new-bkdir’) will return
an error.

 DBMaker Tutorial1

 Both on master and slave databases site, DB_BKDIR keyword in the
dmconfig.ini file should be single path. If Users set DB_BKDIR keyword is
multi-path, only the first path is used and the path size is ignored.

 On a master database, it is disable to do incremental backup interactively by
JServerManager.

 On a slave database, it is disable to do full backup, differential backup and
incremental backup.

©Copyright 1995-2012 CASEMaker Inc. 9-52

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-53

9.9 Recovery Options

Restoring a database recreates the database as it existed at the time of the most recent
full backup plus changes as applied by the backed up journal files.

Analyzing Options

If the database was running in NONBACKUP mode, the only option for restoration
after a disk failure is to restore the most recent full backup and restart the database. All
work performed since the last full backup will be lost, and must be re-entered.

If the database was running in BACKUP, BACKUP-DATA, or BACKUP-DATA-
AND-BLOB mode, several recovery options are available for reconstruction.

Preparing for Restoration

To restore a database after a disk error, consider:

 Points in time to restore the database

To restore to the time when the disk error occurred, backup all journal files of the
damaged database; these files will help DBMaker to restore the database to the most
current time.

 Previously backed up files

 Find out where the most current full backup and all subsequent differential and
incremental backups are located. For example, suppose you perform a full backup
on the 30th day of every month, a differential backup every 15th day and an
incremental backup every 10 days. If your system is damaged on May 25th, you
need the full backup from April 30th, the differential backup from May 15th and
the incremental backups from May 10th and May 20th, and the damaged journal
files from May 25th. After locating these files, DBMaker can restore your database
to the state it was in before the failure on May 25th. The valid backup sequence
that is composed of a group of full backup files and a series of differential backup

 DBMaker Tutorial1

files and incremental backup files is essential for the restoration. The online
backup sequence is identified by a backup history file named dmbackup.his and
the offline backup sequence is identified by a backup file named offbackup.his.
This makes the backup history file especially important because DBMaker reads it
to get this information when restoring a database.

Performing a Restoration

When executing the restoration process, DBMaker will do the following actions:

 Copying all full backup files; includes data files, blob files and journal files, to the
directory specified by the DB_DbDir keyword in the dmconfig.ini. This
operation will overwrite the original database files. So it is strongly recommended
that user can manually copy original database files to other place before running
the restoration tools, at least make sure the journal files to be saved, to insure that
if the restoration failed, there is also another chance for the database to be
restored to the most current time.

 Applying the differential or incremental backup files or both into database.

When using restoration tools, users can specify:

 Whether restore database section in system dmconfig.ini. To restore it, specify the
full path of restored dmconfig.ini.

 If you want to use a backup sequence to restore the database to a location
different from the original, modify the keywords in the data file path, these
include DB_DBDIR, DB_DBFIL, DB_USRDB, and so on. If the backup
sequence is moved to another location or computer, consider the following when
restoring the database:

a) Database names in dmcnfig.ini must be consistent with the backup database
name.

b) Set keywords BKDIR and others for data and blob files as needed.

c) The value of DB_JNFIL must be set if there is more than one jnl file. Ensure
that this value matches the number of jnl files in backup database.

©Copyright 1995-2012 CASEMaker Inc. 9-54

 1Database Recovery 9

©Copyright 1995-2012 CASEMaker Inc. 9-55

d) If backup files are located in multiple folders the DB_BKDIR keyword
must be set to include all folders where backup files are located. The
dmbackup.his file must be located in the first BKDIR.

NOTE: Users can copy an existing dmconfig.ini configuration file from the folder
where the backup sequence existed, then configure a new dmconfig.ini file by
modifying the relevant keywords.

 Backup full path of a backup history file dmBackup.his or offBackup.his if the
dmBackup.his or offBackup.his is not located in the default directory.

 Restore time (RTime). RTime denotes what time the database to be restored to,
it will determine whether the current backup sequence is available or not, and
which differential and incremental backup files will be applied to database. User
can specify it in restoration tools, or add keyword DB_RTime into system
dmconfig.ini or backup dmconfig.ini which will be restored. If RTime is not
specified, the default value is the current time.

DBMaker provides two methods to perform restoration. One is by JServer Manager
Tool and the other is by Rollover command line tool.

For more information on usage of the JServer Manager, please refer to JServer
Manager User Guide. And for more information on usage of the rollover command
line tool, please refer to next section 'use rollover to restore database'.

Restoring database by Rollover

User can also use the Rollover which is a command line tool to restore the database.
Its principle is same as the Restore Database of JServer Manager.

The usage of rollover is like:

rollover database_name [-i inifile] [-r rtime] [-h hisfile] [-m foMapfile] [-f FOtype]

There are five optional parameters in the square bracket:

-i specifies full path of dmconfig.ini. If user specifies the dmconfig.ini to restore,
rollover will replace the database section in system dmconfig.ini with the

 DBMaker Tutorial1

©Copyright 1995-2012 CASEMaker Inc. 9-56

corresponding database section in specified dmconfig.ini, otherwise, DBMaker will
not restore dmconfig.ini.

 -r denotes the time that database should be restored to. The option –r is the first
method to specify rtime, the second method is to add DB_RTIME keyword into
system dmconfig.ini or backup dmconfig.ini which will be specified to restore
database. If neither –r option nor DB_RTIME keyword, the rtime will be the current
time.

-h gives full path of dmBackup.his or offBackup.his. The default is
"DB_BKDIR/dmBackup.his" or “DB_BKDIR/offBackup.his”

-m gives full path of dmFoMap.his. The default is "DB_BKDIR/FO/dmFoMap.his"

-f specifies which type FO files to restore. There are four values, the value of 0
means no FO files to be restored; the value of 1 will restore system FO; value of 2 will
restore user FO and value of 3 will restore all FO. The default value is 3.

	Introduction
	Additional Resources
	Technical Support
	Document Conventions

	RDBMS Basics
	Syntax Diagrams
	RDBMS Functions
	Data Models
	Data Independence
	Physical
	Logical

	High-Level Language Support
	Transaction Management
	What is a Transaction?
	Concurrency Control
	The Lock Concept

	Integrity Control
	Access Control
	User Authorization
	Transaction Authorization

	RDBMS Recovery
	System Failures
	Media Failures

	RDBMS Architecture
	Logical RDBMS
	Internal or Physical Level
	Conceptual Level
	External or View Level
	Mappings between Levels

	Physical RDBMS
	Applications and Utilities
	Application Program Interface (API)
	Query Language Processor
	RDBMS Engine

	Databases
	Naming Conventions
	dmconfig.ini File
	Creating
	Directory
	Format
	Section Names
	Keywords
	Comments

	dmSQL
	Starting
	Workspace

	JTools
	JConfiguration Tool
	JServer Manager
	JDBA Tool

	Creating a Database
	Tutorial Database
	Connection Handles
	Default User

	Database Modes
	Single-User Mode
	Multiple-Connection Mode
	Client/Server Mode

	Tables
	Tablespaces
	Regular Tablespaces
	Autoextend Tablespaces
	System Tablespace
	Default User Tablespace
	The Temporary Tablespace

	Data Types
	BIGINT
	BIGSERIAL (start)
	BINARY (size)
	CHAR (size)
	DATE
	DECIMAL (NUMERIC)
	DOUBLE
	FILE
	FLOAT
	INTEGER
	LONG VARBINARY (BLOB)
	LONG VARCHAR (CLOB)
	NCHAR (size)
	NVARCHAR (size)
	OID
	REAL
	SERIAL (start)
	SMALLINT
	TIME
	TIMESTAMP
	VARCHAR (size)
	Media Types

	Creating a Table
	Default Values for Columns
	Lock Mode
	Fillfactor
	NOCACHE
	Temporary Tables

	Data
	Inserting
	Inserting Using Host Variables
	Different Data Types
	Inserting Blob Data

	Updating
	Updating Using Standard SQL
	Updating Using Host Variables
	Updating Using OIDs

	Result Sets
	Selecting Tables
	Selecting Columns
	Selecting Rows

	Operator Types
	Comparison Operators
	Logical Operators
	Arithmetic Operators

	Deleting
	Deleting Using Standard SQL
	Deleting Using Host Variables
	Deleting Using OIDs

	Database Objects
	Views
	Creating Views
	Dropping Views

	Synonyms
	Creating Synonyms
	Dropping Synonyms

	Indexes
	Creating Indexes
	Dropping Indexes

	Users and Privileges
	Security Management
	Authority Levels
	Resource
	DBA
	SYSADM

	New Users
	User Access
	Multiple Users

	Promoting Authority Level
	Multiple Users

	Demoting Authority Level
	Removing Users
	Passwords
	Managing Groups
	Creating
	Adding Members
	Removing Members
	Dropping
	Nested Groups

	Table Level Privileges
	Select
	Insert
	Delete
	Update
	Index
	Alter
	Reference

	GRANT Privileges
	GRANT Table Privileges
	GRANT Column Privileges

	REVOKE Privileges
	REVOKE Table Privileges
	REVOKE Column Privileges

	Database Recovery
	Types of Failures
	System
	Media

	Recovery Methods
	Journal Files
	Checkpoint Events
	Recovery Steps

	Types of Backup
	Full Backup
	Differential Backups
	Incremental Backup
	Offline Backup
	Online Backup
	Backup Combinations

	Backup Modes
	NONBACKUP Mode
	BACKUP-DATA Mode
	BACKUP-DATA-AND-BLOB Mode
	Tablespace BLOB Backup Mode
	Backup File Object Mode
	Setting Backup Mode

	Offline Full Backup
	Offline Full Backup using dmSQL
	Offline Full Backup Using JServer Manager

	Backup Server
	Starting Backup Server
	Differential Backup Filename Format
	Incremental Backup Filename Format
	Backup Directory
	Setting the Old Directory
	Differential Backup Settings
	Incremental Backup Settings
	Journal Trigger Value Settings
	Compact Backup Mode Settings
	Full Backup Schedule
	File Object Backup Mode
	Inactivate Backup Server

	Backup History Files
	Locating the Backup History File
	Understanding the Backup History File
	Using the Backup History File
	Understanding the File Object Backup History File

	Backup on Replication Databases
	Recovery Options
	Analyzing Options
	Preparing for Restoration
	Performing a Restoration
	Restoring database by Rollover

