DBI\/Iaker

Q\ CASEMaker. ..

CASEMaker Inc./Cotporate Headquarters
1680 Civic Center Drive

Santa Clara, CA 95050, U.S.A.
www.casemaker.com

www.casemaker.com/support

©Copyright 1995-2012 by CASEMaker Inc.
Document No. 645049-235169/DBM53-M12302012-JDBC

Publication Date: 2012-12-30

All rights reserved. No part of this manual may be reproduced, stored in a retrieval system, or transmitted in any
form, without the prior written permission of the manufacturer.

For a description of updated functions that do not appear in this manual, read the file named README. TXT
after installing the CASEMaker DBMaker software.

Trademarks

CASEMaker, the CASEMaker logo, and DBMaker are registered trademarks of CASEMaker Inc. Microsoft, MS-
DOS, Windows, and Windows NT are registered trademarks of Microsoft Corp. UNIX is a registered trademark
of The Open Group. ANSI is a registered trademark of American National Standards Institute, Inc.

Other product names mentioned herein may be trademarks of their respective holders and are mentioned only
form information purposes. SQL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

Notices
The software described in this manual is covered by the license agreement supplied with the software.

Contact your dealer for warranty details. Your dealer makes no representations or warranties with respect to the
merchantability or fitness of this computer product for any particular purpose. Your dealer is not responsible for
any damage caused to this computer product by external forces including sudden shock, excess heat, cold, or
humidity, nor for any loss or damage caused by incorrect voltage or incompatible hardware and/or software.

Information in this manual has been carefully checked for reliability; however, no responsibility is assumed for
inaccuracies. This manual is subject to change without notice.

http://www.casemaker.com
http://www.casemaker.com/support

Contents

Contents

1 Introduction.....ccccccirsmssssssnnnnsnssnsnsssnnnns 1=1
1.1 Additional ReSources ...cccuememmmmsnnnmmssannmnsnannnnnnss 121
1.2 Technical Support.....cccciiirccisssennsssssns s ssnnnn e 122
1.3 Document Conventionsccccevcccnimmssnnmnsnsnnnnnnes 13

2 Getting started EER 2-1
2.1 Getting Started with JDBC Type Il Driver........ 2-1

GET AND INSTALL DBMAKER JDBC DRIVER........ccoooiieieeeeeenn. 2-1
REGISTER THE DBMAKER JDBC DRIVER........ccoooieeeeeeeeeeene 2-1
CONNECT TO DATABASE BY DBMAKER JDBC DRIVER.................... 2-2
2.2 Getting Started with JDBC Type Ill Driver....... 2-3
GET AND INSTALL DBMAKER JDBC DRIVER......coooeeeeeeeeeeennn. 2-3
REGISTER THE DBMAKER JDBC DRIVER.......cocoooieiieeeeeeeeeeenn. 2-3
CONNECT TO DATABASE BY DBMAKER JDBC DRIVER.................... 2-4

3 sample ProgramsIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 3-1
3.1 Run the Sample Programs in the DBMaker 3-1

©Copyright 1995-2012 CASEMaker Inc. i

Q\JDBC Programmer’s Guide

WITH TYPE I DRIVER ..o 3-1
WITH TYPE HEDRIVER.......ooiiieeeeeeeeeeeeee ettt 3-2
3.2 The example for general JDBC programs......... 3-3
How TO EXECUTE A SQL COMMAND BY JDBC?.......ccoooeeieeenn. 3-3
HOW TO RETRIEVE DATA FROM DATABASE BY JDBC?...................... 3-5
HOW TO HANDLE BLOB DATABY JDBC? ..., 3-7
How TO CALL A STORED RPOCEDURE? ..o, 3-11

HoOw TO GET METADATA FOR DATABASE/RESULTSET/PARAMETER?3-13
a4 Reference of DBMaker JDBC Driver......... 4-1
4-1 Data Types supportedlllllllllllllllllllllllllllllllllllllll4-1

4-2 JDBc API ImplementedIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 4-2
JDBC TYPE [DRIVER.......ccoviiiiiiieiiceieiieciieciieseeesiesessesessaseseans 4-2
JDBC TYPE ITI DRIVER.....cciiiiiiiiiiiicciciciciecceee e 4-35

4.3 System Function Implemented......c.ccccvveeiieeea 4267
5 Frequently Asked Questions.......ccceccuuenee 5=1
6 Appendix Sample codeS....citmmmmmnnnnnnnnnnns 6=1
6.1 Sample1 Usage of Clob...ccccuercnnmmssannmnssannnnnssannnn 61
6.2 Sample2 Usage of BlOb....cccccceemisssnnnssssnnnssnnnsns 64

6.3 Sample3 Usage of FOccccvvmcmmmmsnnnmmnssnnsnnnsnss 6-6
6.4 Sampled4 Usage demo of Stored Procedure6-9

FILE: INSERT_OR_UPDATE.EC ..ot eoteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeseseseees 6-9
FILE: QUERY _DATA.EC .ottt eeeeeeeeeeeeeeeeeeeeeseseeseseeenana 6-11
FILE: USAGEOFSTOREDPROCEDURE.JAVAocoeeveeeeeeeeeeeeeveeraenans 6-11

ii ©Copyright 1995-2012 CASEMaker Inc.

Introduction 1

1

1.1

Introduction

Welcome to the JDBC User’s Guide. This Guide will provide some instruction and
samples for users to use the DBMaker JDBC. As all known, JDBC API Standard
provides the solution to access database and to manipulate data from database in Java
program. It was born with many advantages over ODBC and widely accepted by
DBMS vendors and Java programmers; meanwhile, it becomes the standard of
database access by Java. And now, DBMaker JDBC Driver supports most useful
interfaces and their methods for JDBC2.0 and JDBC 3.0 standard.

Additional Resources

DBMaker provides complete sets of DBMS manuals in addition to this one. For more

detailed information on a particular subject, consult one of the books listed below:

¢ For an introduction to DBMaker’s capabilities and functions, refer to the
DBMaker Tutorial.

¢ For more information on designing, administering, and maintaining a DBMaker

database, refers to the Database Administrator's Guide.

¢ For more information on database server management, refer to the JServer

Manager User’s Guide.

¢ For more information on configuring DBMaker, refer to the JConfiguration

Tool Reference.

¢ For more information on the native ODBC API and JDBC API, refer to the
ODBC Programmer’s Guide and JDBC Programmer’s Guide.

©Copyright 1995-2012 CASEMaker Inc. 1-1

Q\JDBC Programmer’s Guide

1.2

1-2

For more information on the dmSQL interface tool, refer to the dmSQL User’s
Guide.

For more information on the SQL language used in dmSQL, refer to the SQL

Command and Function Reference.

For more information on the ESQL/C programming, refer to the ESQL/C
User’s Guide.

For more information on error and warning messages, refer to the Error and

Message Reference.

For more information on the DBMaker COBOL Interface, refer to the DCI
User’s Guide.

For more information on the Stored Procedure, refer to the Stored Procedure

User’s Guide.
For more information on the Lock, refer to the Lock User’s Guide.

For more information on the DBMaker bundle version, refer to the DBMaker

bundle Instruction.

For more details on the performance of the database, refer to the Performance

Tuning Guide.

Technical Support

CASEMaker provides thirty days of complimentary email and phone support during

the evaluation period. When software is registered, the support period is extending an
additional thirty days for a total of sixty days. However, CASEMaker will continue to
provide email support (free of charges) for bugs reported after the complimentary

support or registered support expires.

For most products, support is available beyond sixty days and may be purchased for
twenty percent of the retail price of the product. Please contact sales@casemaker.com

for details and prices.

©Copyright 1995-2012 CASEMaker Inc.

mailto:sales@casemaker.com

Introduction 1

1.3

CASEMaker support contact information, by post mail, phone, or email, for your area

() is at: www.casemaker.com/support. We recommend searching the most current

database of FAQ’s before contacting CASEMaker support staff.

Please have the following information available when phoning support for a

troubleshooting enquiry or include this information in your correspondence:

*

*

Product’s name and version number

Registration number

Registered customer’s name and address
Supplier/distributor where the product was purchased
Platform and computer system configuration

Specific action(s) performed before error(s) occurred
Error message and number, if any

Any additional information deemed pertinent

Document Conventions

A standard set of typographical conventions is used in the book for clarity and

readable. The following table shows the conventions.

©Copyright 1995-2012 CASEMaker Inc. 1-3

http://www.casemaker.com/support

Q\JDBC Programmer’s Guide

Tablel-1DocumentConvention

1-4 ©Copyright 1995-2012 CASEMaker Inc.

Getting Started 2

2.1

Getting Started

This chapter will guide you to quickly start using the JDBC Driver. It illustrates how
to install the DBMaker JDBC Driver, how to register and how to connect. There are

some samples for user to understand easily.

Getting Started with JDBC Type Il
Driver

Get and Install DBMaker JDBC Driver

DBMaker JDBC Driver is distributed with the DBMaker product directly. In the
directory of % DBMAKER_HOME\bin, dmjdbc20.jar, dmjdbc20xa.jar and
dmjdbc30.jar are the binary files for DBMaker JDBC Driver. Interfaces introduced in
JDBC API 2.0 are implemented in dmjdbc20.jar and dmjdbc20xa.jar, where
dmjdbc20xa.jar contains the XA support interfaces besides the interfaces implemented
in dmjdbc20.jar. In dmjdbc30.jar, these interfaces introduced in JDBC API 3.0 are
implemented and at the same time, interfaces implemented in dmjdbc20.jar and
dmjdbc20xa.jar included.

Register the DBMaker JDBC Driver

DBMaker JDBC Driver supports Type II JDBC driver, so some native binary files
need to be used. For the Windows platform, the native file“dmjdbcXX.dll” is copied
into the directory of %winnt\system32 during the process of installation of DBMaker,
For the Unix/Linux/Solaris platform, user must specify the path

©Copyright 1995-2012 CASEMaker Inc. 2-1

Q\JDBC Programmer’s Guide

"/DBMAKER_HOME/lib/so" that contains the file libdmjdbcXX.so by the
environment variable “LD_LIBRARY_PATH”. User can set the
LD_LIBRARY_PATH in his shell initial file like these examples below:

For sh (.profile), bash (.bashrc), add the following command in the initial file

export LD LIBRARY PATH=/DBMAKER HOME/lib/so:S$LD LIBRARY PATH

For csh/tesh (.cshrc), add the following command in the initial file

setenv LD LIBRARY PATH /DBMAKER HOME/lib/so

In addition, to compile and run the Java program using DBMaker JDBC Driver, you
should set the CLASSPATH environment with the directory that contains .jar files for
DBMaker JDBC Driver.

In Java program, if the connection is obtained by DriverManager, you should invoke
the following command to register DBMaker JDBC Driver for your application

before the connection is got by DriverManager.

Class.forName ("DBMaker.sqgl.JdbcOdbcDriver") . newInstance () ;

Connect to Database by DBMaker JDBC Driver

DBMaker JDBC Driver supports to get the connection of database by both
DriverManager and DataSource. Firstly, we introduce the usage of DriverManager

here.

The simplest case is:

Connection conn =
DriverManager.getConnection ("jdbc:DBMaker:dbname", "SYSADM", "abcl23") ;

As has indicated in the code, we got the connection to the database 'dbname’ as the
identity “SYSADM” with the password “abc123”.

And also, we can get the connection by Properties showed below:
Properties connect property = new Properties();

connect property.setProperty ("user", "SYSADM") ;

connect property..setProperty ("password", "abcl23");

Connection conn = DriverManager.getConnection ("jdbc:DBMaker :doname",
connect property) ;

©Copyright 1995-2012 CASEMaker Inc.

Getting Started 2

2.2

If you want to connect to the database server by the URL that specify by server

address and port number > like

"jdbc:DBMaker://SERVER_ADDRESS:PORT_NUMBER/DATABASE_NAME"
> You can do like below:

Connection conn =

DriverManager.getConnection ("jdbc:DBMaker://127.0.0.1 :2345/dbsmapled","
SYSADM", "abc123") ;

This method for connection can avoid the necessarily of specifying the database

section in dmconfig.ini.

On the other hand, DBMaker JDBC implements the interface DataSource and
XADataSource to get the connection. Please see the Using DBMaker with J2EE
Application Server Manual for the details.

Getting Started with JDBC Type Il
Driver

Get and Install DBMaker JDBC Driver

Type 111 JDBC driver which is a pure java JDBC driver makes use of a middle

tier between the calling program and the database. The middle-tier (application server)
converts JDBCecalls directly or indirectly into the vendor-specific database protocol.
To use Type II JDBC, users must at least have the DBMaker client installed. To use
Type I1I JDBC, users can connect to the database’s application code with the Type III
JDBC jar file dmjdbct3c.jar. Type III JDBC is designed for users who don’t want to
install the DBMaker client.

Register the DBMaker JDBC Driver

DBMaker JDBC Driver supports Type III JDBC driver. To make connection to
DBMaker server with Type III JDBC driver, users only need a Type III JDBC jar file.

In Java program, if the connection is obtained by DriverManager, you should invoke
the following command to register DBMaker JDBC Driver for your application

before the connection is got by DriverManager.

©Copyright 1995-2012 CASEMaker Inc. 2-3

http://en.wikipedia.org/wiki/Middle_tier
http://en.wikipedia.org/wiki/Middle_tier
http://en.wikipedia.org/wiki/Application_server
http://en.wikipedia.org/wiki/JDBC
http://en.wikipedia.org/wiki/Database

Q\JDBC Programmer’s Guide

2-4

Class.forName ("dbmaker.jdbc.ws.client.Driver") . newlInstance () ;

Connect to Database by DBMaker JDBC Driver

Type 111 server that is a standalone middle tier server is not bound with any specific
database. Its life cycle is different from database server. Type III server comes with
DBMaker server installation, but database server and Type III server don’t need to be
on the same site. Users should start up both database server and Type III server. The
database setting must be properly written in dmconfig.ini where Type III server can
read. Type III server can not be used to set session timeout, but users can use datebase
server to handle session timeout. Only databases with same lcode can be accessed via
Type III server at the same time. For example, dbl (Icode=1) and db2 (lcode=2). If
Type 111 server has already connected to dbl, then an error will be returned if users try
to make connect Type III server with db2. The workaround would be starting 2 jetty

server in different ports to serve different lcode databases.

Type 111 server is implemented with hessian and deployed under jetty 7 server. Type

III client and server both require jre 1.6 environment.

To start Type III server on Windows, users need to click DBMakter 5.3 and then
click JDBCT?3Server Start in the extended meun. To start Type III server on

Linux/Unix, users can use the following command:

type ~dbmaker/5.3/bin/t3svr
The default port number for Type III server is 8083, but users can change it.

On Windows, open the shortcut tab in JDBCT3Server Start Properties page and you
will see the target field. The following is the value in the target filed:

C:\DBMaker\5.3\jre\bin\java.exe -Djava.library.path="C:\DBMaker\5.3\bin"
-Djetty.port=8083 -DSTOP.PORT=8082 -DSTOP.KEY=stopme -jar start.jar

Lastly, users can simply change 8083 to another number with editing

“Djetty.port=8083" .

On Linux/Unix, edit the following t3svr script:
#!/bin/sh

#

PROG="basename $0°

©Copyright 1995-2012 CASEMaker Inc.

Getting Started 2

case ${PROG} in
t3svr stop) ARGS="--stop" ;;
*) ARGS="--daemon" ;;

esac

cd /home/dbmaker/5.3/jetty

exec /home/dbmaker/5.3/jre/bin/java \
-Djava.library.path=/home/dbmaker/5.3/1ib/so \
-Djetty.port=8083 \
-DSTOP.PORT=8082 \
-DSTOP.KEY=stopme \
-jar /home/dbmaker/5.3/jetty/start.jar ${ARGS}

Note The dll/so library path (dmjdbc53.dIl/libdmjdbc53.s0) is already set in
the shortcut/script (-Djava.library.path=xxxx).There is no need to add
dbmaker/5.3/bin to library path.

Type 111 server provides corresponding servlets, which are wrapped classes for dmjdbc
(Type 1) and follow HTTP protocol. The classes and methods supported by Type I1I
JDBC jar file dmjdbct3c.jar provides JDBC interface. The supported classes/methods
are similar to dmjdbc (type II). The major difference is that users must specify the

host name and port number to connect to Type III middle server.
To make connection with dmjdbc (Type II):

¢ Before coding, users need to have dmjdbc30.jar in classpath. There are two ways
to specify the java classpath. One is to set the environment variable
CLASSPATH. The other is to set the java command argument —classpath. Type
I1 JDBC needs libdmjdbc53.s0/dmjdbe53.dll in PATH or
LD_LIBRARY_PATH

¢ In the coding, load class DBMaker.sql.JdbcOdbcDriver
¢ The url is like jdbc:DBMaker:<dbname>

Code example:

import java.sqgl.*;

©Copyright 1995-2012 CASEMaker Inc. 2-5

Q\JDBC Programmer’s Guide

2-6

To make connection with Type III JDBC:

*

Before coding, users need to have the type 3 jdbc jar file dmjdbct3c.jar in
classpath, but jdbc so/dll in PATH or LD_LIBRAY_PATH is not needed.

In the coding, load class DBMaker.jdbc.ws.client.Driver

The url is like jdbc:DBMaker:type3://<type3server ip>:<port

number>/<dbname>

©Copyright 1995-2012 CASEMaker Inc.

Getting Started 2

Code example:

©Copyright 1995-2012 CASEMaker Inc. 2-7

Q\JDBC Programmer’s Guide

2-8 ©Copyright 1995-2012 CASEMaker Inc.

Sample Programs 3

3.1

Sample Programs

This chapter gives some detailed samples for using JDBC. And give you these steps for
running them in the DBMaker.

Run the Sample Programs in the
DBMaker

With Type Il Driver

In the following description, we use DBMAKER_HOME to indicate the directory
where DBMaker is installed. For example, DBMAKER_HOME maybe indicate the
directory like ‘/home/DBMaker/5.3” for DBMaker 5.3 on Unix platform or for the
directory like ‘C:\DBMaker\5.3’ for DBMaker 5.3 on Windows platform.

With the distribution of DBMaker, there are three JDBC sample programs named as
ex_Resultset.java, ex_ExecuteParam.java and ex_Resultset_update.java separately in
the directory %DBMAKER_HOME%\samples\|DBC. Those files demonstrate the
common usage of DBMaker JDBC Diriver. In the ex_Resultset.java, the usage of
inserting data and retrieving data is shown. In the ex_ExecuteParams.java, the usage of
updating/inserting data with parameters is introduced. And finally, we demonstrate
the usage of updating/inserting data with ResultSet and the newly API that introduced
by JDBC Standard since JDBC2.0 in ex_Resultset_update.java.

To compile and run the sample programs of JDBC, firstly, DBSAMPLES3, the
database that was created at the process of installation of DBMaker, should be started.

©Copyright 1995-2012 CASEMaker Inc. 3-1

Q\JDBC Programmer’s Guide

3-2

And also, the JDK1.2 or later should be installed in your OS and make sure that the
JRE works well for your OS.

Please refer to the section of Register the DBMaker JDBC Driver of Chapter 2.1 to
register the driver properly. And then you can compile and run the sample programs

by command of java and javac separately.

If you register the dmjdbcXX jar into the environment variable of CLASSPATH of
your OS, the sample programs, ex_ExecuteParam.java, can be compiled and run by
the following command for both UNIX and Windows:

javac ex ExecuteParam.java

java ex ExecuteParam

If the dmjdbcXX jar is not registered into the CLASSPATH, the sample programs,
ex_ExecuteParam.java, can be compiled and run by specifying the CLASSPATH with

the arguments -classpath of javac and java.

The following is command for UNIX:

javac -classpath /DBMAKER HOME/lib/java/dmjdbcxx.jar:./
ex ExecuteParam.java

java -classpath /DBMAKER HOME/lib/java/dmjdbcxx.jar:./ ex ExecuteParam

The following is command for Windows:

javac -classpath \DBMAKER HOME\bin\dmjdbcxx.jar;.\ ex ExecuteParam.java
java -classpath \DBMAKER HOME\bin\dmjdbcxx.jar;.\ ex ExecuteParam

With Type lll Driver

With the distribution of DBMaker, there is Employee.java in the directory of
%DBMAKER_HOME%\samples\]DBC . This sample demonstrates how to use type

3 jdbc to retrieve data from database.

To compile and run the sample programs of JDBC, firstly, DBSAMPLES5, the
database that was created at the process of installation of DBMaker, should be started.
And also, the JDK1.6 or later should be installed in your OS and make sure that the
JREL.6 works well for your OS.

©Copyright 1995-2012 CASEMaker Inc.

Sample Programs 3

3.2

Please refer to the section of Register the DBMaker JDBC Driver of Chapter 2.2 to
register the driver properly. And then you can compile and run the sample programs

by command of java and javac separately.

If you register the dmjdbct3c.jar into the environment variable of CLASSPATH of
your OS, the sample programs, say Employee.java, can be compiled and run by the
following syntax for both UNIX and Windows:

javac Employee.java

java Employee

If the dmjdbct3c.jar is not registered into the CLASSPATH, the sample programs, say
Employee.java, can be compiled and run by specifying the CLASSPATH with the

arguments -classpath of javac and java, namely,

The following is command for UNIX:
javac —classpath /DBMAKER HOME/lib/java/dmjdbct3c.jar:./ Employee.java
java -classpath /DBMAKER HOME/lib/java/dmjdoct3c.jar:./ Employee

The following is command for Windows:
javac —classpath \DBMAKER HOME\bin\dmjdbct3c.jar;.\ Employee.java
java -classpath \DBMAKER HOME\bin\dmjdbct3c.jar;.\ Employee

The example for general JDBC
programs

How to execute a SQL command by JDBC?

Here we introduce the general steps using Statement and PreparedStatement to

manipulate the database object, like CREATE TABLE, INSERT TUPLES and so on.

The conn object is connected to the database server. For connection to database server
by DBMaker JDBC, please refer to the section 2.

To create one Statement for one connection:

Statement stmt = conn.createStatement () ;

To execute DDL by the Statement:

©Copyright 1995-2012 CASEMaker Inc. 3-3

Q\JDBC Programmer’s Guide

3-4

stmt .executeUpdate ("create table jdbc employee (id int, name char (20),

salay float, hired date date)");

To execute DML by the Statement:

stmt.executeUpdate ("insert into jdbc employee values (1, 'Charles
Brown', 555.32, '1999/01/01")");

To prepare the PreparedStatement with host variables:
PreparedStatement pstmt = conn.prepareStatement ("insert into

jdbc_employee values(?,?,?,2)");

Please note that the call of method of PreparedStatement is a time consuming job, so
please reuse the PreparedStatement for the same DML with the same host variable as

possible as you can.

If we want to insert the information for an employee: the employee id is 4, employee
name is “"Mickey Mouse", his salary is “30000.00” and hired date is “1950-01-017,

these data can be inserted by one PreparedStatement with host variables:

pstmt.setInt (1, 4);
pstmt.setString (2, "Mickey Mouse") ;
pstmt.setFloat ((3, 30000.00) ;
pstmt.setDate (4, new Date (50, 0, 1)) ;
pstmt.executeUpdate () ;

If we want to insert some information for three employees “John”, “Mary” and “Eric”
with the same PreparedStatement prepared before, the code could be like this:
// 1. insert the information for employee "John"
pstmt . setInt (1, 3045) ;
pstmt.setString (2, "John")
pstmt.setFloat (3, 10000.00) ;
pstmt.setDate(4, new Date (28, 1,3)) ;

// To execute the insert commnad without prepare time because the
prepare work had been finished while calling "conn.prepareStatement "

pstmt.executeUpdate () ;
// 2. insert the information for employee "Mary"

pstmt . setInt (1, 3200) ;

©Copyright 1995-2012 CASEMaker Inc.

Sample Programs 3

pstmt.setString (2, "Mary") ;
pstmt.setFloat (3, 15000.00) ;
pstmt.setDate(4, new Date (28, 1,3)) ;

// To execute the insert commnad without prepare time because the
prepare work had been finished while calling "conn.prepareStatement "

pstmt.executeUpdate () ;

// 3. insert the information for employee "Eric"
pstmt . setInt (1, 3011) ;

pstmt.setString (2, "Eric")

pstmt.setFloat (3, 40000.00) ;

pstmt.setDate(4, new Date (28 1,3)) ;

// To execute the insert commnad without prepare time because the
prepare work had been finished while calling "conn.prepareStatement "

pstmt.executeUpdate () ;
}

So, we insert three tuples by one time “prepare” and three times “execution”.
y

How to retrieve data from database by JDBC?

For the convenience of demo, we suppose the table schema like this:

create table jdbc employee (id int, name char (20), salary float,
hired date date) ;

Firstly, a Statement object is created by the connection connected to the DBMaker

database server:

Statement stmt = conn.createStatement () ;

And then, you can execute the query command by the method executeQuery of the
object of Statement and get the result set:

ResultSet rs = stmt.executeQuery(“‘select id,name,salary,hired date from
Jdbc_employee');

Next, you can iterate the result set obtained by the query of Statement:
While(rs.next())

{
System.out.printin(*ID: “+rs.getInt(l) +
“NAME: “+rs.getString(2) +
“SALARY: “+ rs.getFloat(3) +

©Copyright 1995-2012 CASEMaker Inc. 3-5

Q\JDBC Programmer’s Guide

3-6

“HIRED DATE: “ + rs.getDate (4));
}

To use cursor update in the object of ResultSet, you should, firstly, create the object
of Statement with the ResultSet Type ResultSet. CONCUR_UPDATABLE:

Statement stmt = con.createStatement (ResultSet.TYPE SCROLL SENSITIVE,
ResultSet.CONCUR UPDATABLE) ;

For the detailed information of ResultSet type, please refer to the JDBC Specification.

And now, you can use the same method as before to execute query command and

obtain the ResultSet:

ResultSet rs = stmt.executeQuery("select * from jdbc employee");

However, this time, the ResultSet is updateable with cursor:
While (rs.next())
{

float salary = rs.getFloat (2);

salary = salary + 1000.00f;

rs.updateFloat (3, salary);

rs.updateRow () ;

}

To make more efficiency memory allocation when retrieving data and avoid some
duplicate checking, for example checking if need trace or need column remapping.

There are two major changes in dmjdbc performance enhancement.

¢ In carlier version of dmjdbc, in JdbcOdbcResultSet getXXX would allocate
buffer every time in java, pass it to ¢, the ¢ code would assign retrieved value into
the buffer. The allocated buffer was not reused. The enhancement is trying to

reuse the allocated buffer by avoiding frequently allocate/free memory.

¢ The debugging mechanism of JDBC is to call DriverManager.setLogStream or
DirverManager.setLogWeriter. In earlier version of JdbcOdbcXXX classes, the
first line of those JDBC implemented methods would check for log stream or log
writer and determine if need to print debug message. This checking operation
had quite significant performance impact. So, the improvement is to keep a flag

(a variable) needTrace in JdbcOdbc.java, the ancestor of all JdbcOdbeXXX

©Copyright 1995-2012 CASEMaker Inc.

Sample Programs 3

classes. So all JdbcOdbcXXX would inherit this variable and have it assigned
when the object is created. In each method, it would check for the flag
needTrace only, and not call DriverManager.getLogStream or getLogWriter.

Please note that there is one issue about need Trace in dmjdbc performance
enhancement. This value is set when the object is created and users can’t alter it after
then. So, if users do something like:

Statement stmt = conn.createStatement () ;

DriverManager.setLogWriter (new java.io.PrintWriter (“c:\temp\jdbc.log”));

ResultSet rs = stmt.executeQuery (“xxx”);

Then, only trace messages from rs will be printed to log but not the ones from stmt.

Because the log writer is set after stmt has been created.

How to handle blob data by JDBC?

DBMaker provides powerful functions for the manipulation of large object, including
data type of Blob, Clob and FO. DBMaker JDBC Driver implements the interface
java.sql.Blob and java.sql.Clob for Blob and Clob data type in Java program.

We will introduce the usage of Blob and Clob data type in Java program by DBMaker
JDBC Diriver.

Please see Chapter 4.2 for the APIs implemented by DBMaker JDBC Driver in
details. Here we give some samples of JDBC codes for Blob and Clob data and the
FO.

USAGE OF CLOB SAMPLE

This sample demonstrates the usage of Clob data with DBMaker JDBC Driver.

In this sample we store the content of the text file demo.txt into database and then

retrieve it out and print it to the console.

Firstly, we create the table jdbc_clob_demo with a column with long varchar type to
store the Clob data.

stmt.execute ("CREATE TABLE jdbc clob demo (id INT, content LONG
VARCHAR) ") ;

©Copyright 1995-2012 CASEMaker Inc. 3-7

Q\JDBC Programmer’s Guide

3-8

And then, we store the content of the text file ‘demo.txt’ into this table like this:

PreparedStatement pstmt= conn.prepareStatement ("INSERT INTO
jdbc clob demo (id,content) VALUES(?,?2)");

FileInputStream fis= new FileInputStream (“demo.txt”);
Buff len = fis.available();

pstmt.setInt (1,1);

pstmt.setBinaryStream (2, fis,buff len);
pstmt.execute () ;

pstmt.close() ;

fis.close();

Now, we have completed the job to store the content of text file ‘demo.txt’ into
database. Next, we will retrieve it out and print the content to the console. In practice,
you maybe do something more useful, not just print it out. Following is the code for
retrieving and printing:

ResultSet rs = stmt.executeQuery ("SELECT ID,content FROM
jdbc clob demo") ;

If (rs.next())

{

Int id =rs.getInt(l);

Clob clob = rs.getClob(2) ;

/*Get the bytes as ASCII stream */

InputStream astream = clob. getAsciiStream();
Int len = astream.available();

byte[] bytes = new byte [len+l];

astream.read (bytes) ;

astream.close () ;

/* we construct the String instance from bytes with ASCII charset */

String str = new String(bytes, 0, len, “ascii”);

System.out.printIn (str);

}

For the complete code of this sample, please refer to Appendix for Sample 1.

At the same time, the Clob retrieved by ResultSet can also be used to insert some new

rows like this:

©Copyright 1995-2012 CASEMaker Inc.

Sample Programs 3

If (rs.next())

{

int id = rs.getInt(l);

Clob content = rs.getClob(2);

/* Here we insert a new tuple with the ID=2 and the same Clob content as
the tuple with ID = 1 */

pstmt.setInt (1,2);
pstmt.setClob (2, content) ;

pstmt.execute () ;

USAGE OF BLOB SAMPLE
This sample illustrates the usage of Blob data with DBMaker JDBC Driver.

In this sample, we store the picture demo.gif into database and then retrieve it out and

save it as a gif file.

Firstly, we create the table jdbc_blob_demo with a column with the type of long

varbinary to store the picture file:

stmt.execute ("CREATE TABLE jdbc blob demo (id INT, photo LONG VARCHAR)");

And then, we read the picture file demo.gif and restore it into jdbc_blob_demo:

PreparedStatement pstmt = c.prepareStatemnt (“INSERT INTO
Jjdbc blob demo (id,photo) VALUES (?,?)”);

FileInputStream fis = new FileInputStream(“demo.gif”);
Int buff len = fis.available();

pstmt.setInt (1,1);

pstmt.setBinaryStream (2, fis,buff len);
pstmt.execute() ;

pstmt.close();

fis.close();

Now the picture ‘demo.gif’ is stored into database as a binary data. Next, we will
retrieve the binary data out from jdbc_blob_demo and save it as a gif file named ‘dup-
demo.gif’. For your application, you maybe show the picture on some control. The

following is the code for this job:

©Copyright 1995-2012 CASEMaker Inc. 3-9

Q\JDBC Programmer’s Guide

3-10

ResultSet rs = stmt.executeQuery (“SELECT ID, PHOTO FROM
jdbc blob test”);

If (rs.next())

{
int id = rs.getInt (1);
Blob blob data = rs.getBlob(2);
byte[] buffer = new byte[buff len + 1];z
InputStream bs = blob data.getBinaryStream() ;
FileOutputStream fos = new FileOutputStream (“dup-demo.gif”);
bs.read (buffer) ;
fos.write (buffer);
bs.close ();
fos.close ();

}

For the complete code of this sample, please refer to Appendix for Sample 2.

Meanwhile, the Blob retrieved by ResultSet can also be used to insert some new rows
like this:
If (rs.next())
{
int id = rs.getlInt (1);
Blob photo = rs.getBlob(2);

/* Here we insert a new tuple with ID = 2 but the same photo as the
tuple with ID = 1*/

pstmt.setInt (1,2);
pstmt.setBlob (2, photo) ;
pstmt.execute() ;

}

USAGE OF FILE OBJECT SAMPLE

DBMaker also supports the FILE data type which is the useful feature of DBMaker.
The FILE type column can store the binary data as a file outside the database blob file
(*.bb). The FILE data type can be used just the same as LONG VARBINARY or
LONG VARCHAR for JDBC programmer if the keyword DB_FoTyp is set to “1” in
dmconfig.ini, please refer to the DBA Manual (dba.chm) for the keyword in detail. In

©Copyright 1995-2012 CASEMaker Inc.

Sample Programs 3

Appendix, the Sample 3 provides a complete demo for the usage of FILE data type in
JDBC.

How to call a stored RPOCEDURE?

We can write a Stored Procedure with the grammar of EC and create the Stored
Procedure in dmSQL from the EC program file, please see the Stored Procedures

section in dba.chm manual for details.

The Stored Procedure can be called in JDBC with the syntax:

{CALL procedure name[(?,?)]} or {?=CALL procedure name[(?,?)]}.

The following sample demonstrates the usage of Stored Procedure with DBMaker
JDBC Driver.

The table schema used in the sample is shown as the following:
Create table SYSADM.JDBC SP DEMO (
ID INTEGER not null,
NAME VARCHAR (12) default null,
BIRTHDAY DATE default null)
in DEFTABLESPACE lock mode page fillfactor 100;
ALTER TABLE SYSADM.JDBC SP DEMO primary key (ID) in DEFTABLESPACE;

The stored procedure UPDATE_OR_INSERT here is used to insert the record into
the table JDBC_SP_DEMO if the record does not exist in the table, and to update
the record with the same ID in the table JDBC_SP_DEMO if the record has already
existed in the table. Please see the file update_or_insert.ec in the Sample 4 in

Appendix.
Before we call the procedure by JDBC, we have to create this procedure into database
first. DBMaker provides the command ‘CREATE PROCEDURE FROM ..." to

create the stored procedure into database from the file that contains the EC program

for the stored procedure. Please see the Stored Procedures section in DBA manual

dba.chm for details.

Next, we will introduce the general steps of calling Stored Procedure. For the

convenience of illustrations, we just suppose that the procedure we are going to call is

©Copyright 1995-2012 CASEMaker Inc. 3-11

Q\JDBC Programmer’s Guide

named by ‘demo_sp’, with two parameters. The first one, with the type of String, is
used as the INPUT and the second one, with the type of Integer, is used as OUTPUT
parameter. And also, the store procedure ‘demo_sp’ will return the ResultSet of query,

containing two columns with the type of Integer and String, separately.

1. To prepare the CallableStatement by java.sql. Connection.prepareCall().

The stored procedure should be prepared by the JDBC escape syntax. The following
code is the sample:

// prepare to call the stored procedure demo sp with two parameters.

// variable conn is an available connection to the destination database.
CallableStatement cstmt = conn. prepareCall (“{CALL demo sp(?,?)}"”);

2. To register the output variable by
CallableStatement.registerOutputParameter(), If any.

DBMaker JDBC Driver supports output parameter for Stored Procedure. If there is
any output parameter, it should be registered like this:

// Register the output parameter, i.e., the second parameter named by
‘age’ with

// integer datatype. Variable cstmt is prepared by calling
Connection.prepareCall () .

cstmt.registerOutputParameter (2, Types, INTEGER) ;

Please note thar both the index (1-base started) and name for column are supported to

register the output parameter.

3. To set the input parameter by CallableStatement.setXXX().

Like the PreparedStatement, both the index (1-base started) and name for column are

supported to set the input parameter. The input parameter can be set like this:

// Set the input parameter, say, the first parameter named by ‘id’ with
varchar (10)

// datatype. Variable cstmt is prepared by calling
Connection.prepareCall () .

cstmt.setString(1l,”21935265") ;

4. Execute and retrieve the query result by cstmt.executeQuery()

3-12 ©Copyright 1995-2012 CASEMaker Inc.

Sample Programs 3

If the Stored Procedure do something for query and returns the result set, the result
set can be accessed by the instance of class java.sql.ResultSet returned by
cstmt.executeQuery() .
// Iterate the result set returned by CallableStatement.executeQuery() .
// Variable cstmt is prepared by calling Connection.prepareCall () .
int id ;
String name ;
boolean brs = cstmt.execute() ;
// brs is true means the cstmt.execute() will product a Resultset
If (brs == true)
{
ResultSet rs = cstmt.getResultSet() ;
While (rs.next())
{
id = rs. GetInt(l) ;
name = rs.getString(2) ;

}

Please note that both the index-based and name-based columns are supported to

retrieve the output parameter.

How to get metadata for
Database/ResultSet/Parameter?

The metadata of JDBC Specification plays an important role in the advanced

programming.

DatabaseMetaData interface contains all the method relating to the specialization of
the database server, such as whether the transaction, stored procedure, outer join, etc,

are supported and some other information about the target database server.

The DatabaseMetaData can be obtained by the following code:

DatabaseMetaData dbmd = conn.getMetaData() ;

the conn is a Connection object connected to the DBMaker database server.

©Copyright 1995-2012 CASEMaker Inc. 3-13

Q\JDBC Programmer’s Guide

3-14

For example, if you do not know whether the DBMS support transaction, we can get
the metadata through the method supportsTransactions() of interface
DatabaseMetaData.

If (domd.supportsTransactions/())
{
conn.setAutoCommit (false) ;
}
else {

System.out.println (
}

transaction is not supported “);

Likewise, if you want to know whether the DBMS support Stored Procedure, we can
get the metadata through the method supportsStoredProcedure() of interface
DatabaseMetaData.
If (dbmd.supportsStoredProcedure ())
{
CallableStatement cstmt = conn.preprareCall(“{ call demo sp(? , ?) }”)
}
else {
System.out.println (Y Stored Procedure is not supported “);

}

ResultSetMetaData interface contains all the method relating to the information of
the ResultSet returned by a query, such as the number of column, the name and type
of each column and so on. Programmer can use that information to achieve some

generic programming.

You can obtain the ResultSetMetaData by the following code:

ResultSetMetaData rsmd = rs.getMetaData();

the rs is a ResultSet object returned by some query statement. For example, if you
know nothing about the ResultSet retrieved by some Query, you can iterate the
ResultSet with the help of ResultSetMetaData like this:

/* Get the metadata of the ResultSet ‘rs’ */

ResultSetMetaData rsmd = rs.getMetaData();

/* Get the count of columns of this ResultSet by ResultSetMetaData*/

©Copyright 1995-2012 CASEMaker Inc.

Sample Programs 3

int colCount = rsmd.getColumnCount () ;
/* Print the name of each column by ResultSetMetaData */
for(int 1 = 1;i <= colCount;++i) {
System.out.print (rsmd.getColumnName (i) +"\t") ;
}
/* Iterate the result set */
while(rs.next()) {
for(int i = 1;i < colCount;++i) {
/* Get the type of each column*/
int type = rsmd.getColumnType (i) ;
/* Check the type to use the corresponding getXXX method*/
switch (type) {
case Types.INTEGER :
System.out.print (rs.getInt (i));

case Types.CHAR :

case Types.VARCHAR :

System.out.print (rs.getString(i)) ;

case: /* And many other cases omitted here */

}
System.out.println() ;

}

ParameterMetaData interface contains all the method relating to the information of
the parameters in the statement with host variables, such as the JDBC Type and

precision of those variables.

The ParameterMetaData can be obtained by the following code:

ParameterMetaData pmd = pstmt.getMetaDatal();
the pstmt is a PreparedStatement object prepared by some connection object.

We can also get the metadata for parameters of the stored procedure executed by
CallableStatement.

Here, as a sample, we list the code section of using ParameterMetaData to retrieve the

metadata information of parameters in the CallableStatement.

©Copyright 1995-2012 CASEMaker Inc. 3-15

Q\JDBC Programmer’s Guide

3-16 ©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

4.1

Reference of DBMaker
JDBC Driver

This chapter presents some reference of DBMaker JDBC Diriver, including the data
types supported by DBMaker JDBC Driver, the APIs that implemented by DBMaker
JDBC Driver and the implemented system function.

Data Types supported

The following table 5-1 shows the data types that DBMaker JDBC Driver supported.

SQL TYPE JDBC TYPE
CHAR Types.CHAR
INTEGER Types.INTEGER
SMALLINT Types.SMALLINT
FLOAT Types.REAL
DOUBLE Types. DOUBLE
VARCHAR Types. VARCHAR
LONG VARCHAR Types. LONGVARCHAR
BINARY Types.BINARY
LONG VARBINARY Types. LONGVARBINARY
DATE Types.DATE

©Copyright 1995-2012 CASEMaker Inc. 4-1

Q\JDBC Programmer’s Guide

Table 4-1 Supported Datatypes

4.2 JDBC API Implemented

JDBC Type Il Driver

At present, DBMaker JDBC Type Il Driver supports most useful interfaces and their
methods for JDBC 2.0 and JDBC 3.0 standard. These interface and methods are
described below.

JAVA.SQL.BLOB

Table 4-2 java.sql.Blob

4-2 ©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

JAVA.SQL.CALLABLESTATEMENT

w

©Copyright 1995-2012 CASEMaker Inc. 4-

Q\JDBC Programmer’s Guide

4-4

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

al

©Copyright 1995-2012 CASEMaker Inc. 4-

Q\JDBC Programmer’s Guide

4-6

Table 4-3 java.sql. CallableStatement

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

JAVA.SQL.CLOB

Table 4-4 java.sql. Clob

JAVA.SQL.CONNECTION

~

©Copyright 1995-2012 CASEMaker Inc. 4-

Q\JDBC Programmer’s Guide

4-8

Table 4-5 java.sql. Connection

JAVA.SQL.DATABASEMETADATA

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

©

©Copyright 1995-2012 CASEMaker Inc. 4-

Q\JDBC Programmer’s Guide

4-10

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

=

©Copyright 1995-2012 CASEMaker Inc. 4-1

Q\JDBC Programmer’s Guide

4-12

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

w

©Copyright 1995-2012 CASEMaker Inc. 4-1

Q\JDBC Programmer’s Guide

4-14

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

(&)

©Copyright 1995-2012 CASEMaker Inc. 4-1

Q\JDBC Programmer’s Guide

4-16

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

~

©Copyright 1995-2012 CASEMaker Inc. 4-1

Q\JDBC Programmer’s Guide

4-18

Table 4-6 java.sql. DatabaseMetaData

JAVA.SQL.DRVIER

Table 4-7 java.sql. Driver

JAVA.SQL.PARAMETERMETADATA

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

Table 4-8 java.sql. ParameterMetaData

JAVA.SQL.PREPAREDSTATEMENT

©

©Copyright 1995-2012 CASEMaker Inc. 4-1

Q\JDBC Programmer’s Guide

4-20

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

=

©Copyright 1995-2012 CASEMaker Inc. 4-2

Q\JDBC Programmer’s Guide

Table 4-9 java.sql. PreparedStatement

JAVA.SQL.RESULTSET

4-22 ©Copyright 1995-2012 CASEMaker Inc.

)
0
=
0
‘
0
=
0
0
0
=
=)
W
4
0
*
0
‘
(5
~)
®
0
)
-
<
0
1
-

w

©Copyright 1995-2012 CASEMaker Inc. 4-2

Q\JDBC Programmer’s Guide

4-24

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

o
)
o

©Copyright 1995-2012 CASEMaker Inc.

Q\JDBC Programmer’s Guide

4-26

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

~

©Copyright 1995-2012 CASEMaker Inc. 4-2

Q\JDBC Programmer’s Guide

4-28 ©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

©

©Copyright 1995-2012 CASEMaker Inc. 4-2

Q\JDBC Programmer’s Guide

Table 4-10 java.sql. ResultSer

JAVA.SQL.RESULTSETMETADATA

4-30 ©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

©Copyright 1995-2012 CASEMaker Inc. 4-31

Q\JDBC Programmer’s Guide

4-32

Table 4-11 java.sql. ResultSetMetaData

JAVA.SQL.STATEMENT

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

Table 4-12 java.sql.Statement

JAVAX.SQL.CONNECTIONPOOLDATASOURCE

Table 4-13 javax.sql. ConnectionPoolDataSource

javax.SQL.Datesource

©Copyright 1995-2012 CASEMaker Inc. 4-33

Q\JDBC Programmer’s Guide

4-34

Table 4-14 javax.sql. DaraSource

javax.sql.Pooledconnection

Table 4-15 javax.sql. PooledConnection

javax.sgl.XAConnection

Table 4-16 javax.sql. XAConnection

javax.transaction.xa.Xid

Table 4-17 javax.transaction.xa.Xid

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

JDBC TYPE 11l DRIVER

At present, DBMaker JDBC Type Ill Driver supports most useful interfaces and their
methods for JDBC 2.0, JDBC 3.0 and JDBC 4.0 standard. These interface and
methods are described below.

java.sql.Blob

Table 4-18 java.sql.Blob

java.sgl.CallableStatement

©Copyright 1995-2012 CASEMaker Inc. 4-35

Q\JDBC Programmer’s Guide

4-36

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

Table 4-19 java.sql. CallableStatement

java.sql.Clob

Table 4-20 java.sql.Clob

java.sgl.Connection

©Copyright 1995-2012 CASEMaker Inc. 4-37

Q\JDBC Programmer’s Guide

4-38

Table 4-21 java.sql. Connection

sql.DatabaseMetaData

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

©

©Copyright 1995-2012 CASEMaker Inc. 4-3

Q\JDBC Programmer’s Guide

4-40

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

=

©Copyright 1995-2012 CASEMaker Inc. 4-4

Q\JDBC Programmer’s Guide

4-42

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

w

©Copyright 1995-2012 CASEMaker Inc. 4-4

Q\JDBC Programmer’s Guide

4-44

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

al

©Copyright 1995-2012 CASEMaker Inc. 4-4

Q\JDBC Programmer’s Guide

4-46

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

Table 4-22 java.sql. DarabaseMetaData

java.sql.Driver

Table 4-23 java.sql.Driver

sql.ParameterMetaData

©Copyright 1995-2012 CASEMaker Inc. 4-47

Q\JDBC Programmer’s Guide

Table 4-24 java.sql. ParameterMetaData

java.sql.PreparedStatement

4-48 ©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

©

©Copyright 1995-2012 CASEMaker Inc. 4-4

Q\JDBC Programmer’s Guide

4-50

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

Table 4-25 java.sql. PreparedStatement

java.sql.ResultSet

©Copyright 1995-2012 CASEMaker Inc. 4-51

Q\JDBC Programmer’s Guide

4-52

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

w

©Copyright 1995-2012 CASEMaker Inc. 4-5

Q\JDBC Programmer’s Guide

4-54

©Copyright 1995-2012 CASEMaker Inc.

)
0
™Y
0
‘
0
=
0
0
0
=
=)
W
4
o
*
0
‘
(5
~)
®
0
)
-
<
0
L]
Y

a1

©Copyright 1995-2012 CASEMaker Inc. 4-5

Q\JDBC Programmer’s Guide

4-56 ©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

~

©Copyright 1995-2012 CASEMaker Inc. 4-5

Q\JDBC Programmer’s Guide

4-58

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

©

©Copyright 1995-2012 CASEMaker Inc. 4-5

Q\JDBC Programmer’s Guide

4-60

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

Table 4-26 java.sql. ResultSer

java.sql.ResultSetMetaData

©Copyright 1995-2012 CASEMaker Inc. 4-61

Q\JDBC Programmer’s Guide

4-62

Table 4-27 java.sql. ResultSetMetaData

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

java.sql.Statement

w

©Copyright 1995-2012 CASEMaker Inc. 4-6

Q\JDBC Programmer’s Guide

4-64

Table 4-28 java.sql.Statement

javax.sgl.ConnectionPoolDataSource

Table 4-29 javax.sql. ConnectionPoolDataSource

javax.sql.Datesource

Table 4-30 javax.sql. DataSource

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

javax.sql.Pooledconnection

Table 4-31 javax.sql.PooledConnection

javax.sql.XAConnection

Table 4-32 javax.sql. XAConnection

'|avax.siI.XADataSource

©Copyright 1995-2012 CASEMaker Inc. 4-65

Q\JDBC Programmer’s Guide

4-66

Table 4-33 javax. sql. XADataSource

javax.transaction.xa.XAResource

Table 4-34 javax.transaction.xa. XAResource

javax.transaction.xa.Xid

Table 4-35 javax.transaction.xa.Xid

©Copyright 1995-2012 CASEMaker Inc.

Reference of DBMaker JDBC Driver 4

4.3 System Function Implemented

Following table shows the system function that DBMaker JDBC implemented.

Table 4-36 Implemented Function

©Copyright 1995-2012 CASEMaker Inc. 4-67

Q\JDBC Programmer’s Guide

4-68 ©Copyright 1995-2012 CASEMaker Inc.

Frequently Asked Questions 5

Frequently Asked
Questions

Q1: Why I face the error “ClassNotFoundException: DBMaker.sql.JdbcOdbcDriver
SQLException: No suitable driver” when execute the Java program that access

database by DBMaker JDBC Driver?

Al: Please see that the dmjdbc20.jar or dmjdbc30.jar lies in the classpath when you

run the java program. See how to run the samples for details.

Q2: Why I face the error “Exception in thread "main" java.lang.UnsatisfiedLinkError:
no dmjdbcexx in java.library.path” When I execute the Java program that access
database by DBMaker JDBC Driver?

A2: The user needs the DBMaker native Driver to run the Java program to access
database by DBMaker JDBC Driver. Please see that the native driver dmjdbexx.dll
(so) lies in the java.library.path java library pass variable. Please see How to run the

samples for details.

Q3: Why I face the error “SQLException: fail to establish a connection (8007),
[DBMaker] cannot find the specified database section in the configuration file”,
When I execute the Java program that access database by DBMaker JDBC Driver?

A3: Please see that the database you plan to access was well configured in the
dmconfig.ini file. About the dmconfig.ini, please see the DBA Manual (dba.chm) for
details.

©Copyright 1995-2012 CASEMaker Inc. 5-1

Q\JDBC Programmer’s Guide

5-2

Q4: Does DBMaker JDBC Driver support transaction and is there any suggestion for

the use of transaction?

A4: DBMaker does support the transaction in JDBC. As any DBMS with transaction,
the program should be designed carefully and the long transaction should be avoid by
splitting into small ones. If the transaction is used in multithread environment, please

be aware of the problem of deadlock when you design the transaction you plan to run.

Q5: Why I got UnsupportedException when I called the method

PreparedStatement.setDecimal()?

A5: At present, DBMaker does not implement java.sql.PreparedStatement.setDecimal
in the interface java.sql.PreparedStatement. The workaround is to use
java.sql.PreparedStatement.setString() for the column with the datatype Decimal. For
the details of the implementation of interface java.sql.PreparedStatement by
DBMaker JDBC Driver, please see the chapter 4.2.8 of this document. All of the
interfaces of JDBC standard implemented by DBMaker JDBC Driver have been listed

in the prievous chapter 4.
Q6: How can I use DBMaker JDBC Driver in DBMaker bundle version?

A6: Java AP need to load dmjdbexx.jar at first, this jar will load dmjdbexx.dll and
dmapixx.dll. To find these .dll paths, please add the following path setting to your
Java library path when launching Java VM:Java —
Djava.library.path=C:\YourBundlePath

©Copyright 1995-2012 CASEMaker Inc.

Appendix Sample codes 6

6 Appendix Sample
codes

The Appendix gives the completely codes of the samples that used in the previous

chapter.

6.1 Sample1 Usage of Clob

This sample can be run in the same way as for the section of RUN SAMPLE
PROGRAM.

Please refer to the section RUN SAMPLE PROGRAM for details.

File: UsageOfClob.java
import java.io.*;
import java.sgl.*;
public class UsageOfClob {
public static void main (String[] args)
{
Connection conn = null;
int buff len = -1;
try {
// Get the connection to Database server
Class.forName ("DBMaker.sqgl.JdbcOdbcDriver") .newInstance () ;

conn =
DriverManager.getConnection ("jdbc:DBMaker: support", "SYSADM", "") ;

©Copyright 1995-2012 CASEMaker Inc. 6-1

Q\JDBC Programmer’s Guide

6-2 ©Copyright 1995-2012 CASEMaker Inc.

Appendix Sample codes 6

©Copyright 1995-2012 CASEMaker Inc. 6-3

Q\JDBC Programmer’s Guide

6.2 Sample2 Usage of Blob

This sample can be run in the same way as for the section of RUN SAMPLE
PROGRAM.

Please refer to the section RUN SAMPLE PROGRAM for details.

File: UsageOfBlob.java.
mport java.io.*;

import java.sqgl.*;

public class UsageOfBlob {
public static void main(String[] args) {
Connection conn = null;
int buff len = -1;
try {
// Get the connection to Database server
Class. forName ("DBMaker.sql.JdbcOdbcDriver") .newInstance () ;

conn =
DriverManager.getConnection ("jdbc:DBMaker: support", "SYSADM", "") ;

Statement stmt = conn.createStatement () ;

// The table jdbc blob demo will be used later, so we create
it first

stmt .execute ("CREATE TABLE jdbc blob demo (id INT, photo LONG
VARBINARY) ") ;

// Insert Blob data from logo.gif
PreparedStatement pstmt = conn.prepareStatement (

"INSERT INTO
jdbc blob demo (id, photo) VALUES (?,?)");

FileInputStream fis = null;

For (int 1 = 0; 1 < 3; ++1)
// Open the file logo.gif which contains the blob data

fis = new FileInputStream("logo.gif");

// Get the available length of the InputStream

6-4 ©Copyright 1995-2012 CASEMaker Inc.

Appendix Sample codes 6

©Copyright 1995-2012 CASEMaker Inc. 6-5

Q\JDBC Programmer’s Guide

6.3 Sample3 Usage of FO

Also, this sample can be run in the same way as for the section of RUN SAMPLE
PROGRAM.
Please refer to the section RUN SAMPLE PROGRAM for details.

FILE: UsageOfFo.java

6-6 ©Copyright 1995-2012 CASEMaker Inc.

Appendix Sample codes 6

©Copyright 1995-2012 CASEMaker Inc. 6-7

Q\JDBC Programmer’s Guide

6-8 ©Copyright 1995-2012 CASEMaker Inc.

Appendix Sample codes

6.4

Sample4 Usage demo of Stored
Procedure

The following is the step by step work to run this sample program:
1. Create table schema in dmSQL like:
dmSQL> create table SYSADM.JDBC SP DEMO (

ID INTEGER not null ,

NAME VARCHAR (12) default null ,

BIRTHDAY DATE default null)

in DEFTABLESPACE lock mode page fillfactor 100 ;

alter table SYSADM.JDBC SP DEMO primary key (ID) in
DEFTABLESPACE;

2. Create the procedure insert_or_update in dmSQL like:

dmSQL> create procedure from ‘insert or update.ec’;

Please note that copy the file ‘insert_or_update.ec’ into the directory
DBMaker/4.x/bin first.

3. Create the procedure query_data in dmSQL like:

dmSQL> create procedure from ‘query data.ec’;

Please note that copy the file ‘queryupdate.ec’ into the directory DBMaker/4.x/bin
first.

4. Compile the program UsageOfBlob.java by javac and run the program by java
with the classpath containing dmjdbc20.jar.

Please note that the database DBNAME should be started before run the program.

For the details of running sample program, please refer to the section RUN SAMPLE

PROGRAM.

File: insert_or_update.ec

File: insert_or_update.ec

/**

* This stored procedure insert or update the record

©Copyright 1995-2012 CASEMaker Inc.

6-9

Q\JDBC Programmer’s Guide

6-10 ©Copyright 1995-2012 CASEMaker Inc.

Appendix Sample codes 6

isInsert = 1;

}
else {

isInsert = -1;

}
EXEC SQL RETURNS STATUS SQLCODE;
EXEC SQL END CODE SECTION;

File: query_data.ec

File: query_data.ec
/**
* This procedure returns the ResultSet of all the tuples in
* the table jdbc sp demo that the birthday is after the 'in birthday'

*

* Paramerters

w INPUT in birthday All the tuples with the column of
birthday

w larger than in birthday will be
selected

**/

exec sql create procedure query data (DATE in birthday input) returns int
id,varchar (12) name,date birthday;

{
exec sgl begin code section;
exec sqgl RETURNS SELECT ID ,NAME ,BIRTHDAY

FROM jdbc sp demo WHERE BIRTHDAY > :in birthday
INTO :id, :name, :birthday ;

exec sgl end code section;

File: UsageOfStoredProcedure.java

File:UsageofStoredProcedure.java

import java.sgl.*;

©Copyright 1995-2012 CASEMaker Inc. 6-11

Q\JDBC Programmer’s Guide

6-12 ©Copyright 1995-2012 CASEMaker Inc.

Appendix Sample codes 6

©Copyright 1995-2012 CASEMaker Inc. 6-13

Q\JDBC Programmer’s Guide

6-14 ©Copyright 1995-2012 CASEMaker Inc.

	Introduction
	Additional Resources
	Technical Support
	Document Conventions

	Getting Started
	Get and Install DBMaker JDBC Driver
	Get and Install DBMaker JDBC Driver
	Register the DBMaker JDBC Driver
	Connect to Database by DBMaker JDBC Driver

	Getting Started with JDBC Type III Driver
	Get and Install DBMaker JDBC Driver
	Register the DBMaker JDBC Driver
	Connect to Database by DBMaker JDBC Driver

	Sample Programs
	Run the Sample Programs in the DBMaker
	With Type II Driver
	With Type III Driver

	The example for general JDBC programs
	How to execute a SQL command by JDBC?
	How to retrieve data from database by JDBC?
	How to handle blob data by JDBC?
	How to call a stored RPOCEDURE?
	How to get metadata for Database/ResultSet/Parameter?

	Reference of DBMaker JDBC Driver
	Data Types supported
	JDBC API Implemented
	JDBC Type II Driver
	JDBC Type III Driver

	System Function Implemented

	Frequently Asked Questions
	Appendix Sample codes
	Sample1 Usage of Clob
	Sample2 Usage of Blob
	Sample3 Usage of FO
	Sample4 Usage demo of Stored Procedure
	File: insert_or_update.ec
	File: query_data.ec
	File: UsageOfStoredProcedure.java

