>
~ . DBMaker
4% |

Q\ CASEMaker. ..

CASEMaker Inc./Cotporate Headquarters
1680 Civic Center Drive

Santa Clara, CA 95050, U.S.A.
www.casemaker.com

www.casemaker.com/support

©Copyright 1995-2008 by CASEMaker Inc.
Document No. 645049-233073/DBM51-M09302008-ODBC

Publication Date: 2008-09-30

All rights reserved. No part of this manual may be reproduced, stored in a retrieval system, or transmitted in any
form, without the prior written permission of the manufacturer.

For a description of updated functions that do not appear in this manual, read the file named README. TXT
after installing the CASEMaker DBMaker software.

Trademarks

CASEMaker, the CASEMaker logo, and DBMaker are registered trademarks of CASEMaker Inc. Microsoft, MS-
DOS, Windows, and Windows NT are registered trademarks of Microsoft Corp. UNIX is a registered trademark
of The Open Group. ANSI s a registered trademark of American National Standards Institute, Inc.

Other product names mentioned herein may be trademarks of their respective holders and are mentioned only
form information purposes. SQL is an industry language and is not the property of any company or group of

companies, or of any organization or group of organizations.

Notices
The software described in this manual is covered by the license agreement supplied with the software.

Contact your dealer for warranty details. Your dealer makes no representations or warranties with respect to the
merchantability or fitness of this computer product for any particular purpose. Your dealer is not responsible for
any damage caused to this computer product by external forces including sudden shock, excess heat, cold, or
humidity, nor for any loss or damage caused by incorrect voltage or incompatible hardware and/or software.

Information in this manual has been carefully checked for reliability; however, no responsibility is assumed for
inaccuracies. This manual is subject to change without notice.

http://www.casemaker.com
http://www.casemaker.com/support

Contents

Contents

1 IntrOduction ---------------------------------------1 -1

1.1 Additional Resourcescccccrrrrmmmmmmmmmnsnssnnnnsss 1-3

1.2 Technical Supportcccciiiir . 1-4

1.3 Document Conventionscccceeesmsnsssssnnnnnnnns 1=5

2 Example Application.....ccccccncnnnnnnnnnnan 2=1
2.1 Library Model......cccummimmsmmssssnnsnssnnsnnssnnnnnnnnnnnns 2= 2

2.2 Required FileS . .cccumimiirmnnnnnnnnsssnnnnnnnnnnnnnnnnnnnns 2=4
Header Files.....oooiiiiiiiiiiiiiiiceeceeee e 2-4

Link LiDraries. ..cuuieiuuiiiiiiiee et 2-4

2.3 Example ODBC Application....cccccccumnnnnnnnnnna s 2-6

2.4 Compiling and Linking ..ccccccceesssssssnnnnnnnnnsnnnnn s 2-8

2.5 Sample ProgramsS....ccccecesssssssssssssssssssasansannnnns 2-9

3 Database Connectlions......cccucicicinnnnnn 31
3.1 Environment Handle ...cccceemmiiiiiinnnnnnnnsnnnnnnnns 3-4

3.2 Connection Handlecccccemmmmmsnscnnnnnnnnnsssnnnnnnns 3-5

3.3 Connecting to a Data Sourcecccceeemnnnnnnnna3-6
SQLECONNECT e e et eeetiiiiiiieeee e e eeeeeiieee e e e e e ee et e e e e e eeeeeaennannnnes 3-6
SQLDIIVErCONNECT cevvuuieiiiieeeeiiiieeeeeiiieeeeeeeieeeeeeaieeeeeanannes 3-10

©Copyright 1995-2008 CASEMaker Inc.

O\ ODBC Programmer’s Guide

ii

3.4

3.5

Multiple CoNNECtioNnseveeiireiieeeeieiiiieeeeereeeeeeiieee e 3-13
connect optio“s LR L L L DL 3-1 5
SQLSetConnectOPtion......ceeieiiiiiiiiiiiiiiieeeee e 3-15
SQLGetConnectOPtioN.....eeeieeiieeeeeiiiiiiieeeeeeeeeeeeeeeeeeeeennn 3-16
Freei“g Handles S S S S SN E SN EE NN EEEENEEEEEEEEEEEE 3-1 7
SQLDISCONNECT . eitiiieieiiiieeeeiiee ettt e et e et e eeeeas 3-17
SQLFreeCONNECt covvvuueieiiiiieeeeiiiieeeeeiieeeeetiieeeeeeieeeeeeaaaeaeees 3-17
SQLEFIEEENV...uiiiiiiiiiieiiieeeee ettt ee e 3-18

SQL statements EEEESEESEEEEEEEEESESEEEEEEEEEEEEEEEEN 4-1

4.1

4.2

4.3

4.4

4.5

The sQL Language NSNS NN SN E NN NN NN EEEEEEEEE 4-3

The Role of SQL with ODBC ...cccoiiiiiiiiiiiiiiieeeiieeeeeeeeee, 4-3
Basic SQL Statementscoeeeeeeiiiiiiiiiieieeeeeeiiiiceeee e 4-4
Data Definition Language (DDL)cooociiiiiiiiiiiiiiiiiiennne. 4-4
Data Manipulation Language (DML)ccccooeiiiiiiininnen.n. 4-5
Executing SQL Statements ...ccccceeeiiiinnnnnnns 4-11
SQLAIOCSEME cciiiiiiiiieeee et e e e e e e e 4-11
SQLEXECIDIIECT e 4-12
SQLROWCOUNT cttttiieeeeeeeeeiiiiieee e e e e e eeeetiieee e e e eeeeeeanaeeeeeeas 4-13
SQLEFIEESTIME ceeiiiiiiiiiieeeeeeeeiiiiieee e e e e e e eeetieee e e e e eeeeeeaaannnnnnes 4-14
SQLPrepare and SQLEXecULe «...oeeueeeeiiiiiiiiiiiiiiiiieeeeeeen 4-15
ParametersS.....ccicummumnnnssnnnsannssannsannsnannnannanans 4-17
Parameter FUNCHONS. .. .uuiiiii e 4-17
Using Parameters in SQLExecDirect......cccoooeiiiiiiiiiiiiinninnin. 4-26
Clearing Bound Parameters.........cccoeeuvieieeniiiieeeinniieeeeennnee. 4-27
Entering Large Data........cccccccenesssnnsssnnnnnnnns 429
How to Enter Large Data......ccccooovviiiiiiiiiiiiiiinniiieeeeeeen. 4-29
Canceling the Execution of SQLPutData.......cccccevuveeennneenn. 4-34
Placing Large Data in a File Object........ccooocviiiiiniiiiiinnnnee. 4-34
Get and Set OplioNS...ccccceemrciennnnnnnnnnsnnnnnns 4-36

RetrieVing Results----------------------------- 5-1

5.1

Queries Using ODBCcccccmmeenmmmsnnsssssnnsnnas 5-3

©Copyright 1995-2008 CASEMaker Inc.

Contents

5.2

5.3

5.4

6.1

6.2

Binding Storage Locations and Fetching Dataccccceeeee.. 5-3
Result Columns CharacteristiCs.......eiuuuueeeeieriieeeeieiieeeeeernieeeens 5-6
More about Result Columns..........cooeeivveiiiiiiiiiieiiiiieciiinee, 5-11
Clear Bound Columnscoouuiiiiiiiiieiiiiecieeeeeeee e 5-14
CUrSOrS ccciirrrssssssssnsansnnnnnnsnnsnssssnssnnnnnnnnnnnnnnnns 5-15
When to Use CUISOIS...uuiiuuniiiieeiiiieeiiieeeeieeeeee e eeee e 5-15
Getting the Cursor Nameccoovviiiieiiiiiiiieeinieee e 5-15
USING CULSOLS ceetiieiiieiiiiiiiieeeeeee e e e eeeeeeeeennrneeeeeeeees 5-16
Setting the Cursor Namecccooeviiiiiiiiiiiiiiiiiie, 5-17
Fetching Large Data.......cccccccmccnnmnnnnnnsnnnnnnas 5-19
NY©] 5@ B T B PRRR 5-21
Stopping SQLGetData Operations.........ccceeeeeeveieeeeeinnnneen. 5-25
Binding Columns to Retrieve File Objects.....cccccuvveeeennnnnen. 5-25
Fetching the Filename of File Objects.....ccccceiivviieciinnnnneen. 5-26
Manipulating Result Setscccccviiiieeeneennnnna 5-27
ROWSEES ettt e e e e 5-27
Program Flowcccooiiiiiiiiiiiiiic, 5-27
Storage Bindingoccciiiiiiiiiiiii 5-28
Positioning the Cursor.......cooocvieeiiriiiieeiiiiieeeeeieeee e 5-34
Arguments of SQLExtendedFetchcccccooiiiiiiiiininniie, 5-34
Returning Values and Processing Errors.........ccccccceeiiniin.n. 5-39
Table Modification Using SQLSetPoscccuvvreeiivuiiieinnnnnn. 5-42
Column IndiCators......ciiueiiieeeiieeiiieeeiee e 5-48
SQLPUDATA .cceeeeiiiiiiieeeee e e 5-49
Using SQLSetPos.......cccouiiiiiiiii, 5-53
6 Error Handling....ccausssnsnssnsnsnssnsnsnnnnnnnaa &1
Retrieving Error Informationccccceeeennnnnnnnes 6-2
Common Error Codes Defined in ODBC...........ccccceevvnnnee.n. 6-2
How to Use SQLEITOr....cooiiiiiiiiiiiiiiiiiieee e 6-2
Error QUEUES .ovuueiiiiiieeccece e 6-5
Catalog Functions.......ccceeeesssssssssnnnnnnssssnnnnnnns6=7
Search Patterns.......oouvuuueeeeeeieeieiiiceeeee e e e e e e 6-7

©Copyright 1995-2008 CASEMaker Inc. iii

O\ ODBC Programmer’s Guide

v

6.3

6.4

7.1
7.2

SQLTADBIES ..eettieiiiiiiieeeeee et 6-8
SQLCOIUMNS 1. e e e e e e e e e e e e e e 6-11
SO LS ATISTICS tvvuunreerriireeeiiiieeeetiieeeeettieeeeetaneeeeennaeeeeeennaeaeees 6-13
SQLSpecialColumnsccooviiiiiiiiiiiiiiiiiiiiiecceeeec e 6-14
System Information....ccccccccccccccccscssnnnnnnnss 6-17
SQLGetTypelnfo ..ccoeeeeiiiiiiiiiiiiiiiieeeceeeeeeeeeee e 6-17
SQLGEINTO 1ttt 6-20
SQLGEetFUNCHONS cceviiiiiiiiieieeiiicee et 6-21
Procedure Information.........ccceeecmimmnnennsnnas 6-23
SQLProcedureColumnsccceeeeeeeieeeiieeiieeeeeeeeee e 6-23
SQLPIrOCEdUIES ..covvvveieeeeiieiiiiiiieeeeeeeeeeeeiieee e e e e e eeeeaaaeeee e e 6-26
Transaction control EEEEEEEEEEEEEEEEEEEEEEEEEN 7-1
Transactions and Savepoints.......cccceiiiinines 7-2
Terminating a Transaction......ccccciiiiiiinnnnees 7-5

7.3

Auto-commit & Manual-commit EEEEEEEEEEEEEEEEEE 7-7

oDBc 3-0 Functions EEEESEEEEEEEEEEEEEEEEEEEEEN 8-1

8.1
8.2

8.3

Deprecated functions NSNS NN E NS ENEEEEEEEEEEEE 8-2
Modified functions SN NSNS E NN EEEEEEEEEEEEEEEE 8-4

SQLECANCEL...eeiitiiiiiiiie e 8-4
SQLCOIUMNS 1.t e e e e e e e e e e e e e e e e 8-4
SQLEFELCH ...ttt 8-5
SQLGEtDAta . .uiiiiiiiiiiiiee e 8-5
SQLGEtFUNCHONS ceevviiieeiiiceeiiicece e 8-5
SQLGELINFO et 8-6
SQLProcedureColumnsccouvueiiieeeieiieiiiiiiiieiee e 8-6
New functions ..ccceeeeeemecsnnnnnsssssssssssnnnnnnnnnnss 8-8
SQLAllocHandle.......oeeiiiiiiiiiiiiieeieeeeeee e 8-8
SQLBUlKOPerations..........ccocecueeeeiiiiiieeeiiiiieeeeeieeee e 8-9
SQLCIOSECUISOT e eeiiiiiiittteee ettt ee e 8-10
SQLCOIALIDULE .. 8-11
SQLCOPYDIESC c.eeeiiiiiiiiiiiiiiieeeeee e 8-14

©Copyright 1995-2008 CASEMaker Inc.

Contents

SQLENATTan ccciiiiiiiiiiiiiieeeece ettt 8-16
SQLFetchScroll... ... e 8-16
SQLForeignKeys......ccccouuiiiiiiiiiiiiii 8-18
SQLFreeHandle.......cccooiiiiiiie e 8-20
SQLGEtCONNECTATLL .euieeiiiiiiiiiiiieee et eeeeeeeeneaees 8-21
SQLGetDescField.. ... 8-22
SQLGEtDESCREC...cciiiieiiiiiiiieieeicee e 8-25
SQLGetDiagField......ccccuviiiiiiiiiiiiiiiiiiiicecce, 8-26
SQLGetDiagRec. 8-28
SQLGEENVALLI ..ttt 8-29
NY©] B @S A 4's 0172\ 4 o U PRRTR 8-29
SQLPrimaryKeys ..ccouuuuiiiiiiiiiiiiiiiiieiieieiiee e, 8-31
SQLSEtCONNECTATLL . c.uuuieieeeeiieiiiiieee et e e e 8-32
SQLSetDescField.... . 8-33
SQLSEtDESCREC. .. iiiiiiieieiiiiee et 8-36
SQLSEtENVALIL cettiiiiiieieiie et e e 8-38
SQLSEtSTMUATLL ceiiiiiiiieei e 8-39
8.4 ODBC Support 64Bitccccciiiimmmmmnnnnnnnnnsnns 8-42
ODBC fUNCHIONS tettttiieeeiiiiieeeetiieeeeetiiieeeeeeiaeeeeeaaeeeeeeannaeaaees 8-42

unic°de support I----IIIIIIIIIIIIIIIIIIIII----IIg-1
9.1 Unicode Encoding Interfaces.....cccurmmreennnnnnnn9-2

Function Sequence Differences.........A-1
A.1 SQLRowCount.......ccccceemmmmsmsssssnnnnnnssssnssnnnnnnna A=2

A.2 SQLGetCursorName....ccceeereerrnnnnnnnnnssnnnnnnnnns A-3
Function Property Differences...........B-1
B.1 SQLPutData......cccccemmmiiinnnnnnsssssssssssnnnnnnnnnnnns B-2
B.2 SQLCOIUMNS...ccccccmmmmmsssnnnnnnnnnssssssssssnnnnnnnnnnnns B-3

= e T e | M =] &] L ——— - T
B.4 SQLDriverConnect........cccurmmmmnnssssssssssssnnnnnnsB=5
B.5 SQLBindParameterccccccimmnnnnmnmmnssnnnnnnnnnnnnss B-6
B.6 Positioned DELETE/UPDATEcccccccmmmmmnnssns B-7
B.7 SQLSetConnectOption......cccccccmmmnnnnnnnnnnnnnnn . B=-8

©Copyright 1995-2008 CASEMaker Inc. v

O\ ODBC Programmer’s Guide

vi

B.8 SQLGetConnectOption........cccccceiiiienennnnnnes B-11
ODBC 3.0 Errors .cccccunsnsnsnsnsnsnsnsnnnnnnnss C=1
C.1 SQLParambData.....cccccecciemsnnnnnnsssssssssssnnnnnnnss C-2
C.2 SQLPrepare ..cccceeeeessssssssssssnssnssnnsnsnsnssnnnnnnnnns C-3
Data TYypesS cccccccsnnsnnsnnsnnsnnsnnnnnnnnnnnnnnnnnsD=1
D.1 ODBC SQL Data TypesS .cccccrmmmmmnnnnssmssssnnnnnnnss D-2
D.2 ODBC C Data TYPesS cccccccnnnnsmsmmmssssnnnnnnnnnnnnas D-4
D.3 Default ODBC C Data Types wccccrerrnnnnnnnnnnsas D-6
D.4 Precision, Scale, Length and Display Size. D-7
D.5 Data Type ConversSionS ...ccceeessssssssnnnnnnnnnnnas D-9
SQL to C Data Conversionceeeeeeuereeiiuieeeeeieieeeeeenieeees D-9
C to SQL Data Conversionuuuuueeeeeeeeeeeiiieiaeeeeeeeeeenennnnns D-14

ODBC Log Function......ccceeesesssnnnnsnnns E=1

©Copyright 1995-2008 CASEMaker Inc.

Introduction 1

Introduction

Welcome to the ODBC Programmer’s Guide. DBMaker is a powerful and flexible
SQL Database Management System (DBMS) that supports an interactive Structured
Query Language (SQL), a Microsoft Open Database Connectivity (ODBC)
compatible interface, and Embedded SQL for C (ESQL/C). The unique open
architecture and native ODBC interface give you the freedom to build custom
applications using a wide variety of programming tools, or query your database using

existing ODBC-compliant applications.

DBMaker is easily scalable from personal single-user databases to distributed
enterprise-wide databases. Regardless of the configuration you choose for your
database, the advanced security, integrity, and reliability features of DBMaker ensure
the safety of your critical data. Extensive cross-platform support permits you to
leverage your existing hardware now, and allows you to expand and upgrade to more

powerful hardware as your needs grow.

DBMaker provides excellent multimedia handling capabilities, allowing you to store,
search, retrieve, and manipulate all types of multimedia data. Binary Large Objects
(BLOBs) allow you to ensure the integrity of your multimedia data by taking full
advantage of the advanced security and crash recovery mechanisms included in
DBMaker. File Objects (FOs) allow you to manage your multimedia data while

maintaining the capability to edit individual files in the source application.

This guide is intended for programmers who want to create front-end applications for

DBMaker. Users should be familiar with the C programming language (hereafter

©Copyright 1995-2008 CASEMaker Inc. 1-1

O\ ODBC Programmer’s Guide

referred to as C), and should have a C development tool available if they wish to

compile and execute the example programs.

Information on C programming is beyond the scope of this book, and users should
consult a C programming guide if they encounter any problems in this area. If you
encounter any problems with compiling and running the example programs with your
development tool, you should consult your development tool documentation or the

development tool vendor.

This guide introduces the DBMaker ODBC API and outlines how to construct a
front-end application for a database using the DBMaker ODBC API. Since this book
is only intended as an introduction to ODBC programming, not all ODBC concepts
and practices may be covered fully. However, all concepts that are presented will be
covered in enough depth to let you understand what is happening in the example

programs, and why.

Each chapter introduces a group of related functions and their options, and explains
any differences you may encounter between the DBMaker ODBC API and the
Microsoft ODBC 2.1 specification (For information about DBMakers ODBC 3.0
API, please refer to chapter 8 on ODBC 3.0 Functions. You will learn how to use

each function, and how each function fits into a program as a whole.

Examples and illustrations are provided whenever possible to help you understand the
information presented. Example programs are given using C and can be compiled

with any suitable C/C++ compiler.

Although this guide provides information on all DBMaker ODBC functions, it is not
intended as a comprehensive reference to the Microsoft ODBC 3.0 API. When using
this guide, you may find it helpful to have a reference work available that has detailed
information on all functions and state transitions. The recommended reference is

“ODBC 3.0 Programmer’s Reference” by Microsoft Press.

1-2 ©Copyright 1995-2008 CASEMaker Inc.

Introduction 1

1.1

Additional Resources

DBMaker provides a complete set of DBMS manuals in addition to this one. For
more detailed information on a particular subject, consult one of the books listed

below:

e For an introduction to DBMaker’s capabilities and functions, refer to the
“DBMatker Tutorial”.

e For more information on designing, administering, and maintaining a DBMaker

database, refer to the “Database Administrator's Guide”.

¢ For more information on DBMaker management, refer to the “/Server Manager

User’s Guide’.

e For more information on DBMaker configurations, refer to the “/Configuration
Tool Reference”.

e For more information on DBMaker functions, refer to the “7/DBA Tool User’s

Guide’.

e For more information on the dmSQL interface tool, refer to the “dmSQL User’s

Guide”.

e For more information on the SQL language used in dmSQL, refer to the “SQL

Command and Function Reference’.

e For more information on the ESQL/C programming, refer to the “ESQL/C User’s
Guide”.

. For more information on error and warning messages, refer to the “Error and

Message Reference”.

e For more information on the DCI COBOL Interface, refer to the “DCI User’s
Guide”.

©Copyright 1995-2008 CASEMaker Inc. 1-3

O\ ODBC Programmer’s Guide

1.2

1-4

Technical Support

CASEMaker provides thirty days of complimentary email and phone support during
the evaluation period. When software is registered, an additional thirty days of
support will be included, thus, extending the total support period for software to sixty
days. However, CASEMaker will continue to provide email support for any bugs
reported after the complimentary support or registered support has expired (free of

charges).

Additional support is available beyond the sixty days for most products and may be
purchased for twenty percent of the retail price of the product. Please contact

sales@casemaker.com for more details and prices.

CASEMaker support contact information for your area (by snail mail, phone, or
email) can be located at: www.casemaker.com/support. It is recommended that the
current database of FAQ’s be searched before contacting CASEMaker support staff.

Please have the following information available when phoning support for a

troubleshooting enquiry or include the information with a snail mail or email enquiry:

. Product name and version number

° Registration number

. Registered customer name and address

o Supplier/distributor where product was purchased

o Platform and computer system configuration

° Specific action(s) performed before error(s) occurred
. Error message and number, if any

° Any additional information deemed pertinent

©Copyright 1995-2008 CASEMaker Inc.

mailto:sales@casemaker.com
http://www.casemaker.com/support

Introduction 1

1.3 Document Conventions

This book uses a standard set of typographical conventions for clarity and ease of use.
The NOTE, Procedure, Example, and CommandLine conventions also have a second

setting used with indentation.

Tablel Document Conventions Table

©Copyright 1995-2008 CASEMaker Inc. 1-5

O\ ODBC Programmer’s Guide

1-6 ©Copyright 1995-2008 CASEMaker Inc.

Example Application 2

Example Application

After installing the ODBC software and DBMaker s ODBC driver, begin constructing
a simple ODBC application using DBMaker. In this chapter, we will teach you how
to compile and link an ODBC program with DBMaker’s ODBC driver.

©Copyright 1995-2008 CASEMaker Inc. 2-1

O\ ODBC Programmer’s Guide

2.1

2-2

Library Model

Create an ODBC application using the DBMaker function library or the ODBC
function library. If the application program needs to make low-level system calls to the
operating system, file system, or hardware-specific drivers, you may also need to use
your own function libraries. Figure 2-1 and Figure 2-2 show the models for interfacing

with these libraries.

Figure 2-1 models the use of the ODBC Driver Manager, and Figure 2-2 models the
use of the DBMaker Driver directly without using the ODBC Driver Manager. When
using the ODBC Driver Manager you may connect to data sources other than
DBMaker. Without Driver Manager, your application links to the DBMaker function
library directly and achieves better performance, but loses the ability to connect to

other data sources.

Application

™.

ODBC Library
(odbc.lib)

Driver Manager

Other Libraries >

DBMaker Driver

Database Server

Operating System

Table2: ODBC library model when using the ODBC Driver Manager

©Copyright 1995-2008 CASEMaker Inc.

Example Application 2

Application
DBMaker's
Library
Other Libraries f¢— DBMaker Driver

Database Server

Operating System

Table3: ODBC library model when using the DBMaker driver directly

©Copyright 1995-2008 CASEMaker Inc.

O\ ODBC Programmer’s Guide

2.2

Required Files

To construct an ODBC program using the DBMaker ODBC driver, specify the
header files and linking libraries in the makefile. In the following description, we use

C with DBMaker version 3.5 as an example.

Header Files

When creating an ODBC application, the following header files are required: SQL.A,
SQLext.h, SQLopt.hand SQLunix.h (SQLunix.h is required for UNIX only).

SQL.A and SQLext.h are the standard ODBC include files, and DBMaker provides
SQLopt.h and SQLunix.h for some driver-specific options and for UNIX
applications, respectively. Since SQLext.h also includes SQL.A, you only need to
include SQLext.A in the program.

The header files are the same on all platforms, except SQLunix.h, which is used only
for programs running on the UNIX platform.

In Microsoft Windows, these files can be found in the c:ldbmaker35lincludelc
directory, assuming that DBMaker was installed in the default installation directory.
Otherwise, they can be found under d:linstall_directorylinclude, where d- is the drive
DBMaker was installed on, and install_directory is the directory.

In a UNIX environment, these files are located under the ~dbmaker/3.5/include
directory.

Link Libraries

Link libraries are also required when creating ODBC applications for use with
DBMaker. Which link libraries will be used depends on the platform the application

will be running on.

©Copyright 1995-2008 CASEMaker Inc.

Example Application 2

WINDOWS 95/98/NT/2000
For Windows ODBC applications:

If using the Driver Manager, link the library odbc./ib in the ODBC SDK, often
located in c:lodbcsdklliblodbc.lib. You must register DBMaker in odbc.in first so
that the Driver Manager can load the DBMaker driver correctly. In this case, you do
not have to specify dmapi35.1ib in the makefile. The Driver Manager will load the
necessary DLL automatically.

NOTE [fyou are not using Driver Manager, link the library dmapi35.1ib provided by
DBMaker. This library is normally found in c:\dbmaker35\lib.

There is one dynamic link library in the c:Iwindowslsystem directory that is used
with ODBC programs, dmapi35.dll. However, programmers only need to link the
libraries odbc.lib (with Driver Manager) or dmapi35.1ib (without Driver Manager).
After these libraries are linked, the application will call this DLL automatically.

UNIX

On UNIX platforms, you must link the /ibdmapic.a file when creating a client/server
ODBC application.

©Copyright 1995-2008 CASEMaker Inc. 2-5

O\ ODBC Programmer’s Guide

2.3 Example ODBC Application

Consider the following example program in the UNIX environment.

S Example

To connect to a data source and then use SQLGetlnfo to retrieve the DBMS version:

2-6 ©Copyright 1995-2008 CASEMaker Inc.

Example Application 2

©Copyright 1995-2008 CASEMaker Inc. 2-7

O\ ODBC Programmer’s Guide

2.4 Compiling and Linking
The example uses the compiler accand $diris the DBMaker directory.

S Example 1

To compile the example program (example.c) type the following on the UNIX

command line:

sh> acc -c example.c -I$dir/dbmaker/include

Now link the example program (example.o) with DBMaker s library libdmapis.a.

S Example 2

To produce an executable file called example:

sh> acc -o example example.o -L$dir/dbomaker/lib -ldmapis

2-8 ©Copyright 1995-2008 CASEMaker Inc.

Example Application 2

2-5

Additional ODBC sample programs are provided with DBMaker in the samples
directory. You can use the makefile in this directory to build and execute them. First
change to the dbmaker/samples directory, then type “make ex1” to build the

executable ex/ for the sample program ex/.c.

There are several different C language development tools in Windows, such as
Microsoft Visual C++, Borland C++ and Watcom C++. You may need to edit your
makefile in order to set the directories to include files and linking libraries in different
ways for different development tools. For example, in Visual C++ you have to open a

new project and edit the .mak and .deffile.

DBMaker provides an example makefile for Visual C++ in the c/dbmaker/samples/c
directory.

©Copyright 1995-2008 CASEMaker Inc. 2-9

O\ ODBC Programmer’s Guide

2-10 ©Copyright 1995-2008 CASEMaker Inc.

Database Connections 3

Database
Connections

In any ODBC application, you must properly setup the ODBC environment and
connect to a data source before executing SQL statements or performing queries.
Similarly, you must disconnect from the database and free the memory allocated for
the ODBC environment when the program terminates. This chapter introduces the

functions necessary to setup a connection to a data source.
In this chapter you will learn how to:

° Initialize the ODBC environment by allocating environment and connection

handles using the SQLAllocEnv and SQLAllocConnect functions.

. Establish a connection to a predetermined data source using the SQLConnect

function or to an unknown data source using the SQLDriverConnect functions.

. Use the connection SQLGetConnectOption and SQLSetConnectOption options

to connect to a data source.
. Disconnect from a data source using the SQLDisconnect function.

° Free the environment and connection handles when the application terminates
using the SQLFreeConnect and SQLFreeEnv functions.

NOTE You allocate environment and connections handles, and get and set
connection options differently using DBMaker (ODBC 3.0) than what is
described in this chapter. For more information, refer to chapter 8 on
“ODBC 3.0 Functions”.

©Copyright 1995-2008 CASEMaker Inc. 3-1

O\ ODBC Programmer’s Guide

The following program flow chart is for an application that uses all of the six ODBC

functions.

3-2 ©Copyright 1995-2008 CASEMaker Inc.

Database Connections

3

SQLAIllocEnv

l

v

SQLAIllocConnect

l

SQLConnect

Other ODBC Functions

SQLDisconnect

I

SQLFreeConnect

SQLFrecEnv

Table4: Program flowchart for connecting to and disconnecting from a data source.

©Copyright 1995-2008 CASEMaker Inc.

3-3

O\ ODBC Programmer’s Guide

3-1

3-4

Environment Handle

In an ODBC application, the SQLAllocEnv function is called to setup the ODBC
environment before calling any other ODBC functions. When you call the
SQLAllocEnv function, the DBMaker driver allocates an area of memory for

environment information and returns an environment handle to the application.

The environment handle identifies the area of memory the DBMaker driver will use
to store global information about the ODBC environment. This may include
information such as a list of valid connection handles and the currently active
connection handle. Only one environment handle should be allocated in the

application.

Prototype

SQLAllocEnv:

RETCODE SQLAllocEnv (HENV FAR * phenv)

Example 1

To allocate an environment handle, declare a variable of type HENV:
HENV henvl;

Example 2

To call SQLAllocEnv and pass the address of the HENV variable:

retcode = SQLAllocEnv (&henvl) ;

The environment handle is now a valid handle, and you can use it later in the
application. If the application calls SQLAllocEnv with a pointer to a valid
environment handle, the driver will overwrite the previous contents of the

environment handle.

©Copyright 1995-2008 CASEMaker Inc.

Database Connections 3

3-2

Connection Handle

After allocating an environment handle, a connection handle is allocated before
connecting to any ODBC data source. A connection handle identifies memory storage
for each connection in an ODBC application, and contains information such as the
database name and username. The SQLAllocConnect function allocates memory for a

connection handle.

Prototype

SQLAllocConnect:

RETCODE SQLAllocConnect (HENV henv, HDBC * phdbc)

Example 1

To allocate a connection handle, declare a variable of type HDBC:
HDBC hdbcl;

Example 2

To call SQLAllocConnect and pass the address of the variable:

retcode = SQLAllocConnect (henvl, &hdbcl) ;

©Copyright 1995-2008 CASEMaker Inc. 3-5

O\ ODBC Programmer’s Guide

3.3 Connecting to a Data Source

Connecting to a data source before attempting to access the data contained within is
required. To connect to a data source, the data source with a valid connection handle
(hdbc) must first be specified. A data source connection can be performed with or

without a dmconfig.ini file residing on the client site.

SQLConnect

Use SQLConnect to establish a connection between a data source and a valid

connection handle.

2 Prototype
SQLConnect:

RETCODE SQLConnect (
HDBC hdbc,
UCHAR FAR * szDSN,
SWORD cbDSN,
UCHAR FAR * szUID,
SWORD cbUID,
UCHAR FAR * szAuthStr,

SWORD cbAuthStr) ;

An application has to pass the following to use SQLConnect:

) A valid connection handle, not currently connected to another data source.
° The name of the data source and length of the name.
. User identification and its length.

e A password and its length.

3-6 ©Copyright 1995-2008 CASEMaker Inc.

Database Connections 3

Step1 : allocate a valid environment
handle henv

!

Step2 : allocate a connection
handle hdbc with the valid
environment handle henv

l

Step3 : connect to a data source
with the connnection
handle hdbc

retcode is
SQL_SUCCESS

or
SQL_SUCCESS_WITH
_INFO

Connect Success !!

Table5: Program flow for connecting to a data source

1. In step one, SQLAllocEnv is called to allocate an environment handle henv.

Connect Failed!

2. In step two, SQLAllocConnect is called to allocate a valid connection handle hdbc

with a valid environment handle henv.

3. In step three, SQLConnect is called to connect to a data source with a valid

connection handle (hdbc).

4. If the code returned is; SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the

connection has been established correctly.

Example 1

To connect to data source 7EST_DB with user MYNAME and password PASS:

retcode = SQLConnect (hdbc, "TEST DB", SQL NTS,
"MYNAME", SQL NTS,

"PASS", SQL NTS) ;

©Copyright 1995-2008 CASEMaker Inc.

3-7

O\ ODBC Programmer’s Guide

3-8

SQL_NTS means the string is NULL terminated, and the driver calculates the length
of the string. When using SQLConnect the data source name is a required argument,

and the user identification and password are optional.

With DBMaker, a default username and password can be placed in the dmconfig.ini
file to omit the use of them in the SQLConnect connection string. The driver then

acquires the username and password specified in dmconfig.ini.

Example 2
To set DB_USRID=MYNAME and DB_PASWD=PASS in dmconfig.ini and then
call TEST_DB:
retcode = SQLConnect (hdbc, "TEST DB", SQL NTS, "", SQL NTS,

"M, SQL NTS);
When an application calls SQLConnect, the Driver Manager uses the data source
name (test_db) to read the name of the driver DLL from the appropriate section of

the ODBC.INI file. Then it loads the driver DLL and passes the username and

password arguments to the driver. No dmconfig.ini is required for the client site.

USING SQLCONNECT WITHOUT A DMCONFIG.INI FILE

DBMaker will support connecting to a database without a dmconfig.ini file being
required for the client site. Specifying the settings for the dmconfig.ini can be
performed using the SQLConnect() connection string and suitable keyword(s). A
second argument of SQLConnect() will have the capability to accept a special

connection string.

DBMaker will use the default values for each keyword if no keyword(s) are specified in

the SQLConnect() connection string and no dmconfig.ini is present for the client site.
The following keywords can be used:
. DSN: data source name

. DIFCO: merge connection or not (please refer DB_DIFCO definition of

dmconfig.ini)

©Copyright 1995-2008 CASEMaker Inc.

Database Connections 3

CTIMO: connection time out (please refer DB_CTIMO definition of

dmconfig.ini)

. ATCMT: autocommit on or off (please refer DB_ATCMT definition of

dmconfig.ini)

J STRSZ: the length of returned data of the STRING type, used only by UDF
(please refer DB_DIFCO definition of dmconfig.ini)

o STROP: the keyword specifies whether space-padding needs to be removed
before applying the string concatenation operator (||) (please refer DB_DIFCO

definition of dmconfig.ini)

SVADR: remote data source address (please refer DB_DIFCO definition of

dmconfig.ini)

PTNUM: port number (please refer DB_DIFCO definition of dmconfig.ini)

The keyword ‘DSN’ pair must be placed in the first position of the SQLConnect
string; ‘SVADR’ and PTNUM’ must be placed in the second and third position. The

other keyword pairs have no special positioning rule.

In the prototype for SQLConnect mentioned above, the original meaning of szDSN is
“data source name”, but now it is changed to ‘connection string’. The format of for

the input string is “keyword1=valuel; keyword2=value2;, ...”.

Example 1
SQLConnect (hdbc, "DSN=TEST DB;SVADR=172.0.0.1;PTNUM=12345;",

SQL NTS,):

Example 2
SQLConnect (hdoc, "DSN=DBSAMPLE;SVADR=172.0.0.1; PTNUM=12345; ATCMT=0;

CTIMO=2;", SQL NTS,);:

©Copyright 1995-2008 CASEMaker Inc. 3-9

O\ ODBC Programmer’s Guide

SQLDriverConnect

Use SQLDriverConnect to connect to a specific predetermined data source. Driver
Manager can be used to display all of the available data sources to provide the user

with a connection list for the data sources.

> Prototype
SQLDriverConnect:
RETCODE SQLDriverConnect (
HDBC hdbc,
HWND hwnd,

UCHAR FAR *szConnStriIn,
SWORD cbConnStrlIn,
UCHAR FAR *szConnStroOut,
SWORD cbConnStrOutMax,
SWORD FAR *pcbConnStrOut,

UWORD fDriverCompletion) ;

An application has to pass the following information to SQLDriverConnect:

. A valid connection handle that is not yet associated with a data source.
o A valid window handle to provide a parent window for the dialog box.
. The input connection string (szConnStrIn) and its length. The connection

string has its own special syntax (see the section on connection strings) and
contains specific information needed to connect to a data source. If the input
information is not complete, SQLDriverConnect will use a dialog box to request
more information from the user before it sends connection information to the

database driver.

. The output connection string (szConnStrOut) and its length. This is the final

piece of connection information sent to the database driver.

° A prompt flag (fDriverCompletion) that governs the policies used when

prompting for data source information.

3-10 ©Copyright 1995-2008 CASEMaker Inc.

Database Connections 3

NOTE T7he connection flow when using SQLDriverConnect is the same as the connection
Sflow described in Table5. First, you must allocate environment and connection
handles. The SQLDriverConnect function can then be called to connect to a data

source.

THE INPUT CONNECTION STRING

The input connection string specifies the information needed to connect to a data

source.

Prototype

Keyword value pairs:

KEYWORD=VALUE;

The most commonly used keywords are:

. DSN — The name of data source name
. UID — The username

) PWD — The password

Example

DSN=TEST_DB; UID=myname; PWD=abc;
DSN=TEST DB; UID=myname;
UID=myname;

NOTE [fan input connection string has more than one DSN, UID, or PWD, DBMaker

will use the first one.

USING SQLDRIVERCONNECT WITHOUT A DMCONFIG.INI

The SQLDriverConnect can also be used without a dmconfig.ini file being present for
the client site. DBMaker will use default values for each keyword if no keyword(s) are
specified in the connection SQLDriverConnect() connection string and no

dmconfig.ini is available for the client site.

In the prototype for SQLDriverConnect mentioned above, the argument

‘szConnStrln’ is used as the connection string; including new keywords.

©Copyright 1995-2008 CASEMaker Inc. 3-11

O\ ODBC Programmer’s Guide

S Example
SQLDriverConnect (hdbc, hwin, “DSN=TEST DB; UID=SYSADM;PWD=x123
;SVADR=172.0.0.1;

PTNUM=12345; ATCMT=0; CTIMO=2;", SQL NTS, .);

THE PROMPT FLAG

The prompt flag indicates whether the Driver Manager or the DBMaker driver needs

to use a dialog box to get connection information from the user.

> Example

Possible values for the prompt flag:
SOL DRIVER PROMPT

SQL DRIVER COMPLETE

SQL DRIVER COMPLETE REQUIRED
SOL_DRIVER NOPROMPT

When the prompt flag value is set to SQL_DRIVER_COMPLETE or SQL_
DRIVER_COMPLETE_REQUIRED, Driver Manager performs these actions:

o If the DSN is specified in the input connection string, it copies the input

connection string and passes the string to the driver.

o If the DSN is not specified in the input connection string, Driver Manager

displays the Dara Source dialog box to let the user choose a data source.

. Driver Manager constructs the data source name returned from the dialog box
and any other UID or PWD values found in the input connection string, and

passes the string to the driver.

Select Data Source:

JHMALEFS

Table6: Data source dialog box

3-12 ©Copyright 1995-2008 CASEMaker Inc.

Database Connections 3

If the data source name returned from the dialog box is empty, the Driver Manager
specifies the keyword-value pair DSN=Default (if a Default data source section exists
in ODBC.IND

The DBMaker database driver performs the actions listed below based on the
following conditions:

1. If the input connection string contains enough information (user ID and
password), the driver connects to the data source.

2. If successful, it copies the input connection string to the output connection string,.

3. If the user ID, password, or both are missing, the DBMaker driver displays a dialog
box to allow users to fill in the values missing from the input connection string.

4. Connects to the data source after the user leaves the dialog box

5. Constructs a connection string from the value of the DSN in the input connection
string and the information returned from the dialog box.Then places the
connection string in the output connection string.

Dot Source namie [DEMAKER.

Usur Nome: [Sr5ADM

Table7: UID and PWD dialog box

NOTE When prompt flag is set to SQL_DRIVER_PROMPT, the DBMaker driver
behaves the same way as when set to SQL_DRIVER COMPLETE or SQL
DRIVER COMPLETE REQUIRED. The ODBC Driver Manager will always
use a dialog box to prompt for the data source whether you provide a DSN in the

input string or not.

Multiple Connections

You can easily connect to more than one data source simultaneously in an application.
However, some applications want to connect to the same database multiple times. For
example, a task (process) may have two windows, and each window has a connection

to the same database. One window is used to scan one table while the other is used to

©Copyright 1995-2008 CASEMaker Inc. 3-13

O\ ODBC Programmer’s Guide

3-14

update another table. The SQLConnect command in DBMaker allows a program to
connect to the same data source multiple times, but all connections must use the same
username and all database changes associated with the connections must belong to the

same active transaction.

Example

To connect to data source DBI twice by using two valid handles with one user (user!,
passl):

retcode = SQLAllocConnect (henv, &hdbcl);

retcode = SQLAllocConnect (henv, &hdbc?2);

retcode = SQLConnect (hdbcl, "DB1", SQL NTS, "userl", SQL NTS, "passl",
SQL NTS) ;

retcode = SQLConnect (hdbc2, "DB1", SQL NTS, "userl", SQL NTS, "passl",
SQL NTS) ;

However, if you try to use two users (userl, passl) and (user2, pass2) to connect to

the same data source in one process, an error will be returned.

Multiple connections to the same data source in a process are not necessary. The more
appropriate way to handle this case is to have multiple handle statements under one

connection handle.

NOTE [fyou want to ensure that each new connection is treated as a separate connection
(without merging), set DB_DIFCO=0 in the dmconfig.ini. For more
information about DB_DIFCO, please refer ro the “Database Administrator's

Reference”.

©Copyright 1995-2008 CASEMaker Inc.

Database Connections 3

3-4

Connect Options

A connection to a data source has many attributes that govern its behavior. For
example: the SQL_AUTOCOMMIT option determines whether all database

operations are automatically committed.

SQLSetConnectOption

Each option has a default value defined by the system, but you can use
SQLSetConnectOption to specify different values for a connection.

Prototype
SQLSetConnectOption:

RETCODE SQLSetConnectOption (
HDBC hdbc,
UWORD fOption,
UDWORD vParam) ;

Where hdbc is a valid connection handle, fOption is the option to be set for the

connection and vParam is the value specified for fOption.

In DBMaker, the default value for auto-commit mode is on.

Example

To turn off the auto-commit mode of a connection:
retcode = SQISetConnectOption (hdbe, SQI AUTOCOMMIT,

SQL_AUTOCOMMIT OFF) ;
The option value SQL_AUTOCOMMIT_OFF is the new value for the option
SQL_AUTOCOMMIT. With SQL_AUTOCOMMIT set to off, an explicit
SQLTransact (hdbc, COMMIT) call is required to commit all the changes of a

transaction.

©Copyright 1995-2008 CASEMaker Inc.

3-15

O\ ODBC Programmer’s Guide

3-16

NOTE You can use SQLSetConnectOption to set connection options before or after making
a connection. These options will remain in effect while the connection handle exists.
Once these options are set, they apply to all statements that are associated with the
connection. The only exception in DBMaker is that the value of option
SQL_CONNECT_MODE must be set before you make a connection.

SQLGetConnectOption

When the current value of a connection option is needed, you can use

SQLGetConnectOption to get the value.

Prototype
SQLGetConnectOption:

RETCODE SQLGetConnectOption (
HDBC hdbc,
UWORD fOption,
PTR vParam)

Where hdbc is a valid connection handle, fOption is the option whose value you want

to retrieve and vParam points to a location to receive the option value.

Example
To place the value associated with SQL_AUTOCOMMIT for connection hdbc in

the variable commitval:

retcode = SQLGetConnectOption (hdbc, SQL AUTOCOMMIT, &commitval);

©Copyright 1995-2008 CASEMaker Inc.

Database Connections 3

3.5

Freeing Handles

Before terminating your application, you should free all resources allocated for
connections and the environment. For each of the SQLConnect, SQLAllocConnect,
and SQLAllocEnv functions, the corresponding SQLDisconnect, SQLFreeConnect,
and SQLFreeEnv functions allow the user to free the corresponding allocated

resource.

SQLDisconnect

SQLDisconnect closes the connection associated with a specific connection handle
and frees all statement handles under the connection. (Statement handles will be

discussed in Chapter 4.)

Prototype
SQLDisconnect:

RETCODE SQLDisconnect (HDBC hdbc)

SQLFreeConnect

After closing the connection, a program should call SQLFreeConnect to release the
connection handle and free all memory associated with the handle. If you try to use
SQLFreeConnect to free an open connection handle, the driver will return an error.
You need to close a connection (by calling SQLDisconnect) before calling

SQLFreeConnect.

Prototype
SQLFreeConnect:

RETCODE SQLFreeConnect (HDBC hdbc)

©Copyright 1995-2008 CASEMaker Inc. 3-17

O\ ODBC Programmer’s Guide

SQLFreeEnv

SQLFreeEnv frees the environment handle and releases all associated memory. Before
calling SQLFreeEnv, an application must call SQLFreeConnect to free any hdbc

allocated under the henv.

> Prototype
SQLFreeEnv:

RETCODE SQLFreeEnv (HENV henv)

3-18 ©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

SQL Statements

This chapter describes in detail how to use ODBC functions to execute the SQL

statements supported by DBMaker. It introduces the SQL query language, and then

illustrates how to do the following.

Allocate and free statement handles by using the functions SQLA/ocStmr and
SQLFreeStmt.

Execute an SQL statement directly by using the function SQLExecDirect, and
prepare an SQL statement for execution and execute the prepared statement by
using the functions SQLPrepare and SQLExecute.

Return the number of rows affected by UPDATE, INSERT, or DELETE

statements using the function SQLRowCount.

Use parameters to pass a data value to an SQL command at execution time,

instead of at preparation time.

Return the number of parameters in an SQL statement by using the function
SQLNumParams, and return the description of a parameter marker associated

with a prepared SQL statement by using the function SQLDescribeParam.

Bind a buffer to a parameter marker in an SQL statement by using the function
SQLBindParameter, and input large data items in smaller pieces by using the
functions SQLPutData and SQLParamData.

Return the current setting of a statement option by using the function
SQLGetStmtOption, and cancel statement processing by using the function
SQLCancel.

©Copyright 1995-2008 CASEMaker Inc. 4-1

O\ ODBC Programmer’s Guide

The following diagram shows the topics of Sections 4-3 - 4-6 and their relation to the
state transitions that occur when writing an application that uses ODBC to access a

database.

Sec. 4-3
allocate statement handle : SQLAllocStmt

v

Sec. 4-3
prepare statements : SQLPrepare
execute statements directly : SQLExecDirect

Sec. 4-4

bind parameters : SQLBindParameter, SQLDescribeParam, SQLNumParam

Sec. 4-3

execute statements repeatedly : SQLExecute

Sec. 4-5

input large data : SQLParamData, SQLPutData, SQLCancel

'

Sec. 4-3
get row count : SQLRowCount

Sec. 4-6

get statement options : SQLGetStmtOption

'

Sec. 4-3
free statement : SQLFreeStmt

Table8: Topics in this chapter and their relation to state transitions

4-2 ©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

4.1

The SQL Language

Structured Query Language (SQL) is the industry standard query language used for
defining, organizing, managing, and retrieving data stored in relational databases.
Unlike traditional procedural programming languages such as C and Pascal, you do
not need to explicitly define how to perform a database operation. You can simply
enter a request to the database using the English-like SQL syntax, and the database
will determine the best method to process the request and return the results to you

when it is finished.

The functions provided by SQL go beyond simple data retrieval, although that is still
one of its most important functions. SQL is actually divided into three parts, known

as Data Definition Language (DDL), Data Manipulation Language (DML), and Data
Control Language (DCL). Each of these performs a specific role, and together you can

use them to perform all functions a DBMS provides, including:

o Data definition — lets you define the structure and organization of data and

the relationships between data.

o Data manipulation —allows you to retrieve existing data from the database and
update the database by adding new data, deleting old data, and modifying

previously stored data.

o Data contro/ —allows you to protect data against unauthorized access, and

define integrity constraints to protect data from corruption.

This section provides a brief overview of SQL. For more information, see the “SQL

Command and Function Reference’.

The Role of SQL with ODBC

When the ODBC driver gets an SQL statement, it passes the SQL request to the
database engine. The database engine structures, stores and retrieves the data on disk

according to the SQL statement.

©Copyright 1995-2008 CASEMaker Inc. 4-3

O\ ODBC Programmer’s Guide

ODBC

SQL

A 4

. (DBMaker, ORACLE,
Database Engine | gyspasg INFORMIX.

etc....)

Database

Table9: The role of SQL when using ODBC

Basic SQL Statements

SQL statements can be divided into DDL, DML, and DCL statements. For a more
detailed discussion of the entire SQL language and SQL syntax supported by
DBMaker, see the “SQL Command and Function Reference”.

Data Definition Language (DDL)

The schema of a database is handled by a set of SQL statements called the SQL Daza
Definition Language (DDL). DDL makes use of the CREATE, DROP or ALTER
commands to define, remove or modify the definition of a database object. We will

briefly explain the CREATE TABLE statement.

4-4 ©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

THE CREATE TABLE COMMAND

A database contains many tables, and each table in a database stores information.
Tables are composed of rows (records) and columns (fields). You can use the CREATE

TABLE statement to create a new table in a database.
Example 1

Basic syntax for the CREATE TABLE statement:

CREATE TABLE table-name (column-name data-type,)

The ANSI/ISO SQL standard specifies a minimal set of data types that a DBMS
should support. Almost all commercial SQL products support these data types or

provide similar data types that have equivalent functionality.

Example 2

The CREATE TABLE command:

CREATE TABLE account (
no serial, /* account number */
1name name, /* account last name =/
fname name, /* account first name 5/
branch integer, /* belong to branch */
balance money, /* account balance x/
altno char (12),
stamp image, /* account's stamp image */
photo image, /* account's photo image */
memo text /* account's memo /

);

Data Manipulation Language (DML)

Retrieving or manipulating the data in a database is handled by a set of SQL
statements called the SQL Data Manipulation Language, or DML. The basic DML
statements are SELECT, INSERT, DELETE and UPDATE.

©Copyright 1995-2008 CASEMaker Inc. 4-5

O\ ODBC Programmer’s Guide

RETRIEVING DATA FROM THE DATABASE (SELECT)

You can use the SELECT statement to retrieve data from a database and return a
result set to the user.

S Example 1l

Basic syntax of the SELECT statement:
'SELECT item list FROM table list WHERE search condition;

Table 10: Data types in DBMaker

4-6 ©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

The basic SELECT statement has three components: SELECT, FROM and
WHERE. The functions of each of these components are listed below:

. SELECT — specifies the columns or calculated columns to be retrieved by the
query.

o FROM — specifies the tables that contain the items in the SELECT list.

. WHERE — specifies the search condition that must be met to select a row.

The WHERE clause may contain multiple search conditions which can include:

J Comparison operators (=, >, <, >=, <=, <>, |=)

. Ranges (BETWEEN and NOT BETWEEN)

° Lists (IN and NOT IN)

. String matches (LIKE and NOT LIKE)

° BLOB matches (MATCH and NOT MATCH)

. Unknown values (IS NULL and IS NOT NULL)

e Logical combinations (AND, OR)

. Negations (NOT)

Example 2

Perform a query to find all customers whose account balance is greater than $10,000:

select lname, fname, balance from account where balance > 10000

MODIFYING DATA IN THE DATABASE

Adding, deleting or updating rows can modify the data contained in a database. For

each of these operations, the DBMS will return the number of affected rows.

ADDING DATA TO THE DATABASE

The INSERT statement is used to add a new row to a table.

©Copyright 1995-2008 CASEMaker Inc. 4-7

O\ ODBC Programmer’s Guide

S Example 1

Basic syntax of the INSERT statement:

INSERT INTO table name (column names) VALUES value list

The INSERT statement is made up of two components, INSERT INTO and
VALUES.

The functions of these components are:

o INSERT INTO — specifies the table you want to insert a row into. It can
optionally contain a column list to specify that data should only be inserted into

those columns. Columns not in this list will be inserted with NULL values.

) VALUES — specifies the data value you want to insert. You can insert values by

using constants or parameters.

As stated above, the value list may contain constants or parameters. A constant is any
numeric, text or date value that can be expressed in text form, such as John’,
‘Monday’, 123, 54.823, etc. An example of the INSERT command using constants is

shown below.

S Example 2

Add a new account for John Smith to the database:
INSERT INTO account (lname, fname,branch,balance)

VALUES ('john','smith',101,10000)
Parameter data is represented by a question mark (?) in the value list, and values can
be inserted later. Parameters can be used when the data values are unknown at
preparation time, or when you want to save preparation time. An example of the

INSERT command using parameters is shown below. This example is used to insert

rows into the database, but the values are not currently known.

S Example 3

Actual values to be inserted can be bound before execution:

INSERT INTO account VALUES (lname, fname,branch) VALUES (?,?,?)

4-8 ©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

NOTE 7y learn how to prepare statements and bind parameters to ODBC functions, please
refer to Section 4 of this chapter.
DELETING DATA FROM THE DATABASE

The DELETE statement deletes one or more rows from a table.

Example 1

Basic syntax of the DELETE statement:

DELETE FROM table name WHERE search condition

The DELETE statement is made up of two components, DELETE FROM and
WHERE.

The functions of these components are:
) DELETE FROM — specifies the table you want to delete rows from.
o WHERE — specifies the search conditions that must be met to delete a row.

The WHERE clause used in a DELETE statement may contain any of the search
conditions that are allowed for the WHERE clause used in a SELECT statement.

Example 2

Delete the account for John Smith from the database:

DELETE FROM account where fname = 'john' and lname = 'smith'
UPDATING THE DATA IN THE DATABASE
The UPDATE statement changes data in existing rows in a table.

Example 1

Basic syntax of the UPDATE statement is:

UPDATE table name SET column names expression WHERE search condition
The UPDATE statement has three components, UPDATE, SET, and WHERE.
The functions of these components are:

o UPDATE — specifies the table you want to update rows in.

©Copyright 1995-2008 CASEMaker Inc. 4-9

O\ ODBC Programmer’s Guide

J SET — specifies the columns you want to change and an expression that

defines the changes to be made for each column.
o WHERE — specifies the search conditions that must be met to update a row.

The WHERE clause under the UPDATE statement may contain any of the search
conditions that are allowed for the WHERE clause under the SELECT statement

S Example 2

Add 6% interest to all accounts with a balance greater than $1000:

UPDATE account SET balance = balance * 1.06 where balance > 1000

NOTE v find out how many rows have been inserted, deleted, or updated, refer to the
SQLRowCount function.

4-10 ©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

4.2

Executing SQL Statements

This section will serve as a guide for writing a simple ODBC program. As the previous
section mentioned, every SQL statement can be executed via ODBC in a program.

For example, suppose we have connected to a database successfully.

Example 1

Use the following SQL statements to construct a simple table:
CREATE TABLE account (lname name, fname name, branch integer)

INSERT INTO account VALUES ('Mulder', 'Fox', 11240)

Example 2

The corresponding ODBC statements would be:

retcode = SQLAllocStmt (hdbc, &htmt) ;

retcode = SQLExecDirect (htmt, "CREATE TABLE account (lname name, fname
name, branch integer)", SQL NTS);

retcode = SQLExecDirect (htmt, "INSERT INTO account VALUES ('Mulder’',

'Fox', 11240)", SQL NTS);

SQLAllocStmt

All ODBC functions that use SQL statements need a statement handle. A statement
handle is a pointer to a location in the system control area (part of the DCCA) where
all information about an SQL statement resides. Therefore, before executing an SQL

statement via SQLExecDirect, we need to use SQLAllocStmt to allocate a statement

handle.

Prototype
SQLAllocStmt:

RETCODE SQLAllocStmt (HDBC hdbc, HSTMT FAR *phstmt)

©Copyright 1995-2008 CASEMaker Inc. 4-11

O\ ODBC Programmer’s Guide

4-12

If the return code is SQL_SUCCESS, you have successfully allocated a valid
statement handle from the driver. You can then proceed to the next ODBC function,
SQLExecDirect.

SQLExecDirect

SQLExecDirect is used to execute an SQL statement directly. Many ODBC books
call this direct execution, as opposed to another method of execution known as

prepared execution. Prepared execution will be explained later.

Prototype
SQLExecDirect:

RETCODE SQLExecDirect (
HSTMT hstmt,
UCHAR FAR *szSqlStr,

SWORD cbSglStr)

The first argument, hstmt, is a valid statement handle, the second argument is the
SQL statement string to be executed, and the last argument is the string length of the
SQL statement or SQL_NTS if szSqlStr points to a null terminated string.

The execution of SQLExecDirect is performed in two phases. First, it compiles
(prepares) the SQL statement by checking referenced object names and grammar,
chooses an access plan, and converts the statement into an internal executable form.
Then in the second phase, it executes the executable form to actually access the

database.

If the SQL statement is a query like SELECT * FROM account, then a result set of
selected rows is produced and you need to use SQLFetch to get the returned data row
by row from the result set (See Chapter 5). If the SQL statement is an INSERT,
DELETE, or UPDATE statement, SQLRowCount can be used to see how many rows

were affected.

©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

SQLRowCount

This function returns the number of rows affected by INSERT, DELETE, or
UPDATE statements executed in the statement handle.

> Prototype
SQLRowCount:

RETCODE SQLRowCount (
HSTMT hstmt,
SDWORD FAR *pcrow)

If hstmt is associated with an UPDATE statement, the pcrow will return the number

of updated rows after executing the UPDATE statement.

2 Example
Using SQLRowCount:

SDWORD count;

SDWORD retcode;

retcode = SQLAllocStmt (hdbc, &hstmt);

retcode = SQLExecDirect (hstmt, "CREATE TABLE account (lname name,
fname name, branch integer, balance money)",
SQL NTS) ;

/* insert three records into account table 7

retcode = SQLExecDirect (hstmt, “INSERT INTO account VALUES (‘Mulder’,
‘Fox’, 11240, 10000.00)”, SQL NTS);

retcode = SQLExecDirect (hstmt, “INSERT INTO account VALUES (‘Scully’,
‘Dana’, 11330, 20000.00)”, SQL NTS);

retcode = SQLExecDirect (hstmt, “INSERT INTO account VALUES (‘Skinner’,
‘Walter’, 11240, 30000.00)”, SQL NTS);

/* if branch is 11240, add 1000 to balance 2/

retcode = SQLExecDirect (hstmt, “UPDATE account SET balance = balance +
1000.00 WHERE branch = 112407, SQL NTS);

©Copyright 1995-2008 CASEMaker Inc. 4-13

O\ ODBC Programmer’s Guide

/* get the number of updated rows from count in the example. */
/* Count will be two. =Y
retcode = SQLRowCount (hstmt, &count);

If hstmt is not associated with an INSERT, DELETE, or UPDATE statement, the
row count will be -1 for DBMaker.

SQLFreeStmt

You can use SQLFreeStmt to close or drop a statement handle.

> Prototype
SQLFreeStmt:
RETCODE SQLFreeStmt (
HSTMT hstmt,
UWORD fOption)

The first argument (hstmt) is a valid statement handle and the second is an option

that specifies how the statement handle is freed. Two commonly used options for
freeing the statement handle are SQL_CLOSE and SQL_DROP. If the statement is

not a select statement, a statement handle can be reused.

S Example 1

A reused statement handle:
SQLExecDirect (hstmtl, "INSERT ...");
SQLExecDirect (hstmtl, "CREATE ...");

SQLExecDirect (hstmtl, "INSERT ...");

If the statement is a select statement, you need to close the statement handle before

using it again.
S Example 2

Closing a select statement before reusing it:

retcode = SQLExecDirect (hstmt, "SELECT * FROM account", SQL NTS);

4-14 ©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

retcode = SQLFreeStmt (htmt, SQL CLOSE) ;
retcode = SQLExecDirect (hstmt, "INSERT INTO account VALUES ('Mulder',

'"Fox', 11240)", SQL NTS);
By using SQL_CLOSE to close a statement handle for reuse later, you do not have to
allocate a new statement handle every time you want to execute a statement after a
selection. However, if in doubt, you can use the SQL_DROP option to drop the

statement handle and allocate a new one. Drop will release all resources associated

with the statement handle. After a drop, you cannot reuse the handle.

SQLPrepare and SQLExecute

As described in the section on SQLExecDirect, prepared execution is performed in
two parts: preparation and execution. If you want to execute a statement repeatedly,

you can use prepared execution to improve performance.

Prepared execution divides the execution life of a statement into two parts using the
ODBC function calls for preparation (SQLPrepare) and execution (SQLExecute).
The idea is to prepare the statement into executable form only once and then execute

it many times.

Prototype

SQLPrepare:

RETCODE SQLPrepare (
HSTMT hstmt,
UCHAR *szSqlStr,
UDWORD cbSqglStr)

Prototype

SQLExecute:

RETCODE SQLExecute (HSTMT hstmt)

In SQLPrepare, hstmt is a valid statement handle, szSqlStr is the SQL statement string
to be executed, and cbSqlStr is the length of the string szSqIStr or SQL_NTS if the

©Copyright 1995-2008 CASEMaker Inc. 4-15

O\ ODBC Programmer’s Guide

string is null-terminated. Prepared execution is most useful when combined with

parameters, which is the topic of the next section.

4-16 ©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

4-3

Parameters

In this section, we will introduce parameters, which are used in SQL statements to pass
a data value to an SQL command at execution time in an ODBC application

program. The concept is similar to the host variables used in embedded SQL.
A parameter is used in an SQL statement when:
o Values of the parameters are unknown at preparation time.

. Applications need to execute the same SQL statement several times with
different parameter values (For example, an application may need to use
character strings to get all input values, then insert these values into tables in the
database. In this case, it can use parameter markers to accept all values, then
convert these values to their corresponding column types so the driver can insert

them into the database correctly.)

J Applications need to convert the parameter values between different data types.
o Stored procedures need to be executed with the output arguments.
Example

To insert five rows into a table named account:

INSERT INTO account (lname, fname, branch) VALUES (?,7?,?)

In this statement, ?' is the parameter marker. By using parameters, the application
only needs to prepare this statement once, and then execute the prepared statement

five times with different parameter values.

Parameter Functions

There are three ODBC functions for dealing with parameters, SQLBindParameter,
SQLDescribeParam, and SQLNumParam:s.

. SQLBindParameter- is used to bind a storage location to a parameter marker

and specify the data type, precision, and scale of the storage location.

©Copyright 1995-2008 CASEMaker Inc. 4-17

O\ ODBC Programmer’s Guide

SQLNumParams -is used by an application to get the number of parameters in
an SQL statement. It is especially useful for an interactive dynamic SQL

application.

SQLDescribeParam- is used to describe the attributes of a specified parameter,

like length or precision. It is also used for dynamic SQL applications.

SQLBINDPARAMETER
> Prototype

SQLBindParameter:

RETCODE SQLBindParameter (
HSTMT hstmt,
UWORD ipar,
SWORD fParamType,
SWORD fCType,
SWORD £SqlType,
UDWORD cbColDef,
SWORD ibScale,
PTR rgbValue,
SDWORD cbValueMax,

SDWORD FAR *pcbValue)

An application needs to pass the following information to SQLBindParameter:

hstmt — statement handle

ipar — i" parameter

fParamType — parameter type, input/output
fCType — parameter host language type
JSQLType — SQL column type

cbColDef — precision of the column

ibScale — scale of the column

©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

° rgbValue — storage address

o cbValueMax —the length of storage buffer. When the parameter type is output,
this field is in use. The value will be ignored if the returned data has a fixed
length in C, such as an integer value. It is not used when the parameter type is
input.

o pcbValue — length of the parameter in rgbValue

The following example illustrates how several rows of data with different values can be

inserted into a database by using SQLBindParameter to bind the row values to

parameters before SQLExecute is called. Note that when SQLExecute is called for the

third time, a NULL will be inserted into the branch column by setting pcbValue in
SQLBindParameter to SQL_NULL_DATA.

Example
Using SQLBindParameter:

#define LENGTH 18

UCHAR lname[LENGTH], fname[LENGTH];

UDWORD branch no;

SDWORD retcode, cblname, cbfname, cbbranch;

retcode = SQLPrepare (hstmt, "INSERT INTO account (lname,fname,branch)
VALUES (?,?,?)",SQL NTS) ;

err exit (hstmt, retcode); /* exit if error */

cblname = SQL NTS; /* null terminated string *x/

cbfname = 0;

cgbranch = 0;

retcode = SQLBindParameter (hstmt, 1, SQL PARAM INPUT, SQL C CHAR,
SQL CHAR, LENGTH, O, lname, 0, &cblname);

retcode = SQLBindParameter (hstmt, 2, SQL PARAM INPUT, SQL C CHAR,

SQL CHAR, LENGTH, O, fname, 0, &cbfname);

retcode = SQLBindParameter (hstmt, 3, SQL PARAM INPUT, SQL C LONG,

©Copyright 1995-2008 CASEMaker Inc. 4-19

O\ ODBC Programmer’s Guide

2 To set a parameter value:
1. Call SQLBindParameter to bind a storage location to a parameter marker.

2. Put the parameters value in the storage location.

NOTE The first step can be done before or afier calling SQLPrepare, but should be done
before calling SQLExecute. The second step should be done before SQLExecute since

the driver needs the parameter values to execute the SQL statement.
Three parameter types can be used for fParamType in SQLBindParameter:
J SQL_PARAM_INPUT - this parameter is called input parameter.

4-20 ©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

. SQL_PARAM_INPUT_OUTPUT - this parameter is used for both input and

output.

. SQL_PARAM_OUTPUT - this parameter is called output parameter.

HOW TO USE SQLBINDPARAMETER WITH INPUT PARAMETERS

The parameter is stored in the storage location rgbValue. When putting the parameter
values into rgbValue, you should use the C data types specified in the fCType
argument of SQLBindParameter.

The pcbValue argument in SQLBindParameter is simply a pointer to a buffer that

contains the parameter length, but it can be used for other purposes.

Possible values stored in pcbValue before calling SQLExecute or SQLExecDirect are:
. The length of the parameter, only useful for character or binary C data.

. SQL_NTS - to indicate that the parameter value is a null-terminated string.

. SQL_NULL_DATA- to indicate that the parameter value is NULL, as shown

in the previous code example.

. SQIL_DEFAULT._PARAM:- to indicate the default value of the column will be

used.

o SQL_DATA AT EXECor SQL_LEN DATA AT _EXEC- to indicate the
data for the parameter will be sent with SQLPutData. This will be covered in

more detail in section 4.4.

SQLNUMPARAMETER

Prototype
SQLNumParams:

RETCODE SQLNumParams (
HSTMT hstmt,

SWORD FAR *pcpar)

When this function is called, the driver will put the number of parameters in the SQL

statement in the buffer pcpar. This number will be zero if the SQL statement contains

©Copyright 1995-2008 CASEMaker Inc. 4-21

O\ ODBC Programmer’s Guide

no parameters. Note that this function can only be called after the SQL statement is

prepared (i.e. SQLPrepare has been called).

SQLDESCRIBEPARAM
2 Prototype
SQLDescribeParam:
RETCODE SQLDescribeParam (
HSTMT hstmt,
UWORD ipar,

SWORD FAR *pfSqlType,
UDWORD FAR *pcbColDef,
SWORD FAR *pibScale,

SWORD FAR *pfNullable)

If an application has all the information necessary for SQLBindParameter, then it can
call SQLBindParameter directly. However, applications may lack detailed information
about the parameters before calling SQLBindParameter to set them. For example, in
dynamic SQL applications such as a graphical query tool, the SQL statements to be
used are undetermined until runtime. This kind of application needs to obtain

detailed information about parameters at one time so that it can bind the parameters.

SQLDescribeParam returns the description of the specified parameter marker

associated with a prepared SQL statement.

4-22 ©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

SQLPrepare

'

SQLNumParams

l (for each parameter)
SQLDescribParam

'

SQLBindParameter

'

store parameter values

'

SQLExecute

Tablel12: Program flow when using input parameters.

The following example illustrates the use of SQLDescribeParam, SQLNumParams,
and SQLBindParameter in a dynamic SQL application. The parameter marker

number is ordered sequentially from left to right, starting at 1.

Example 1

Using input parameters in a dynamic SQL application:

#define BUFFER LEN 256 /* length of the SQL string buffer */
#define MAX PARAMS 32 /* allowed max number of parameters */
UCHAR str[BUFFER LEN];

SDWORD retcode;

SWORD i, nparam;

SWORD partype[MAX PARAMS], parscale[MAX PARAMS], parnull [MAX PARAMS];
SWORD parCtype[MAX PARAMS];

UDWORD parlen[MAX PARAMS], outlen[MAX PARAMS];

char *parbuf [MAX PARAMS];

BEGIN: /* begin label =/

©Copyright 1995-2008 CASEMaker Inc. 4-23

O\ ODBC Programmer’s Guide

4-24 ©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

/* get parameter values and store them in bound storage

*/

getParamValue (nparam, parCtype[i], partype[i], parlen[il],
parscale[i],

&parnull[i], parbufl[il]);

} /* end of if statement */
retcode = SQLExecute (hstmt) ; /* excute prepared SQL statement =/

err exit (hstmt, retcode);

if (user Quit()) /* user wants to quit =/
return;

else
goto BEGIN; /* go to BEGIN for next SQL string */

Only when a stored procedure with output arguments is executed do we need to use
output parameters. Later we will demonstrate how to use the output parameters to
execute a stored procedure with output arguments. A stored procedure is a user-
defined function. Once the stored procedure is created, it is stored in an executable
format in the database as an object of the database. You can execute a stored
procedure as a command in the interactive SQL window, or you can invoke it in an
application program, a trigger action, or another stored procedure. Here we only
describe how to execute a stored procedure in ODBC application programs. For more
information about stored procedures, please refer to the “Database Administrator's

Reference”.

The following example illustrates how to call the SQLBindParameter function with
the SQL_PARAM_OUTPUT parameter type. A buffer is prepared by the
SQLBindParameter function, which stores the value returned when a stored

procedure is executed with a specific input city value like: Taipei.

©Copyright 1995-2008 CASEMaker Inc. 4-25

O\ ODBC Programmer’s Guide

4-26

S Example 2

Using the output parameter:
SDWORD personNumber;
SDWORD retcode, avlen;
retcode = SQLPrepare (hstmt, "CALL getNumber (“Taipei”, ?)",SQL NTS) ;
err exit (hstmt, retcode); /* exit if error */
retcode = SQLBindParameter (hstmt, 1, SQL PARAM OUTPUT, SQL C LONG,
SQL INTEGER, 0, 0, &personNumber, O,

&avlen) ;
err exit (hstmt, retcode); /* exit if error */

retcode = SQLExecute (hstmt) ; /* excute prepared SQL statement *x/
printf (“total %$1d employees live on Taipei \n”, personNumber) ;

If you want to write a dynamic SQL program with output parameters, you may use
SQLNumParams, SQLDescribeParam, SQLProcedures, and SQLProcedureColumns.
You can use SQLProcedures to get the list of procedure names that are stored in the

data source. Then use SQLProcedureColumns to retrieve information about

procedure parameters.

Using Parameters in SQLExecDirect

As stated before, when an application wants to execute an SQL statement more than
once, it may call SQLPrepare first, then call SQLExecute several times instead of

preparing the same SQL statement for each execution.

Parameters can also be used in an SQL statement that is executed only once by using
SQLExecDirect. However, you must bind the parameters and set the parameter values
before calling SQLExecDirect anyway, so you lose all of the advantages you get when
using parameters with SQLPrepare and SQLExecute.

There is no need to use parameters with SQLExecDirect unless the data input is of a
special type, such as a BLOB. Use the SQL_DATA_AT_EXEC or the
SQL_LEN_DATA_AT_EXEC options to bind the parameter at execution time for a

BLOB; the data values are not set until after the statement is executed.

©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

Example

Using parameters with SQLExecDirect:

#define LENGTH 18

UCHAR 1lname [LENGTH], fname [LENGTH] ;

UDWORD branch no;

SDWORD retcode, cblname, cbfname, cbbranch;

retcode = SQLBindParameter (hstmt, 1, SQL PARAM INPUT, SQL C CHAR,
SQL CHAR, LENGTH, O, lname, 0, &cblname);

retcode = SQLBindParameter (hstmt, 2, SQL PARAM INPUT, SQL C CHAR,
SQL CHAR, LENGTH, O, fname, 0, &cbfname);

retcode = SQLBindParameter (hstmt, 3, SQL PARAM INPUT, SQL C LONG,
SQL INTEGER, 0, 0, branch no, 0, &cbbranch);

strcpy (lname, "Bill");

cblname = strlen (lname) ;

strcpy (fname, "Skinner");

cblname = strlen (fname) ;

branch no = 11243;

retcode = SQLExecDirect (hstmt, "INSERT INTO account (lname, fname,

branch) VALUES (2,2,2)", SQL_NTYS);

err exit (hstmt, retcode);

Clearing Bound Parameters

After a storage location is bound by calling SQLBindParameter, it can be reused
repeatedly. In the example, three storage locations are bound to the three-parameter
markers in the INSERT statement and remain bound undil they are explicitly

unbound.

The storage locations are unbound when the application calls SQLFreeStmt with the
SQL_RESET_PARAMS option or the SQL_DROP option. Notice that the three
storage locations belong to the same statement handle, and when SQLFreeStmt is

called, all the storage locations bound in the statement handle will be unbound. If the

©Copyright 1995-2008 CASEMaker Inc. 4-27

O\ ODBC Programmer’s Guide

application uses the SQL_RESET_PARAMS option, it can reset the statement handle

and bind a different storage location.

2 Example

Clearing bound parameters:

#define LENGTH 18

UCHAR lname [LENGTH], fname [LENGTH];

UDWORD branch no;

SDWORD retcode, cblname, cbfname, cbbranch;

retcode = SQLBindParameter (hstmt, 1, SQL PARAM INPUT, SQL C CHAR,
SQL CHAR, LENGTH, O, lname, 0, &cblname);

retcode = SQLBindParameter (hstmt, 2, SQL PARAM INPUT, SQL C CHAR,
SQL CHAR, LENGTH, O, fname, 0, &cbfname);

retcode = SQLBindParameter (hstmt, 3, SQL PARAM INPUT, SQL C LONG,
SQL INTEGER, 0, 0, branch no, 0, &cbbranch);

(use the three parameters to execute some SQL commands)
/* reset the parameters */
retcode = SQLFreeStmt (hstmt, SQL RESET PARAMS) ;

The handle will be released, and become invalid, when an application uses the
SQL_DROP option in the SQLFreeStmt statement.

4-28 ©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

4.4

Entering Large Data

DBMaker provides two methods to input BLOB data into a database. One method
uses a small, fixed size buffer to read a portion of the BLOB data and enter it into the
database. By repeating this process several times, the entire BLOB can be input
without having to use a single large buffer. DBMaker also provides a File Object data

type to allow users to store BLOB data in an external file.

How to Enter Large Data

When you need to enter large amounts of data into a long varchar or long varbinary
column, you can use the SQLPutData and SQLParamData functions to enter the data
in smaller segments. Thus, a large buffer is not needed to store all of the data, as it

would be if the data were entered all at once.

Prototype
SQLParamData:

RETCODE SQLParamData (
HSTMT hstmt,

PTR FAR “*prgbValue)

Prototype
SQLPutData:

RETCODE SQLPutData (
HSTMT hstmt,
PTR rgbValue,
SDWORD cbValue)
SQLParamData is used to check if parameters require data. Data is then entered using

SQLPutData. This process continues until data has been entered for all of the

parameters in the SQL statement.

©Copyright 1995-2008 CASEMaker Inc. 4-29

O\ ODBC Programmer’s Guide

4-30

2 To enter large data objects into a database

1.

Bind the parameters — Set the pcbValue argument in the SQLBindParameter
function to either SQL_DATA_AT_EXEC or SQL_LEN_DATA_AT_EXEC.
This lets the ODBC driver know that you will provide values for this parameter at
execution time using SQLPutData.

Execute the SQL command — Execute the SQL statement with SQLExecDirect or

SQLExecute. When there are parameters that are expecting data at execution time,
the call will return SQL_NEED_DATA.

Find the first parameter expecting data at execution time — Call SQLParamData
to indicate that the first parameter expecting data at execution time should start to
receive data.

Call SQLPutData — Prepare the next segment of data in the buffer and call
SQLPutData to send it to the database for the parameter currently waiting for data.
Repeat this step until all of the data for this parameter is sent.

Call SQLParamData — If the return code is SQL_NEED_DATHA, the next
parameter that is expecting data at execution time is ready to receive data, and you
should go back to Step 4. If the return code is SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO, then all data for all parameters expecting data at
execution time has been sent and the SQL statement has completed its execution.

©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

Stepl: call SQLBindParameter and set pcbValue
argument to SQL_DATA_AT_EXEC or
SQL_LEN_DATA_AT EXEC

retcode is SQL_SUCCESS

Step2: SQLExecute or SQLExecDirect

retcode is SQL_NEED _DATA

Step3: call SQLParamData to find first
data_at_execution parameter

retcode is SQL_NEED_DATA

Step4: prepare your next piece of data
and call SQLPutData to put it lq- -
into database

finish put data of
this specified column

retcode is SQL_NEED_DATA

Step5: call SQLParamData to find next
data_at_execution parameter

reteode is SQL_SUCCESS
or SQL_SUCCESS_WITH_INFO

Execution Finished !!

Tablel3: Process flow for entering large data

©Copyright 1995-2008 CASEMaker Inc. 4-31

O\ ODBC Programmer’s Guide

In the following example, we insert a record into the account table. InitUserData()
opens a customer’s data file that includes the customer’s photograph, signature and a
memo field to be entered into the account table. GetUserData() retrieves the next
MAX_DATA_SIZE bytes of data from the users data file into the data buffer
InputData until all data has been read. SQLPutData sends data from the buffer to the
database.

S Example

Inserting data with SQLParamData and SQLPutData:

4-32 ©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

©Copyright 1995-2008 CASEMaker Inc.

4-33

O\ ODBC Programmer’s Guide

4-34

Canceling the Execution of SQLPutData

If an error occurs while entering data into the database or we decide not to continue

entering data, we can cancel the process by using the SQLCancel function.

Prototype
SQLCancel:

RETCODE SQLCancel (HSTMT hstmt)

You can call SQLCancel and the whole statement will be aborted. After canceling the

current execution of a statement, you can call SQLExecute or SQLExecDirect again.

Placing Large Data in a File Object

A File Object (FO) is a powerful large object data type supported by DBMaker. A FO
is similar to LONG VARCHAR or LONG VARBINARY data, but it is stored as an
external file on your host file system. Defining a column with the FILE data type

creates an FO column.

Example 1

Defining a photograph column as a FO column:

create table student (name char (20), photograph file)

Since an FO is treated as BLOB data, you can use BLOB insertion methods to insert
data into FO columns. By setting fSQLType to SQL_LONGVARCHAR or
SQL_LONGVARBINARY, DBMaker will create a new file for each FO column and
copy data from the input buffer (when fCType is SQL_C_CHAR) or from a file on
the client site (when fCType is SQL_C_FILE).

Instead of creating another file, you may want to link an FO column to an existing file
on the server side, such as a file on a CD-ROM. If you want to link a server side file,
set f{CType to SQL_C_CHAR and SqlType to SQL_FILE. When using this method,
copy the file name into the buffer before calling SQLExecute.

©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

In the following example, a new record is inserted for a customer named Mary along
with her photo, which is stored as a File Object. The file already exists on the server

side, so we link this file into the database.

S Example 2

Placing large data in a File Object:

Since an FO is stored as an external file, applications used to edit the file can still work

on the file directly.

©Copyright 1995-2008 CASEMaker Inc. 4-35

O\ ODBC Programmer’s Guide

4.5 Get and Set Options

The current setting of a statement option in a statement handle can be obtained by

using the SQLGetStmtOption function.

2 Prototype

SQLGetStmtOption:

2 Prototype
SQLSetStmtOption:

Where hstmt is a valid statement handle, fOption is the option to be retrieved and
pvParam is the value associated with fOption. Depending on the value of fOption, a
32-bit integer value or a pointer to a null-terminated character string will be returned

in pvParam.

DBMaker provides some options that can be used with these two functions.

4-36 ©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

Table 14 Extended statement options used with SQLGetStmtOption

Option Description Permitted Values
SQL_DUMP_PLAN Sets dump plan options ~ SQL_DUMP_PLAN_ON
SQL_DUMP_PLAN_OFF

Table 16 Extended statement options used with the SQLSetStmtOption

In the following example, the table account contains a SERIAL data type column.
The value of a SERIAL column is incremented automatically, and users do not need
to explicitly specify it. However, after inserting a record, users may want to know the
value of the SERIAL column just inserted. This value can be obtained by calling
SQLGetStmtOption with fOption SQL_GET_INCREMENT_VALUE.

Example 1
Getting the value of a SERIAL column using SQLGetStmtOption:

/* insert a record into table account where the value of each field 2/
/* is its default value */
SDWORD val;

SDWORD retcode;
retcode = SQLExecDirect (hstmt, "INSERT INTO ACCOUNT VALUES ()",

SQL NTS) ;
/* get the serial number that was just inserted =Y
retcode = SQLGetStmtOption (hstmt, SQL GET INCREMENT VALUE, &val);
In this example, the variable val will be the value of the SERIAL column that was just
inserted into the table account in the previous INSERT statement. For the definition

and the use of the SERIAL data type, please refer to the “SQL Command and

Function Reference”.

Another special use of SQLGetStmtOption is to get the OID of the most recently
inserted or fetched tuple. Continuing from the previous example, you can submit
SQLGetStmtOption with fOption SQL_GET_CURRENT_OID to get the OID of

the record just inserted into the database.

©Copyright 1995-2008 CASEMaker Inc. 4-37

O\ ODBC Programmer’s Guide

4-38

Example 2

Getting the current object's OID using SQLGetStmtOption:

UCHAR o0id[8];

SDWORD retcode;

/* insert a record into account table */

retcode = SQLExecDirect (hstmt, "INSERT INTO ACCOUNT VALUES ()",
SQL_NTS) ;

/* get the OID of the record just inserted */

retcode = SQLGetStmtOption (hstmt, SQL GET CURRENT OID, &oid);

An OID is a unique ID for an object in DBMaker. You can use the OID to uniquely

specify an object in a database.

Example 3
Using OID in the WHERE clause of a query:

SELECT * FROM account WHERE OID = ?

NOTE Rcfer 1o the “SQL Command and Function Reference” or the “Database
Administrator’s Reference”, for more detailed information on the OID data type.

The extended statement options SQL_DUMP_PLAN, SQL_PLAN_LEN, and
SQL_PLAN are used to get the query plan generated by the DBMaker Query
Optimizer for a prepared SQL statement.

To get the plan of a prepared SQL statement

1. Turn on the SQL_DUMP_PLAN option by calling SQLSetStmtOption.

2, Get the length of the plan string by calling SQLGetStmtOption with fOption
SQL_PLAN_LEN

3. Allocate a buffer according to the plan string and then call SQLGetStmtOption
with fOption SQL_PLAN to get the plan string,

Example 4

Getting an SQL statement's query plan using the SQLSetStmtOption and
SQLGetStmtOption:

©Copyright 1995-2008 CASEMaker Inc.

SQL Statements 4

©Copyright 1995-2008 CASEMaker Inc. 4-39

O\ ODBC Programmer’s Guide

4-40 ©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

Retrieving Results

Performing queries to retrieve data is one of the most important functions of a

database.

In this chapter, we examine how to perform the following:

Retrieve data on a row-by-row basis by binding columns to a storage location

using the functions SQLBindCol and SQLFerch.

Obtain information (such as type and length) about the columns in a result set
by using the functions SQLNumResultCols, SQLDescribeCol, and
SQLColAttributes.

Use a cursor to execute a positioned DELETE or positioned UPDATE on a
result set obtained from a query. We also examine how to get or set the cursor
name by using the functions SQLGetCursorName and SQLSetCursorName.

Retrieve large data objects (LONG VARCHAR or LONG VARBINARY) and
file objects piece by piece by using the function SQLGetData. Retrieving large
objects or file objects piece by piece allows you to use much smaller buffers than

would be required to retrieve the data all at once.

Use rowsets to browse forward or backward through a result set obtained by

querying with the functions SQLExtendedFetch and SQLSetPos.

©Copyright 1995-2008 CASEMaker Inc. 5-1

O\ ODBC Programmer’s Guide

SQLPrepare, SQLExecute
or SQLExecDirect

execute a query

v

SQLNumResultCols
SQLDescribeCol

v

get information of result
column (skip if you know
the information)

v

SQLBindCol

bind result columns

""" » SQLFetch

fetch data row by row

the row contains
large data columns?

SQLGetData <

retrieve large data of a
column piece by piece

more large columns
in the row?

SQLFreeStmt - - - -

close scan

Tablel8: Program flow for retrieving data from a database.

5-2 ©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

5-1

Queries Using ODBC

When an application needs to retrieve data from a database, the most common
method is to perform a query by using the SQL SELECT statement. In this section,
how to perform a query and fetch the result data, row by row using ODBC functions

is covered.

Binding Storage Locations and Fetching Data

Suppose we want to get last name, first name, and branch information for customers

at branch 11240 from the account table.

Example

Query:

SELECT lname, fname, branch FROM account WHERE branch = 11240

After preparing and executing this query, we are ready to fetch the data row by row. If
all the information in the result columns in the projection of this query is known (e.g.
column type, precision, scale, etc.), then we can use SQLBindCol and SQLFetch to
fetch the results.

. SQLBindCol- is used to associate a storage location with a column of data. The
role of SQLBindCol in a SELECT statement is similar to that of the
SQLBindParameter in an INSERT statement.

. SQLFetch- is used to fetch a row of data from the result set. The driver will

return data for all bound columns to the storage locations specified by

SQLBindCol.

©Copyright 1995-2008 CASEMaker Inc. 5-3

O\ ODBC Programmer’s Guide

> Prototype

SQLBindCol:

RETCODE SQLBindCol (
HSTMT
UWORD
SWORD
PTR
SDWORD

hstmt,
icol,
fCType,
rgbValue,

cbValueMax,

SDWORD FAR *pcbValue)

An application needs to pass the following information to SQLBindCol so it can

associate the storage location with the result column.

e fCType — the data type to which the data is to be converted.

. rgbValue — the address of an output buffer for the data. The application must

allocate this buffer and make sure the buffer is large enough to accommodate

the data retrieved for the specified data type.

. cbValueMax — the length of the output buffer. This value is ignored if the

returned data has a fixed width in C, such as an integer value.

o pcbValue — the address of a storage buffer that is used to return the number of
bytes of available data. Note that the driver will store SQL_NULL DATA in
this argument if the fetched data is NULL.

After each column in the projection is bound, SQLFetch() is called to fetch a row of

data.

> Prototype

SQLFetch:

RETCODE SQLFetch (HSTMT hstmt)

The following example uses ODBC to perform the query shown earlier with

SQLBindCol and SQLFetch.

©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

S Example

To fetch all customers information at branch 11240 from the account table:

©Copyright 1995-2008 CASEMaker Inc. 5-5

O\ ODBC Programmer’s Guide

printf ("first name: %s\n", fname);
if (cbbranch == SQL NULL DATA)

printf ("branch no: NULL\n");
else

printf ("branch no: $d\n", branch no);

else /* if no more data or errors returned */

break;

Result Columns Characteristics

Some applications may not know what data types will be inserted in advance.
Likewise, it is possible that in dynamic SQL an application does not know the result
data that it will fetch ahead of time. If this is the case, the SQLNumResultCols and
SQLDescribeCol functions can help provide more information. SQLNumResultCols
is used to get the number of result columns in the result set. SQLDescribeCol is used
to describe characteristics of a result column, including the name, SQL type,

precision, scale, and whether or not the column allows NULL values.

2 Prototype
SQLNumResultCols:

RETCODE SQLNumResultCols (
HSTMT hstmt,

SWORD FAR *pccol)

2 Prototype
SQLDescribeCol:
RETCODE SQLDescribeCol (
HSTMT hstmt,
UWORD icol,

UCHAR FAR *szColName,

5-6 ©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

©Copyright 1995-2008 CASEMaker Inc. 5-7

O\ ODBC Programmer’s Guide

SQLPrepare

'

SQLNumResultCols

'

SQLDescribeCol

'

SQLBindCol

'

SQLExecute

'

SQLFetch

(fetch one row at a time)

more results?

' NO
v

SQLFreeStmt (SQL_CLOSE)

Tablel9: Program flow for obtaining a result set

After preparing a query, you can call SQLNumResultCols to find out how many
result columns are in the query. Next call SQLDescribeCol to get information about
how much memory each column will need, which is used in turn used to call

SQLBindCol. Finally, the result data can be fetched one row at a time by calling
SQLFetch.

©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

The example shown below uses SQLNumResultCols, SQLDescribeCol,
SQLBindCol, and SQLFetch to fetch a result set after performing a query.

S Example

Fetching a result set after performing a query:

©Copyright 1995-2008 CASEMaker Inc. 5-9

O\ ODBC Programmer’s Guide

5-10 ©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

More about Result Columns

Although we can get some of the characteristics of columns by calling
SQLDescribeCol, there may still be additional column information that applications
need to know. ODBC provides the function SQLColAttributes for this purpose.

©Copyright 1995-2008 CASEMaker Inc. 5-11

O\ ODBC Programmer’s Guide

SQLCOLATTRIBUTES

SQLColAttributes is used to return descriptor information for a column. This

information is for the specified descriptor type.

> Prototype

SQLColAttributes:

RETCODE SQLColAttributes (
HSTMT hstmt,
UWORD icol,
UWORD fDescType,
PTR rgbDesc,
SWORD cbDescMax,

SWORD FAR *pcbDesc,

SDWORD FAR *pfDesc)
The descriptor types defined in ODBC include:
e SQL_COLUMN_COUNT
e SQL_COLUMN_NAME
e SQL_COLUMN_TYPE
e SQL_COLUMN_LENGTH
e SQL_COLUMN_PRECISION
e SQL_COLUMN_SCALE
e SQL_COLUMN_DISPLAY_SIZE
e SQL_COLUMN_NULLABLE
e SQL_COLUMN_UNSIGNED
e SQL_COLUMN_MONEY
e SQL_COLUMN_UPDATABLE
e SQL_COLUMN_AUTO_INCREMENT

5-12 ©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

e SQL_COLUMN_CASE_SENSITIVE
e SQL_COLUMN_SEARCHABLE

e SQL_COLUMN_TYPE_NAME

e SQL_COLUMN_TABLE_NAME

e SQL_COLUMN_OWNER_NAME

e SQL_COLUMN_QUALIFIER_NAME
e SQL_COLUMN_LABEL

NOTE For detailed information about the meaning of each option, see the “Microsoft

ODBC Programmer’s Reference”.

For example, if the value of fDescType is SQL_COLUMN_TYPE,

SQLColAttributes will return the SQL type of the specified column. Although this
information can also be obtained by using SQLDescribeCol, SQLColAttributes can

also provide other information that cannot be obtained by using SQLDescribeCol.

The major differences between SQLColAttributes and SQLDescribeCol are:

. SQLDescribeCol provides some specific values for one column at one time, while

SQLColAstributes gets only the value of one descriptor.

. SQLColAntributes provides more specific and detailed column information. It

can also be extended if a driver adds more driver-specific descriptors or if ODBC

defines new descriptors in future versions.

For example, an application that needs to know if a column is case-sensitive can use

the SQLColAttributes function with the descriptor option
SQL_COLUMN_CASE_SENSITIVE to find out.

Example

SQLColAttributes to get detailed column information:
#define TRUE 1
#define FALSE 0

SDWORD CSflag; /* case-sensitive flag

©Copyright 1995-2008 CASEMaker Inc.

*/

5-13

O\ ODBC Programmer’s Guide

SDWORD retcode;

retcode = SQLPrepare (hstmt, "SELECT lname, fname, branch FROM account

WHERE branch = 11240", SQL NTS);

retcode = SQLColAttributes (hstmt, 1, SQL COLUMN CASE SENSITIVE,
NULL, 0, NULL, &CSflag);
if (CSflag == TRUE)

printf ("Column 1 is case-sensitive\n");

Clear Bound Columns

After a storage location is bound to a column by calling SQLBindCol, it can be reused
repeatedly. In the example, three storage locations are bound to the three columns in
the SELECT statement.

S Example
Call SQLFreeStmt with the SQL_UNBIND option to unbind all bound columns

associated with a statement handle:

Retcode = SQLFreeStmt (hstmt, SQL UNBIND) ;

Now all of the bound storage locations in hstmt are cleared, and an application can
reuse the statement handle and bind a different storage area. If the application wants
to unbind a single bound column, an alternative is to call SQLBindCol and pass a

NULL pointer in the rgbValue argument.

If an application does not need to reuse the statement handle, then SQLFreeStmt can
be called with the SQL_DROP option. In this case, all the storage locations are
cleared and any existing cursors, pending results, and resources used by the statement

handle will be freed as well.

5-14 ©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

5-2

Cursors

A cursor is a tool that allows you to step through a result set row-by-row for row-
conditional processing. Applications can perform multiple operations on each
individual row in a given result set. A cursor is opened on the result set by execution

of a query.

When to Use Cursors

A cursor is used when the program needs to perform update or delete operations on
specific rows in a result set. For example, the program might retrieve some rows from
the query results, display them on the screen for the user, and then respond to a user's

request to update or delete data.

If you wish to update data using a cursor, the SELECT statements that are used to
generate the result set must explicitly specify FOR UPDATE or FOR UPDATE OF
column_list in the SELECT statement. (E.g. SELECT * FROM account FOR
UPDATE) If the statement has been not declared with FOR UPDATE, it will default

to a read only cursor and you will not be allowed to do cursor updates or deletes.

Example 1

UPDATE statements using cursors:
UPDATE tablename SET column = value [, column = value...]

WHERE CURRENT OF cursorname

Example 2

DELETE statements using cursors:

DELETE FROM tablename WHERE CURRENT OF cursorname

Getting the Cursor Name

The ODBC driver will automatically generate a name that begins with the letters
SQL_CUR when you call SQLAllocStmt to allocate a statement handle. You can use

©Copyright 1995-2008 CASEMaker Inc. 5-15

O\ ODBC Programmer’s Guide

SQLGetCursorName to get the full name of the cursor associated with a specific

statement handle.

> Prototype
SQLGetCursorName:

RETCODE SQLGetCursorName (
HSTMT hstmt,
UCHAR FAR *szCursor,
SWORD cbCursorMax,

SWORD FAR *pcbCursor)

Using Cursors

The following shows how to use SQLGetCursorName in positioned updates, which
involves two different hstmts for the SELECT and UPDATE statements.

S Example

Using cursors in positioned updates to update John Smith’s branch number:
#define NAME LEN 21

#define CURSOR LEN 20

HSTMT hstmtSelect;

HSTMT hstmtUpdate;

UCHAR szLname [NAME LEN], szFname [NAME LEN], cursorName [CURSOR LEN] ;

SWORD cursorlen;

SDWORD sBranch, cbName, cbBranch;

/* Allocate the statement handles R
retcode = SQLAllocStmt (hdbc, &hstmtSelect) ;

retcode = SQLAllocStmt (hdbc, &hstmtUpdate) ;

/* SELECT the result set and bind its columns to local storage =Y
/* NOTE: This is a select FOR UPDATE i/

retcode = SQLExecDirect (hstmtSelect, "SELECT lname, fname, branch

5-16 ©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

Setting the Cursor Name

You can use SQLSetCursorName to set the cursor name of an active statement
handle. You have to use SQLSetCursorName to change the cursor name before

executing the SELECT statement.

©Copyright 1995-2008 CASEMaker Inc. 5-17

O\ ODBC Programmer’s Guide

5-18

Prototype
SQLSetCursorName:

RETCODE SQLSetCursorName (
HSTMT hstmt,
UCHAR FAR *szCursor,

SWORD cbCursor)

©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

5.3

Fetching Large Data

As we described before, the normal way to get column data is to use SQLBindCol to
bind a local buffer for the column. During SQLFetch, the column data is
automatically stored in the bound buffer. You can use the bind method to retrieve

large data if you are sure that your buffer is big enough.

The alternative is to use SQLGetData to get one buffer full of data each time. If using
SQLGetData, do not bind the column, otherwise SQLFetch will automatically send
the column data to the bound buffer.

An application needs to pass the following information to SQLGetData so it can

associate a result column with a storage location:
e feType — the data type to which the data is to be converted.

0 rgbValue — the address of an output buffer for the data. The application must
allocate this buffer and make sure the buffer is large enough to accommodate

the data retrieved for the specified data type.

. cbValueMax — the length of the output buffer. This value is ignored if the

returned data has a fixed width in C, such as integer data.

° pcbValue — the address of a storage buffer which is used to return the number

of bytes of available (remaining) data before the current call to SQLGetData.

©Copyright 1995-2008 CASEMaker Inc. 5-19

O\ ODBC Programmer’s Guide

Stepl: call SQLExecute or SQLExecDirect
to execute one query

v

Step2: call SQLFetch to fetch one row

retcode is SQL_SUCCESS or
SQL _SUCCESS WITH_INFO

recode is
SQL_NO_DATA_FOUND

Step3: call SQLGetData to get one piece of
data of column specified by icol
YES argument in the current row

A

NO

finish get data
of a row

YES

v
Fetch Data Finished !!

Table20: Program flow for retrieving large data

5-20 ©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

SQLGetData

When you need to retrieve large data from a LONG VARCHAR or LONG
VARBINARY column, you can use the SQLGetData function to retrieve the data
segment by segment. This way you do not have to prepare a large buffer to retrieve the

whole column.

Prototype
SQLGetData:

RETCODE SQLGetData (
HSTMT hstmt,
UWORD icol,
SWORD fCType,
PTR rgbValue,
SDWORD cbValueMax,

SDWORD FAR * pcbValue)

To retrieve large data objects from a database

1. Execute the SQL command — Execute the SQL query with SQLExecDirect or
SQLExecute.

2. Fetch the data — call SQLFetch to get the next row of data. If SQLFetch returns
SQL_NO_DATA_FOUND, then all rows in the result set of the query have been
returned. If the return code is SQL._SUCCESS or SQL_SUCCESS_WITH_INFO
and there is large data you want to fetch, go to the next step.

3. Get the large data objects — Call SQLGetData to get one piece of the data in the
unbound column specified by the icol argument in the current row. Repeat this
step until SQLGetData returns SQL_NO_DATA_FOUND. If you want to fetch
data from the next row, go back to the previous step.

In the following example, we will fetch the columns; fname, photo, and memo from
all rows in the account table and display them. The photo and memo columns
contain large objects. We use the bind method to get the values in the fname column

and SQLGetData to get the values for the photo and memo columns.

©Copyright 1995-2008 CASEMaker Inc. 5-21

O\ ODBC Programmer’s Guide

As we explained before, you can either bind a column to a storage location or use
SQLGetData when retrieving data. This is true for all data, and if you wish, you can
use SQLGetData for regular data types such as integers. However, this is not practical
because it involves extra programming effort and is not necessary.

S Example

5-22 ©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

©Copyright 1995-2008 CASEMaker Inc. 5-23

O\ ODBC Programmer’s Guide

For most applications, all of the data in a large column is usually retrieved and stored

in a temporary file before it is displayed. While this is still the case for static data that
must be displayed all at once, streaming (audio, video) or page (large text) data can be
displayed without the need for a temporary file. Using a double buffer scheme to

retrieve and display data simultaneously, as shown in the diagram.

5-24 ©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

start end
. J | J |
| g | T ...
fill bufl show bufl show buf2 show bufl fetch out total
fill buf2 fill bufl fill buf2 data of the column
. » time

Table21: Using double buffers to get large data

Stopping SQLGetData Operations

If an error occurs when retrieving data from a database, or if you do not want to
continue retrieving data, you can stop the retrieval process by using the SQLFreeStmt
function with the SQL_CLOSE option. You call the SQLFreeStmt function with the
SQL_CLOSE option to close the cursor and discard all pending results. You can
reopen this cursor to retrieve data by calling SQLExecute or SQLExecDirect with the

same query again.

Binding Columns to Retrieve File Objects

If you want to retrieve a large data object and have it placed in a client file, you can
use the bind file method to do it. In this method, you set the fCType argument of
SQLBindCol to SQL_C_FILE and place the file name in the buffer. This instructs
DBMaker to create a file and copy the large object data into it.

The following example uses this method to retrieve a photograph and place it in a
client file by binding SQL_C_FILE in the fCType argument of SQLBindCol and
preparing the filename in the buffer pPhotoFIName. After calling SQLFetch, the
photograph is copied into the file.

Example

UCHAR pPhotoFlName[80];

SDWORD retcode;

retcode = SQLBindCol (hstmt, 1, SQL C FILE, pPhotoFlName, 80, &cbPhoto);
strcpy (pPhotoF1Name, "/diskl/usr/fo/photo");

retcode = SQLExecDirect (hstmt, "SELECT photograph FROM student

©Copyright 1995-2008 CASEMaker Inc. 5-25

O\ ODBC Programmer’s Guide

5-26

WHERE name = 'mary'", SQL NTS);

retcode = SQLFetch (hstmt); /* a new file is created and data copied */

Fetching the Filename of File Objects

As described in chapter four, File Objects (FO) are stored as external files on the
server. You can use any of the three methods listed above to retrieve FO data, but the
bind client file (SQL_C_FILE) method always creates a new file on the client site. If
you are only interested in the file name of the FO, you can use the built-in function
FILENAME() to get the file name.

Example
Use SQL_C_CHAR to bind the column:

UCHAR pPhotoFlName[80];
SDWORD retcode;

retcode = SQLBindCol (hstmt, 1, SQL C CHAR, pPhotoFlName, 80, &cbPhoto);
retcode = SQLExecDirect (hstmt, "SELECT FILENAME (photograph) FROM

student WHERE name = 'mary'", SQL NTS);
retcode = SQLFetch (hstmt) ; /* file name of FO goes to pPhotoFlName */
Currently, most multimedia tools process multimedia data stored as an operating
system file. If the multimedia data is stored in a LONG VARCHAR or LONG
VARBINARY column, you need to fetch the data from DBMaker and redirect it to a

file that is accepted by the multimedia tool. If you stored it as a file object, you only
need to get the file name from DBMaker and pass the name to the tool.

©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

5-4

Manipulating Result Sets

Applications can use SELECT statements to query the underlying database. In
addition to the SQLFetch function from the previous sections, DBMaker also allows
you to use SQLExtendedFetch to easily browse backward or forward through the
result set returned by the SELECT command, and SQLSetPos to further modify the
result set from SQLExtendedFetch.

Rowsets

A rowset behaves like a window on the result set; we can use it to browse the details of
the result set. The rowset is always a subset of the result set and has the same tuple

order.

You can fetch a rowset using the SQLExtendedFetch function. However, before
calling SQLExtendedFetch you must allocate a buffer, bind the result columns, and

set the number of tuples (rowset size) that you want to fetch.

You can call SQLExtendedFetch with different options to move the rowset window
backward or forward to any position within the result set. For example, if the rowset
size is ten, the option SQL_FETCH_FIRST moves the window to the head of the
result set, and reads the first ten tuples into the rowset. Applications are responsible
for setting the rowset size by calling the SQLSetStmtOption function with the
SQL_ROWSET_SIZE option. The default value for the SQL_ROWSET_SIZE
option is one. Applications are also responsible for allocating enough buffer space to

bind columns using SQLBindCol before calling SQLExtendedFetch.

Program Flow

The program flow is similar to SQLFetch except for buffer allocation for the rowset.
You can change rowset size between SQLExtendedFetch calls, but you must ensure
the column output buffer and column status array is large enough for each column.
SQLBindCol must be called again to rebind any newly allocated column output

buffers and column status arrays. The only exception is that the rgfRowStatus array

©Copyright 1995-2008 CASEMaker Inc. 5-27

O\ ODBC Programmer’s Guide

5-28

argument of SQLExtendedFetch, which is used to record the status of rows in a

rowset and whose size is the same as rowset size, can only be rebound by recalling
SQLExtendedFetch.

Storage Binding

You use the SQLBindCol function to bind the output buffer (rgbValue) and column
status (pcbValue) for fetched data (rowset) from the result set. Since the number of
tuples fetched can be any value up to the rowset size, you must allocate enough space
for the output buffer and column status array with respect to the rowset size.
Otherwise, the SQLExtendedFetch function may fail and place output tuple data in
an illegal address space.

Prototype

SQLBindCol:

RETCODE SQLBindCol (
HSTMT hstmt,
UWORD icol,
SWORD fCType,
PTR rgbValue,
SDWORD cbValueMax,

SDWORD FAR *pcbValue)

There are two ways to bind the output buffer and column status array for a rowset

which might have more than one tuple: column-wise binding and row-wise binding.

COLUMN-WISE BINDING
Use SQLSetStmtOption to set SQL_BIND_TYPE to BIND_BY_COLUMN to

specify column-wise binding. If you are using column-wise binding, the buffers for
the same column from all tuples of the rowset will be sequential. That is, you allocate
enough buffer space for one column at a time. For example, the code fragment to bind

columns in a table with two columns (int and char(5)) follows.

NOTE SQLFetch is a special case of SQLExtendedFetch if column-wise binding is used.

©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

S Example

©Copyright 1995-2008 CASEMaker Inc. 5-29

O\ ODBC Programmer’s Guide

5-30 ©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

ROW-WISE BINDING

If SQLSetStmtOption is used to set SQL_BIND_TYPE to any value other than
BIND_BY_COLUMN, then buffers will be bound row by row. In this case, the value
will be used as the length of the necessary output buffer for one tuple. The buffer
value is the columns’ output value and columns’ status for all columns. If the columns
are already known, applications often define a structure that is composed of all the
columns output buffers and status buffers. For example, the code fragment for a table
with 2 columns (int and char(5)) to bind columns follows.

S Example

©Copyright 1995-2008 CASEMaker Inc. 5-31

O\ ODBC Programmer’s Guide

5-32 ©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

©Copyright 1995-2008 CASEMaker Inc. 5-33

O\ ODBC Programmer’s Guide

else
break;
}
/* close cursor associated with hstmt and exit if there is an error 2/
retcode = SQLFreeStmt (hstmt, SQL CLOSE) ;

err exit (hstmt, retcode);

Positioning the Cursor

SQLExtendedFetch positions the cursor on the first row of a rowset if a cursor exists.

SQLExtendedFetch might be used by:

o Positioned UPDATE and DELETE statements from another statement handle.
You can call SQLExtendedFetch to position the cursor on a row and use a

positioned DELETE statement to delete that row from the result set of the
target table. For example, DELETE ... WHERE CURRENT OF ...

. SQLGetData. You can call SQLGezData to get data for those columns that are
not bound. The rowset size should be set to one before calling SQLGetDaza.

. SQLSerPos with the SQL_DELETE, SQL_REFRESH, SQL_UPDATE options.

Prior to the first time you call SQLExtendedFetch, the cursor is positioned before the
start of the result set, which should be seen as undefined. Using different options
might position the cursor before the start of result set or after the end of result set,

instead of on an existing row.

Arguments of SQLExtendedFetch

> Prototype
SQLExtendedFetch:
RETCODE SQLExtendedFetch (
HSTMT hstmt,
UWORD fFetchType,
SDWORD irow,

5-34 ©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

The possible return values from SQLExtendedFetch are:

SQL_SUCCESS
SQL_SUCCESS_WITH_INFO
SQL_NO_DATA_FOUND
SQL_ERROR
SQL_INVALID_HANDLE

The following table shows the rowset and return code returned when the ODBC

application requests different rowsets. ODBC applications should check the return

code from SQLExtendedFetch and the row status for each row of the rowset before it

uses the contents of the rowset buffers.

©Copyright 1995-2008 CASEMaker Inc. 5-35

O\ ODBC Programmer’s Guide

The overlapping cases (second and fourth) are not symmetrical. For example, suppose
a result set has 100 rows and the rowset size is 5. The following table shows the rowset
and return code returned by SQLExtendedFetch for different values of irow when the
fetch type is SQL_FETCH_RELATIVE (see below for the definition of this option).

fFetchType Argument

The fFetchType Argument is used to indicate the type that decides the position of the
window (on the result set) for the rowset.

5-36 ©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

The valid values for fFetchType are:
. SQL_FETCH_FIRST

o SQL_FETCH_LAST

. SQL_FETCH_NEXT

o SQL_FETCH_PRIOR

. SQL_FETCH_ABSOLUTE

o SQL_FETCH_RELATIVE

) SQL_FETCH_BOOKMARK

The irow argument is applied when the values SQL_FETCH_ABSOLUTE or
SQL_FETCH_RELATIVE are used for the fFetchType argument. The rowset
returned for SQL_FETCH_FIRST, SQL_FETCH_LAST, and
SQL_FETCH_ABSOLUTE is not dependant on the value of fFetchType from the
immediately previous SQLExtendedFetch call since it is not fetched relative to the

current rowset.

The other values for fFetchType argument fetch a rowset according to the previous

rowset:

. SQL_FETCH_FIRST: fetches the first rowset in the result set.

o SQL_FETCH_LAST: fetches the last complete rowset in the result set.

. SQL_FETCH_ABSOLUTE: fetches the rowset starting at row irow of the result

set.
If irow > 0, fetch the rowset starting at row irow.
If irow < 0, fetch the rowset starting at row irow+result set size+1.

E.g. if irow = -1 then the starting row of the returned rowset is the last row of
the result set. If irow is less than 0, you can count back from the end of

the result set to find the first row of the returned rowset.

If irow = 0, return SQL_NO_DATA_FOUND and position the cursor before
the start of result set. (To reset)

©Copyright 1995-2008 CASEMaker Inc. 5-37

O\ ODBC Programmer’s Guide

5-38

SQL_FETCH _NEXT: fetches the next rowset. If the cursor is currently
positioned before the start of the result set (e.g. the initial condition), then this
is equivalent to SQL_FETCH_FIRST.

SQL_FETCH_PRIOR: fetches the previous rowset. If the cursor is currently
positioned after the end of the result set, this is equivalent to

SQL_FETCH_LAST.
SQL_FETCH_RELATIVE: fetches the rowset starting at irow row from the

start of the current rowset. If the cursor is positioned before the start of the

result set:

irow > 0: fetch the rowset starting at row irow. This is equivalent to the

SQL_FETCH_ABSOLUTE value.
irow < 0: return SQL_NO_DATA_FOUND without changing the cursor.
If the cursor is positioned after the end of the result set:

irow < 0: fetch the rowset starting at row irow+result set size+1. This is
equivalent to SQL_FETCH_ABSOLUTE value.

irow > 0: return SQL_NO_DATA_FOUND without changing the cursor.
irow = 0: refresh (refetch) the current rowset.

SQL_FETCH_BOOKMARK: fetches the rowset starting at the bookmark
specified by the SQL_ATTR_FETCH_BOOKMARK_PTR statement

attribute.

irow Argument

The irow argument specifies the number of the row to fetch. You only need to use
irow if the fFetchType argument is set to either SQL_FETCH_ABSOLUTE or
SQL_FETCH_RELATIVE. Otherwise, you can ignore this value.

pcrow Argument

The pcrow argument specifies the number of rows (in the rowset buffer) actually
fetched from an SQLExtendedFetch call. The range of valid values for pcrow is from

0 to the rowset size.

©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

rgfRowStatus Argument

The rgfRowStatus argument is an array of status values for all rows in the rowset. This

array is allocated by an ODBC application.
The possible status values set by SQLExtendedFetch are:
. SQL_ROW_NOROW: data in this row is undefined.

. SQL_ROW_SUCCESS: data in this row was successfully fetched using
SQLExtendedFetch.

) SQL_ROW_ERROR: an error was found when fetching this row using
SQLExtendedFetch.

For example, if the rowset size is ten and only nine rows are fetched by
SQLExtendedFetch (e.g., with fFetchType set to SQL_FETCH_ABSOLUTE and
irow set to -9), then the status value for the last row will be SQL_ROW_NOROW,
while the status values for the other rows will be SQL_ROW_SUCCESS.

The SQLSetPos, which is used to manipulate the rows in a rowset fetched by
SQLExtendedFetch, can only set the following values:

. SQL_ROW_UPDATED: the row is updated.
. SQL_ROW_DELETED: the row is deleted.
. SQL_ROW_ADDED: the row is added.

Returning Values and Processing Errors

SQLExtendedFetch fetches more than one row at a time. Each row fetched
successfully or with a warning is given the value SQL_ROW_SUCCESS as the row
status value. If an error is encountered, the row being fetched will be given the value
SQL_ROW_ERROR and the fetch will stop. Subsequent rows in the rowset will be
marked SQL_ROW_NOROW. The following 4 examples are possible, using a

rowset size of 5.

Example 1

All rows for rowset are fetched:

©Copyright 1995-2008 CASEMaker Inc. 5-39

O\ ODBC Programmer’s Guide

S Example 2

All rows for rowset are fetched near the end of result set:

5-40 ©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

S Example 3

Error found in fetching 2nd row:

S Example 4
No row fetched at all:

©Copyright 1995-2008 CASEMaker Inc. 5-41

O\ ODBC Programmer’s Guide

5-42

The return value of SQLExtendedFetch depends on the values of all the rows in the
rowset. You should check the column status array for the status of the columns in each

row.
The following return values are possible for SQLExtendedFetch:

° SQL_SUCCESS- if no errors or warnings were found and there was at least one

row fetched.
. SQL_NO_DATA_FOUND- if there were no rows to fetch.

. SQL_SUCCESS_WITH_INFO- if there were any warnings found but no errors
were found. If SQLError is called for warning information, the details of the

last warning will be returned.

. SQL_ERROR- if an error was found. All subsequent SQLExtendedFetch calls
will return the same error, and the ODBC application cannot access that result
set any more. (E.g., a lock time-out is seen as an error even if the lock is later

released. SQLExecute is needed to regenerate the result set.)

Table Modification Using SQLSetPos

If the result set is generated from a single table, and each row of the result set can be
uniquely mapped to one row of the target table. Then each row of the rowset, which is

a subset of result set, is associated with one physical row of the target table through an

OID (object ID).

©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

S Example 1

Rowsets from the following query statements are all updateable:
create table tl (cl int, c2 int, c3 char(5))

select * from tl;

select * from tl where cl > 10;

select cl from tl where c2 < 20;

select c2, cl from tl1;

S Example 2

Rowsets from the followings query statement are not updateable:
create table tl (cl int, c2 int, c3 char(5))

select * from tl,t2 ;

select cl+c2 from tl ;

select cl*2 from tl ;

The SQLSetPos now only supports modification of simple scans on a single table.
Only expressions like c1 can be modified. Expressions like c1*2, c1+1, and cl+c2 are

not modifiable.

If needed, the column default values are applied for those columns not in the
projection, e.g. row insertion through SQLSetPos. Bound columns are a subset of the
projection, which is inversely a subset of the table schema in a simple scan on a single

table. You can only use SQLPutData to manipulate unbound columns.
Arguments of SQLSetPos

2 Prototype

SQLSetPos:

RETCODE SQLSetPos (
HSTMT hstmt,
UWORD irow,
UWORD fOption,
UWORD fLock)

©Copyright 1995-2008 CASEMaker Inc. 5-43

O\ ODBC Programmer’s Guide

The possible returned values from SQLSetPos are:
o SQL_SUCCESS

o SQL_SUCCESS_WITH_INFO

. SQL_NEED_DATA

) SQL_ERROR

o SQL_INVALID_HANDLE

Since SQLSetPos manipulates the rowset, you must call it after calling
SQLExtendedFetch. The rowset to be operated on is from the previous
SQLExtendedFetch. Note that the rgfRowStatus argument (the row status array) is
set by SQLSetPos (according to different options), which is implicitly passed from the
corresponding SQLExtendedFetch. Again, ODBC applications should check the
SQLSetPos return value and row status array before SQLSetPos accesses the row data.

If the result set is not modifiable, SQLSetPos will just return an error.

The possible values for row status set by SQLSetPos with different options are:
e SQL_ROW_SUCCESS

e SQL_ROW_ERROR

e SQL_ROW_NOROW

. SQL_ROW_UPDATED

e SQL_ROW_DELETED

. SQL_ROW_ADDED

irow Argument

irow is the number of the row in the rowset that the operation specified with fOption
will be performed on. If the value for irow is 0, the operation will be applied to all

rows of the rowset.

5-44 ©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

Option Argument

The operation to apply on the rowset obtained from SQLExtendedFetch. Valid values

are:

e SQL_POSITION
e SQL_REFRESH
e SQL_UPDATE

e SQL_DELETE

e SQL_ADD

SQL_POSITION positions the cursor on the rows of the rowset for those operations

needing a cursor. This option does not change the row status array at all.
If irow = 0: position the cursor on the whole rowset.
If irow = n: position the cursor on row “n” (n =1 or <= rowset size).

If this option is used to position the cursor on more than one row, then the positioned

statement is only performed on the first row of the selected rows.

Example
/* hstmtS is for SQLExtendedFetch, SQLSetPos and SQLSetCursorName */
/* hstmtU is for positioned statement Y

/* use hstmtS to query */

rc=SQLSetStmtOption (hstmtS, SQL ROWSET SIZE, ROWS) ;

rc=SQLSetCursorName (hstmtS, (UCHAR *)"C1", SQL NTS);

rc=SQLExecDirect (hstmtS, (UCHAR *)"SELECT NAME, BIRTHDAY FROM EMPLOYEE
FOR UPDATE OF BIRTHDAY", SQL NTS);

rc=SQLBindCol (hstmtS, 1, SQL C CHAR, szName, NAME LEN, cbName);

rc=SQLBindCol (hstmtS, 2, SQL C CHAR, szBirthday, BDAY LEN, cbBirthday);

/* use hstmtS (through SQLExtendedFetch) to browse all rows */

©Copyright 1995-2008 CASEMaker Inc. 5-45

O\ ODBC Programmer’s Guide

5-46 ©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

}
}/*wh*/
Y/ *wh*/
SQL_REFRESH refreshes the row data of the rowset. This will refetch the same
window into the rowset buffer. The row status of the newly fetched row is set to

SQL_ROW_SUCCESS and the rows not in the result set are set to
SQL_ROW_NOROW.

If irow = 0, position the cursor on the whole rowset and refresh.

If irow = n, DBMaker does not support other values for irow with

SQL_REFRESH.
The row status for refreshed rows will be set to SQL_ROW_SUCCESS if this option

is successful. The window (rowset) might be moved forward or backward in the result
set if the refreshed rowset is full of “holes” created by the SQL_DELETE option.

SQL_UPDATE updates row data. The corresponding rows in the target table are
updated with row data from the rowset buffer. The row status of the successfully
updated rows is set to SQL_ROW_UPDATED. You cannot update a row that is
marked SQL_ROW_DELETED.

If irow = 0, the cursor is positioned on the whole rowset and it is updated.

« »

If irow = n, the cursor is positioned on row “n” and it is updated.

SQL_DELETE deletes the corresponding rows in the target table mapped by the
rowset. You cannot delete a row that is marked SQL_ROW_DELETED. If rows are
deleted (set as SQL_ROW_DELETED), you cannot perform the following
operations on them: positioned UPDATE/DELETE statements, calls to
SQLGetData, or calls to SQLSetPos with any options other than SQL_POSITION
(you can only call SQLSetPos with SQL_SET_POSITION on rows set to
SQL_ROW_DELETED).

If irow = 0, the cursor is positioned on the whole rowset and it is deleted.

If irow = n, the cursor is positioned on row “n” and it is deleted.

©Copyright 1995-2008 CASEMaker Inc. 5-47

O\ ODBC Programmer’s Guide

5-48

SQL_ADD adds row data. The row status of the added rows is set to
SQL_ROW_ADDED. If this option is applied, the rowset is just used as a user input
buffer for data to be inserted. No corresponding rows in the target table are mapped
by rows in the rowset. This is the only option that allows irow to be greater than the
rowset size. This option does not change the cursor position (no cursor positioning is
done). When inserting columns not bound to the rowset buffer, default values (if

available) are used or NULL values (if default values are not available) are used.
If irow = 0,: add all rows of the rowset.
If irow = 1 ~ rowset size: add row irow.

If irow > rowset size: row irow is still found from the start of rowset buffer with
an appropriate offset. For example, if irow = rowset size + 1, or irow =

rowset size + 2, add row irow.

An ODBC application allocates more buffer space than the rowset buffer space,
specified by SQL_ROWSET_SIZE. This simplifies ODBC application
programming. If no extra buffer is allocated and irow is greater than the rowset size,
then an application program error may result from trying to access illegal memory

addresses.

fLock Argument
To lock or unlock the corresponding operated rows in target table.

The valid value for fLock is:
) SQL_LOCK_NO_CHANGE: do not change the row's lock mode.

Column Indicators

When an ODBC application wants to insert a NULL value into a column, the only
interface is the column indicator (status). There is no host variable (like the host
variables from INSERT INTO t1 VALUES (2,?)) that we can retrieve information
from or specify that allows insertion of NULL values into columns. With
SQLExtendedFetch and SQLSetPos, the column indicators from SQLBindCol are the

only interface for specifying information for both fetching and modification.

©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

For example, if an ODBC application wants to update a column with NULL values
(or insert a NULL value to that column), then the corresponding column indicator
should be set to SQL_NULL_DATA before calling SQLSetPos with the
SQL_UPDATE or SQL_INSERT options. The same method is used if the default
value is to be applied, but the column indicator should be set to

SQL_DEFAULT_PARAM.

SQLPutData

SQLGetData, if used with SQLExtendedFetch, is the only way to fetch unbound
columns (which are mostly BLOB/file object columns). Similarly, you call SQLSetPos
with SQLPutData to modify those unbound columns (which are mostly BLOB/file
object columns). There is no column indicator to use and you can only use the

argument cbValue of SQLPutData. The rowset size must be 1 before executing
SQLGetData or SQLPutData.

For non-projection columns, default values are applied by SQLSetPos with
SQL_ADD options.
Example 1

Create table:

create table tl (cl int, c2 int, c3 char(5) default 'col3')

Example 2

A Select query:

select cl, c2 from tl

Example 3
Modify table tlusing the following calls:

/* bind columns cl, c2 , execute and fetch */

SQLBindCol (hstmt, 1, SQL C CHAR, cl rgbValue, cl len ,cl pcbValue);
SQLBindCol (hstmt, 2, SQL C CHAR, c2 rgbValue, c2 len ,c2 pcbValue);
SQLExecute (hstmt) ;

SQLExtendedFetch (hstmt, SQL FETCH FIRST, 0, &crow, rgfRowStatus);

©Copyright 1995-2008 CASEMaker Inc. 5-49

O\ ODBC Programmer’s Guide

5-50

/* specify cl, c2 values in first row of rowset */

/* first row of rowset is used as input buffer i/

SQLSetPos (hstmt, 1, SQL ADD, SQL LOCK NO CHANGE); /* default for c3 */

/* specify cl,c2 values in first row of rowset */

/* first row of rowset is used as input buffer =Y

/* update the row (in table tl) corresponding to */

/* first row in rowset */

SQLSetPos (hstmt, 1, SQL UPDATE, SQL LOCK NO CHANGE);/* c3 is not changed */
Column c3 is not in the projection and only column c1 and c2 can be found in the
rowset. In other words, to insert one extra tuple, SQLSetPos gets values from the
rowset for columns c1 and c2 and uses the default value ‘col3’ for column c3. To

update the corresponding row in t1 for the first row in the rowset, be certain column

3 has not been changed since c3 is not in the projection.

For bound columns, SQLSetPos gets all the input data it needs (for the SQL_ADD
and SQL_UPDATE options) from the rowset (the bound buffer).

For each unbound column, if it is neither a BLOB (LONG VARCHAR or LONG
VARBINARY) nor a file object type, then the default value is still applied if needed
for SQLSetPos. You cannot use SQLPutData to put data for this type of column since
the default value is used when SQLSetPos is executed.

For unbound BLOB/file object columns, we must use SQLPutData to modify them.
Before SQLPutData and after SQLSetPos, we still need to execute SQLParamData to
find all the unbound BLOB/file object columns.

BLOB(LONG VARCHAR and LONG VARBINARY) columns:

. To input NULL values; call SQLPutData with argument cbValue set to
SQL_NULL_DATA.

. To input default values, call SQLPutData with argument cbValue set to
SQL_DEFAULT _PARAM.

) To input data; call SQLPuzData with input data in argument rgbValue and
SQL_NTS or the length of rgbValue in argument cbValue. To input data the

©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

SQL_C_TYPE for the LONG VARCHAR and LONG VARBINARY data types
are SQL_C_LONGVARCHAR and SQL_C_LONGVARBINARY.

File object columns:

. To input NULL values, call SQLPutDara with argument cbValue ser to
SQL_NULL_DATA.

. To input default values, call SQLPuzData with argument cbValue set to
SQL_DEFAULT_PARAM.

Example 4

Execute SQLSetPos, make the call, and execute SQLPutData to input data:
SQLSetStmtOption (hstmt, SQI_SPOS FO, SQL SPOS_FO DATA|col) ;

This specifies the proceeding SQLPutData call to insert data from argument rgbValue
into column col, which is a file object column in the projection. The col is the index
of the object column in the target file of the projection. The option
SQL_SPOS_FO_DATA will force the system to use SQL_C_CHAR or
SQL_LONGVARCHAR to bind the input data. A system file will be automatically
created for this type of data input.

Example 5

Execute SQLSetPos, make the call, and execute SQLPutData to input user files:

SQLSetStmtOption (hstmt, SQL SPOS FO, SQL SPOS FO SFILE|col)

This specifies the proceeding SQLPutData call to insert a user file with a filename
specified in argument rgbValue into column col, which is a file object column in the
projection. The option SQL_SPOS_FO_SFILE will force the system to use
SQL_C_CHAR or SQL_FILE to bind the input data.

Example 6

Execute SQLSetPos, make the call, and execute SQLPutData to input system files:

SQLSetStmtOption (hstmt, SQL SPOS FO, SQL SPOS FO CFILE|col)

This specifies the proceeding SQLPutData call to insert a system file with a filename

specified in argument rgbValue into column col, which is a file object column in the

©Copyright 1995-2008 CASEMaker Inc. 5-51

O\ ODBC Programmer’s Guide

projection. The option SQL_SPOS_FO_CFILE will force the system to use
SQL_C_FILE or SQL_LONGVARCHAR o bind the input data.

The following shows how to use SQLSetPos and SQLPutData to input BLOB and
file object data:

S Example 7

Create table schema:

S Example 8

A Select query:

S Example 9

Using code:

5-52 ©Copyright 1995-2008 CASEMaker Inc.

Retrieving Results 5

/* input user file for c3(file) =Y

SQLPutData (hstmt, sbuf, strlen (sbuf));

Using SQLSetPos

SQLSetPos modifies more than one row at a time, so the rules for the return value are
similar to SQLExtendedFetch. Each successful (or with warning) operation on a row
is marked according to the option used. The row will be marked
SQL_ROW_ERROR if an error is found and operation is not stopped unless it is a

critical error such as an aborted transaction.
The rules are:
o Return SQL_SUCCESS if no errors or warnings are found.

) Return SQL_NO_DATA_FOUND if there are no rows to fetch (for the
SQL_REFRESH option only).

. Return SQL_SUCCESS_WITH_INFO if there are any warnings or errors found
during the operation. We can call SQLError to get complete error information.

If there are only warnings and no errors, then only the last warning is recorded.
. Return SQL_ERROR if a critical error is found in operation.

Note that the partial result of SQLSetPos done before the tuple where the error is
found is not undone. That is, this function is not an atomic operation. Each call to
SQLSetPos (except with the options SQL_REFRESH and SQL_POSITION) will

commit work after it is successfully executed if autocommit mode is on.

LIMITATIONS OF SQLSETPOS

Result sets from a query with a subquery are not modifiable; you cannot call
SQLSetPos for that type of result set.

©Copyright 1995-2008 CASEMaker Inc. 5-53

O\ ODBC Programmer’s Guide

5-54 ©Copyright 1995-2008 CASEMaker Inc.

Error Handling

After reading the previous chapters, you should be able to construct an ODBC
program. However, what do you do when problems occur while calling ODBC
functions? In this chapter, you will learn how to get error information when an error
occurs. This chapter also introduces some ODBC catalog functions that allow you to
get information from the system catalog (system tables). Some other ODBC functions
are also covered here, including functions that are used to get system information
about the data source, such as supported data types, supported built-in functions, and

supported ODBC functions.
In this chapter you will learn how to:

o Get detailed error information when a call to an ODBC function fails by using
the SQLError function.

o Retrieve catalog information such as table schemas and statistics information by
using catalog functions such as SQL7ables, SQLColumns, SQLStatistics, and
SQLSpecial Columns.

o Obrtain system information about the data source by using the SQLGer Typelnfo,
SQLGetInfo, and SQLGetFunctions functions.

NOTE CError information is collected differently using DBMaker (ODBC 3.0) from what
is described in this chapter. For more information, refer to chapter 8 on “DBMaker

3.0 Functions”.

©Copyright 1995-2008 CASEMaker Inc. 6-1

O\ ODBC Programmer’s Guide

6-1

Retrieving Error Information

When an application executes an ODBC function and an error code is returned, it
needs detailed error information to determine what caused the error. This section

explains how to use the SQLError function to retrieve error information.

Common Error Codes Defined in ODBC

After calling an ODBC function, you may get one of the following return codes:
. SQL_SUCCESS — the ODBC function executed successfully.
. SQL_SUCCESS_WITH_INFO — the ODBC function was executed

successfully, but some warning information is being returned.
) SQL_NO_DATA_FOUND — no more data can be fetched.
. SQL_ERROR — an error has occurred and the function failed.
o SQL_INVALID HANDLE — an invalid handle was detected and the

function failed.

. SQL_NEED DATA — the driver indicates the application must send

parameter data values.

If an application calls any ODBC function (except SQLError itself) and the return
code is SQL_ERROR or SQL_SUCCESS_WITH_INFO, it can call SQLError to

get additional error information.

How to Use SQLError

SQLError is used to get error information in the input handle, including the error
message, error state, and the driver's native error code. The driver's native error code is
the error code defined by each driver. This may be different for different drivers. (For
native DBMaker error codes, see Appendix C.)

Applications call SQLError when the error code returned by the previous ODBC
function is SQL_ERROR or SQL_SUCCESS_WITH_INFO.

©Copyright 1995-2008 CASEMaker Inc.

> Prototype
SQLError:
RETCODE SQLError (
HENV henv,
HDBC hdbc,
HSTMT hstmt,

UCHAR FAR *szSglState,
SDWORD FAR *pfNativeError,
UCHAR FAR *szErrorMsg,
SWORD cbErrorMsgMax,
SWORD FAR *pcbErrorMsg)
The three handles in the argument list of SQLError are not all necessarily passed to

SQLError. The ODBC driver will find the associated return code from the rightmost

non-null handle.

S Example 1

SQLError (henv, hdbc, hstmt,)

S Example 2

Returned error information is in hstmt:
SQLError (SQL NULL ENV, hdbc, SQL NULL STMT, ...)
The driver will return the error information associated with hdbc. You should ensure

the applications pass the proper handles to SQLError so that the error information

they need can be retrieved successfully.

If there is no error information to be retrieved, SQLError will return
SQL_NO_DATA_FOUND. Each time after SQLError is called and error
information is returned, the error information in that handle will be cleared. This

means the error information for one ODBC function call can be retrieved only once.

The SQL Access Group SQL CAE specification (1992) and X/Open define
SQLSTATE values returned by SQLError. The values are 5-character strings with a

two-character class value followed by a three-character subclass value. For example, the

©Copyright 1995-2008 CASEMaker Inc. 6-3

O\ ODBC Programmer’s Guide

class value 01 is a warning and the corresponding return code is
SQL_SUCCESS_WITH_INFO. Refer to the “Microsoft ODBC Programmer's
Reference”, for more detailed information regarding SQLSTATE values defined in
ODBC.

S Example

SQLError with SQLState:

6-4 ©Copyright 1995-2008 CASEMaker Inc.

}

/* Get SQL command string and execute it. If any warnings or errors &7
/* are detected, call SQLError and pass hstmt to retrieve error */
/* information from the statement handle, then print the error */
/* information and return. 7
retcode = execute cmd(hstmt); /* execute a SQL command 5/
if (retcode != SQL_SUCCESS) /* warning or error returned */

{

retcodel = SQLError (SQL NULL HDBC, SQL NULL HDBC, hstmt, sglState,
&nativeErr, errMsg, MSG LEN, &realMsgLen);

print err (sglState, nativeErr, errMsg, realMsglLen);

return;

Error Queues

ODBC allows multiple error codes to be stored in an error queue and are associated
with one handle. SQLError can be called multiple times to retrieve error codes one by
one. Currently DBMaker will only return multiple errors for Database Consistency
Checking (DBCC) operations. These errors are stored in the error queue.

An application can call SQLError many times until all the errors in the error queue
are fetched. Once all errors have been fetched, SQLError will return
SQL_NO_DATA_FOUND.

Example

An application checking the consistency of an account table:

#define MSG LEN 256 /* error message buffer length =Y
UCHAR sglState[6]; /* buffer to store SQLSTATE */
SDWORD nativeErr; /* native error code =Y
UCHAR errMsg[MSG LEN]; /* buffer to store error message *x/
SWORD realMsglen; /* real length of returned error message */

©Copyright 1995-2008 CASEMaker Inc. 6-5

O\ ODBC Programmer’s Guide

6-6 ©Copyright 1995-2008 CASEMaker Inc.

6-2

Catalog Functions

There are several system tables in a relational database which record information about
tables, columns, and privileges, etc., known as catalogs. The catalogs can be used to

read the schema information for tables and indexes in a database.

All of the catalog functions work in the same manner. Specify information using
parameters when calling the catalog functions, and a result set will be returned. You

can then fetch data from the result set.

In this section, four commonly used catalog functions: SQLTables, SQLColumns,
SQLStatistics, and SQLSpecial Columns will be introduced.

o SQLTables - gets a list of table or view names in a database.
o SQLColumns - gets column information about specified tables.
. SQLStatistics - gets statistics information about tables and the indexes

associated with those tables.

o SQLSpecial Columns - gets the optimal set of columns that uniquely identifies a

row in a table.

Search Patterns

Some arguments in the catalog functions accept search patterns to select the desired
object. The simplest search pattern is a character string that is used to match exactly
the item you are looking for. In addition, you can use wild card metacharacters in a
search pattern to do searches that are more powerful. DBMaker supports the following

metacharacters: underscore (_), percent (%) and the escape character (1).

. The underscore character (_) is used to match any one character.
. The percent character (%) is used to match zero or more characters.
. The escape character (\) permits the metacharacters % or _ to be used as literal

characters in search patterns. To use the escape character \ as a literal character

in search pattern, just include it twice (\\).

©Copyright 1995-2008 CASEMaker Inc. 6-7

O\ ODBC Programmer’s Guide

For example, if the search pattern for a table name is %A%, the function will return
all tables with names that contain the character A. If the search pattern for a table
name is _A_, the function will return all tables with names that are three characters
long with A as the middle character. If the search pattern for a table name is %, the

function will return all tables.

If you want to retrieve information for a table named 7AB_TEST, and you use
TAB_TEST as the search pattern, then you will also get information for the tables
TABITEST, TAB2TEST, etc. in the result set. This is not what you want. To solve
this problem put an escape character in front of the metacharacter: TAB| TEST.

NOTE When passing this string through a C compiler, you must specify TAB_TEST
instead of TAB_TEST. This is because the C compiler also treats “\” as an escape
character. See the following example for SQLTables.

SQLTables

When you connect to a database and want to determine information about all or a
particular set of tables, calling SQLTables with the specified criteria will get the

answer.

2 Prototype
SQLTables:

RETCODE SQLTables (
HSTMT hstmt,
UCHAR *szTableQualifier,
SWORD cbTableQualifier,
UCHAR *szTableOwner,
SWORD cbTableOwner,
UCHAR *szTableName,
SWORD cbTableName,
UCHAR *szTableType,

SWORD cbTableType)

6-8 ©Copyright 1995-2008 CASEMaker Inc.

The arguments for SQLTables are:
° hstmt — a valid statement handle for retrieved results.

. szTableQualifier — not supported by DBMaker, it should be NULL or an
empty string.

. cbTableQualifier — the length of szTableQualifier, it should be zero.

° szTableOwner — points to the owner name. The owner is the person who

created the table or view. It can be a string to be used as a search pattern or a
NULL value. Use a NULL value to indicate all owners.

. cbTableOwner — the length of szTableOwner or SQL_NTS.

o szTableName — points to the names of tables or views. It can be a string to be
used as a search pattern or a NULL value. Use a NULL value to indicate all

names.
. cbTableName — the length of szTableName or SQL_NTS.
o szTable Type — the list of table types (TABLE and/for VIEW).
o cbTableType — the length of szTable Type.

NOTE A string to be used as a search pattern can exist in szTableQualifier,
szTableOwner and szTableName. These three arguments and their corresponding
string length arguments, cbTableQualifier, cbTableOwner and cbTableName
also appear in the other three catalog functions: SQLColumns, SQLStatistics and
SQLSpecialColumpns.

SQLTables returns a result set consisting of the following columns:

Column No. Column Name Data Type
1 TABLE_QUALIFIER VARCHAR(128)
2 TABLE_OWNER VARCHAR(128)
3 TABLE_NAME VARCHAR(128)
4 TABLE_TYPE VARCHAR(128)
5 REMARKS VARCHAR(254)

©Copyright 1995-2008 CASEMaker Inc. 6-9

O\ ODBC Programmer’s Guide

SQLTables returns a result set according to the user's criteria. For example, when
szTableName is %A% and szTableOwner is _A_, the result set will contain all tables
whose names contain the character A and that have owners whose names are three
characters long with A as the middle character. If you want to find the names of all
tables in the database, you only need to set szTableQualifier, szTableOwner and
szTableName to NULL.

In fact, you can regard SQLTables as a way to execute a query using SQLExecDirect.
This means you need to use SQLFetch to get the result set. Before using SQLFetch,
you should use SQLBindCol to bind the columns in the result set.

The following code gives an example for SQLTables. Suppose there are two tables
named TAB TESTI and TAB_TEST2. After calling SQLTables, you will get
information for TAB_TESTI and TAB_ TEST2, ordered by TABLE TYPEF,
TABLE QUALIFIER, TABLE OWNER, and TABLE NAME.

Example

HDBC hdbc;

HSTMT hstmt;

UCHAR tabQualifier[255], tabOwner[255], tabName[255],
UCHAR tabType[255], remarks[255];

SDWORD lenTabQualifier, lenTabOwner, lenTableName;
SDWORD lenTableType, lenRemarks;

SDWORD retcode;

retcode = SQLAllocStmt (hdbc, &hstmt) ;

retcode = SQLTables (hstmt,
(UCHAR FAR *)NULL, O, /* tabQualifier */
(UCHAR FAR *)NULL, O, /* tabOwners 2/
(UCHAR FAR *)"DB\\ %", SQL NTS, /* table name &/
(UCHAR FAR *)"TABLE", SQL NTS); /* table type x/

/* Bind columns in result set to storage locations =Y

retcode = SQLBindCol (hstmt, 1, SQL C CHAR, tabQualifier, 255,

&lenTabQualifier) ;

©Copyright 1995-2008 CASEMaker Inc.

retcode = SQLBindCol (hstmt, SQL C CHAR, tabOwner, 255, &lenTabOwner);

retcode = SQLBindCol (hstmt,

2,

retcode = SQLBindCol (hstmt, 3, SQL C CHAR, tabName, 255, &lenTableName);
4, SQL C CHAR, tabType, 255, &lenTableType)
5,

retcode = SQLBindCol (hstmt, SQL C CHAR, remarks, 255, &lenremarks);

while ((retcode = SQLFetch (hstmt)) == SQL SUCCESS)
{ /* print out the record in the result set */

printf ("column : table qualifier = %$s\n", tabQualifier);

printf ("column : table owner = %s\n", tabOwner) ;

printf ("column : table name = %s\n", tabName);

printf ("column : table type = %s\n", tabType);

g s w N

printf ("column : remarks = %s\n", remarks);

NOTE Wiena Sfunction returns a result set, the user should use SQLBindCol and

SQLFetch to get the rows in the result set. SQLTables, SQLColumns, SQLStatistics,

and SQLSpecialColumns are all such functions.

SQLColumns

You can use SQLTables to get the names of tables that are in a database. Similarly,

you can use the SQLColumns function to get information on the columns found in a

particular table.

The prototype for SQLColumns is

RETCODE SQLColumns (
HSTMT hstmt,
UCHAR *szTableQualifier,
SWORD cbTableQualifier,
UCHAR *szTableOwner,
SWORD cbTableOwner,
UCHAR *szTableName,
SWORD cbTableName,
UCHAR *szColumnName,

SWORD cbColumnName) ;

©Copyright 1995-2008 CASEMaker Inc.

O\ ODBC Programmer’s Guide

Where szTableQualifier, cbTableQualifier, szT'ableOwner, cbTableOwner,
szTableName, and cbTableName are defined the same as SQLTables.
szColumnName points to the search pattern string of the column name.
cbColumnName is the length of szColumnName.

Like the SQLTables function, a result set that matches the criteria in the arguments

given above is returned containing the column information.

The following table lists the columns of the result set:

The result set is ordered by: TABLE QUALIFIER, TABLE OWNER, and
TABLE_NAME. You should use SQLBindCol to bind the columns in the result set
and then use SQLFetch to fetch the results.

6-12 ©Copyright 1995-2008 CASEMaker Inc.

SQLStatistics

SQLStatistics retrieves a list of statistics about specified table(s) and the indexes
associated with those table(s).

Prototype
SQLStatistics:

RETCODE SQLStatistics (

HSTMT hstmt,

UCHAR *szTableQualifier,

SWORD cbTableQualifier,

UCHAR *szTableOwner,

SWORD cbTableOwner,

UCHAR *szTableName,

SWORD cbTableName,

UWORD fUnique,

UWORD fAccuracy)
Where szTableQualifier, cbTableQualifier, szTableOwner, cbTableOwner,
szTableName, and cbTableName are defined the same as for SQLTables and
SQLColumns. fUnique is used to specify the type of index to be returned and
fAccuracy is used to specify the importance of the CARDINALITY and PAGES

columns in the result set.

NOTE fUnique has two options: SQL_INDEX UNIQUE or SQL_INDEX_ALL.
FAccuracy also has two options: SQL_ENSURE or SQL_QUICK.

The following table lists the columns in the result set:

Column No. Column Name Data Type Comments
1 TABLE_QUALIFIER VARCHAR(128)
2 TABLE_OWNER VARCHAR(128)
3 TABLE_NAME VARCHAR(128) NOT NULL
4 NON_UNIQUE SMALLINT
©Copyright 1995-2008 CASEMaker Inc. 6-13

O\ ODBC Programmer’s Guide

Column No. Column Name Data Type Comments
5 INDEX_QUALIFIER VARCHAR(128)
6 INDEX_NAME VARCHAR(128)
7 TYPE SMALLINT NOT NULL
8 SEQ_IN_INDEX SMALLINT
9 COLUMN_NAME VARCHAR(128)
10 COLLATION CHAR(1)
11 CARDINALITY INTEGER
12 PAGES INTEGER
13 FILTER_CONDITION VARCHAR(128)

The TYPE column either has the value SQL_TABLE_STAT or
SQL_INDEX_OTHER. SQL_TABLE_STAT indicates the row contains statistics
for a table and the NON_UNIQUE, INDEX_ QUALIFIER, INDEX NAME,
SEQ_IN_INDEX, COLUMN_NAME, COLLATION, and

FILTER CONDITION columns (used for indexes) will be NULL. On the other
hand, SQL_INDEX_OTHER indicates the row contains statistics for an index.

Similar to SQLTables and SQLColumns, you need SQLBindCol and SQLFetch to
retrieve the data in the result set. The order of the columns in the result set is
NON_UNIQUE, TYPE, INDEX_ QUALIFIER, INDEX_NAME, and
SEQ_IN_INDEX. For a code example of a similar function, please refer to the
SQLTables code example.

SQLSpecialColumns

As the function name implies, SQLSpecial Columns returns the special columns that

uniquely specify rows in a table.

2 Prototype
SQLSpecial Columns:

RETCODE SQLSpecialColumns (
HSTMT hstmt,
UWORD fColType,

UCHAR *szTableQualifier,

6-14 ©Copyright 1995-2008 CASEMaker Inc.

Where hstmt is a valid statement handle, and szTableQualifier, cbTableQualifier,
szTableOwner, cbTableOwner, szTableName, cbTableName are all defined the same
as for SQLTables. fColType specifies the type of column to return. fScope is the
minimum required scope of the special column. fNullable determines whether to

return special columns that can have a NULL value.

NOTE (Co/ Type has two options: SQL_BEST_ROWID and SQL_ROWVER. Scope
has three options: SQL_SCOPE_CURROW, SQL_SCOPE_TRANSACTION
and SQL_SCOPE_SESSION. fNullable has two options: SQL_NO_NULLS and
SQL_NULLABLE.

The following table lists the columns in the result set:

DBMaker provides a specific row identifier, OID, which is similar to ROWID in
Oracle or 71D in Ingres. OID is treated as a pseudo-column in a table because a query
like SELECT * FROM ACCOUNT will not return such a column name, but you
can still use OID in a select list or WHERE clause to fetch the records you want by

explicitly specifying it.

©Copyright 1995-2008 CASEMaker Inc. 6-15

O\ ODBC Programmer’s Guide

6-16

Once you specify SQL_BEST_ROWID in fColType, the result set returned by

SQLSpecialColumns simply contains a row whose column name is OID. You can use
this special column to re-select that row within the defined scope in fScope. The result
of the SELECT statement is guaranteed to have either no rows or one row. For a code

example of a similar function, please reference SQLTables.

If the fColType, 3cope, or fNullable arguments specify characteristics that are not
supported by DBMaker, SQLSpecialColumns returns a rowset with no rows. A
subsequent call to SQLFetch or SQLExtendedFetch on the Astmewill return
SQL_NO_DATA _FOUND.

©Copyright 1995-2008 CASEMaker Inc.

6.3

System Information

You can use SQLGetTypelnfo, SQLGetlnfo, and SQLGetFunctions to get system
information about the data source. These ODBC functions are illustrated by examples

in the following sections.

SQLGetTypelnfo

You can use SQLGetTypelnfo to get information about data types supported by the
data source.

Prototype

SQLGetTypelnfo:

RETCODE SQLGetTypeInfo (HSTMT hstmt, SWORD £SqlType)

When given a value for fSqlType, SQLGetTypelnfo returns the related type
information in the result set. You can use SQLBindCol to bind output storage for the
result set and use SQLFetch to fetch the results into the output storage. £SqlType can
be any SQL data type — SQL_CHAR, SQL_DECIMAL, SQL_INTEGER, etc.

The result set is:

©Copyright 1995-2008 CASEMaker Inc. 6-1

~

O\ ODBC Programmer’s Guide

This following uses SQLGetTypelnfo with SQL_ALL_TYPES as the value of
£SqlType to fetch all data types supported by the data source.

S Example

6-18 ©Copyright 1995-2008 CASEMaker Inc.

©Copyright 1995-2008 CASEMaker Inc.

6-19

O\ ODBC Programmer’s Guide

6-20

SQLGetlInfo

You can use SQLGetInfo to get general information about the data source.

Prototype
SQLGetlnfo:
RETCODE SQLGetInfo (
HDBC hdbc,
UWORD fInfoType,
PTR rgbInfoValue,
SWORD cbInfoValueMax,

SWORD FAR *pcbInfoValue)

Given a value in fInfoType representing the type of information you want to know,
and given the output storage rgbInfoValue and its storage size cbInfoValueMax,
SQLGetInfo will return the fetched information in rgbInfoValue and will return the
size of the fetched information in pcbInfoValue.

Example 1

Checks if the data source supports the string function CONCAT:
UDWORD bitmask;
SDWORD retcode;
retcode = SQLGetInfo (hdbc, SQL STRING FUNCTIONS, (PTR) &bitmask,
sizeof (bitmask), NULL);
if (bitmask & SQL FN STR CONCAT)
printf (“the data source supports CONCAT\n”);
else
printf (“the data source does not support CONCAT\n”);

If you want to know the maximum number of columns allowed in a table, you can try

the code in example 2.

©Copyright 1995-2008 CASEMaker Inc.

S Example 2

Checks for the maximum number of columns permitted in a table:

UWORD maxNCol;

SDWORD retcode;

retcode = SQLGetInfo (hdbc, SQL MAX COLUMNS IN TABLE, (PTR) &maxNCol,
sizeof (maxNCol)) ;

printf (“In this data source, a table can have %d columns at most\n”,

(int) maxNCol);

SQLGetFunctions

You can use SQLGetFunctions to check what ODBC functions the data source

supports.

> Prototype
SQLGetFunctions:

RETCODE ~ SQLGetFunctions (

HDBC hdbc,

UWORD fFunction,

UWORD FAR *pfExists)
The input argument fFunction specifies the kind of ODBC function. The value of
fFunction can be SQL_API_SQLCANCEL, SQL_API_SQLFETCH,
SQL_PUTDATA, etc. — SQLCancel, SQLFetch, SQLPutData are all ODBC

functions.

For example, you can give the argument SQL_API_SQLCANCEL in fFunction to
check whether the data source supports SQLCancel.

After submitting SQLGetFunctions, in order to determine the existence of the ODBC
function, you can check the Boolean value(s) in pfExists, which is a pointer to a single

Boolean value or a list of Boolean values.

©Copyright 1995-2008 CASEMaker Inc. 6-21

O\ ODBC Programmer’s Guide

S Example 1

Checks if the data source supports SQLExecDirect:

S Example 2
Checks if the data source supports SQLTables:

6-22 ©Copyright 1995-2008 CASEMaker Inc.

6-4

Procedure Information

You can use SQLProcedureColumns and SQLProcedures to get stored procedure

information. These ODBC functions are illustrated by examples in the following

sections

SQLProcedureColumns

You can use SQLProcedureColumns to retrieve information about the list of input

and output parameters, as well as the content of the defined columns that make up the

result set for the specified procedures. The driver returns the information as a result

set.

Prototype
SQLProcedureColumns:

RETCODE SQLProcedureColumns (

HSTMT hstmt,

UCHAR *szProcQualifier,

SWORD

UCHAR

SWORD

UCHAR

SWORD

UCHAR

SWORD

cbProcQualifier,
*szProcOwner,

cbProcOwner,
*szProcName,

cbProcName,
*szColumnName,

cbColumnName)

A string to be used as a search pattern can exist in szProcQualifier, szProcOwner, and

szProcName. These three arguments and their corresponding string length arguments,
cbProcQualifier; cbProcOwner, and cbProcName appear in SQLProcedures.

The arguments for SQLProcedureColumns are:

. hstmt — a valid statement handle for retrieved results.

©Copyright 1995-2008 CASEMaker Inc. 6-23

O\ ODBC Programmer’s Guide

szProcQualifier —not supported by DBMaker, and should be NULL or an
empty string.

cbProcQualifier — the length of szProcQualifier, and should be zero.

szProcOwner — points to the owner name. The owner is the person who
created the procedure. It can be a string to be used as a search pattern or a
NULL value. Use a NULL value to indicate all owners.

cbProcOwner — the length of szProcOwner or SQL_NTS.

szProcName — points to the names of procedures. It can be a string to be used
as a search pattern or a NULL value. Use a NULL value to indicate all

procedures.
cbProcName — the length of szProcName or SQL_NTS.

szColumnName — points to the names of columns. It can be a string to be used

as a search pattern or a NULL value. Use a NULL value to indicate all columns.

cbColumnName — the length of szColumnName.

SQLProcedureColumns returns a result set consisting of the following columns:

6-24

©Copyright 1995-2008 CASEMaker Inc.

The following uses SQLProcedureColumns to fetch all information about database

user Tom’s stored procedure “employee” that makes up the result set for the specific
procedure.

S Example

©Copyright 1995-2008 CASEMaker Inc. 6-25

O\ ODBC Programmer’s Guide

printf ("column column type = %d\n", colType) ;

printf ("column data type = %d\n", dataType);

printf ("column type name = %$s\n", typeName);

o g o u»m

printf ("column precision = %d\n", prec);
printf ("column 9 : length = %d\n", length);
printf ("column 10 : scale = %d\n", scale);
printf ("column 11 : radix = %d\n", radix);
printf ("column 12 : nullable = %d\n", nullable);

printf ("column 13 : remark = %s\n", remark);

SQLProcedures

You can use SQLProcedures to get the list of procedure names that is stored in the

data source.

2 Prototype
SQLProcedures:

RETCODE SQLProcedures (

HSTMT hstmt,

UCHAR *szProcQualifier,

SWORD cbProcQualifier,

UCHAR *szProcOwner,

SWORD cbProcOwner,

UCHAR *szProcName,

SWORD cbProcName) ;
hstmt is a valid statement handle. szTableQualifier, cbTableQualifier, szTableOwner,
cbTableOwner, szTableName, cbTableName are all defined the same as for
SQLProcedureColumns. SQLProcedures returns the result as a standard result set, in

the order PROCEDURE_QUALIFIER, PROCEDURE_OWNER, and
PROCEDURE_NAME.

6-26 ©Copyright 1995-2008 CASEMaker Inc.

The following table lists the columns in the result set:

This following shows how to use SQLProcedures to fetch all procedures that created
by “Tom”. If you want to retrieve all procedures in the database, you can use a null

value in the field of the procedure owner.

2 Example

©Copyright 1995-2008 CASEMaker Inc. 6-27

O\ ODBC Programmer’s Guide

6-28 ©Copyright 1995-2008 CASEMaker Inc.

Transaction Control 7

Transaction Control

In this chapter, we will describe the concepts of transactions and savepoints and their
characteristics. We will also show you how to use ODBC functions to end a

transaction and setup options for transaction control.
In this chapter you will learn how to:

. Set and use two different commit modes, auto-commit and manual-commit, by

using the SQLSetConnectOption and SQLGetConnectOption functions,

. Terminate a transaction by using the SQL Transact function. The effects that

occur when a transaction is terminated are also explained.

©Copyright 1995-2008 CASEMaker Inc. 7-1

O\ ODBC Programmer’s Guide

7.1

7-2

Transactions and Savepoints

A transaction is a sequence of one or more SQL statements that form a logical unit of
work. Each SQL statement in the transaction performs part of a task and all of them
are necessary for the task. Only when all SQL statements in the transaction are
executed successfully we can treat the task as completed.

To manage a deposit in a bank account, a program should:

1. Query the account table to make sure the account name is valid.

2. Query the branch table to make sure the branch number is valid.

3. Query the teller table to check if the teller exists.

4. Insert a record into the history table for this deposit.

5. Update the balance of this account name in the account table, and add the money
for this deposit.

6. Update the balance of this teller in the teller table.
7. Update the balance of this branch in the branch table.

NOTE T/ese seven operations compose a complete transaction, and each operation is an
SQL statement. If any one of these statements fails, the execution of this entire
transaction must be discarded or inconsistencies in the data may result.

The general flow of a transaction:

1. Start a transaction.

2. Execute the statements.

3. Roll back the changes if any of the statements fail.

4. Commit the changes if all of the statements succeed.

When you connect to DBMaker, a transaction starts automatically. You can execute as
many SQL statements as you need. After these SQL statements are processed, to
commit the transaction including all changes made by DML operations (INSERT,
DELETE or UPDATE), call the ODBC function SQLTransact with the option
SQL_COMMIT. On the other hand, if you want to abort the transaction, you can

©Copyright 1995-2008 CASEMaker Inc.

Transaction Control 7

call the ODBC function SQLTransact with the option SQL_ROLLBACK. After one

transaction is terminated, DBMaker will automatically start a new transaction.

Sometimes if the transaction is very long, you can use savepoints to divide the long
transaction into several parts so that it is easier to manage the whole transaction. A
savepoint is a logical marker that can be declared at a specified point within the

context of a transaction. Using a savepoint allows you to undo all updates after the

specified point in a transaction without undoing the whole transaction.

For example, if you execute a transaction that is composed of fifteen SQL statements,
. th th
and you mark a savepoint between the 10” and 11" statement, you can rollback to the
. . . . h
savepoint if an error occurs while executing the 12" statement. Then you only have to

th

. h
correct the statement the error occurred in and redo the 10”, 11th, and 12 statement

instead of redoing all the statements in current transaction.

Example

statement 1;

statement 5;
SAVEPOINT SVP1; -> point A: define the first savepoint

statement 6;

statement 10;
SAVEPOINT SVP2; -> point B: define the second savepoint

statement 11;

statement 12; —-> error occurs
ROLLBACK TO SVP2; -> point C: when error occurs, rollback to nearest
savepoint

/* at this point, all the statements before SVP2 are preserved */

/* only statement 11 and 12 need to be re-executed. =/
statement 13;
statement 14;
statement 15;

COMMIT WORK; -> if all statements are ok, commit the transaction

©Copyright 1995-2008 CASEMaker Inc. 7-3

O\ ODBC Programmer’s Guide

In this example, we can see how savepoints can help us manage a long transaction. In
DBMaker, you can define up to 32 savepoints in a transaction. After the transaction is

terminated, all the defined savepoints in this transaction will be cleared.

Note that the savepoint ID must be unique in a transaction, e.g. if you have defined a
savepoint named SVPI at point A, you cannot define another savepoint named SVPI
at point B. Another important fact to remember when using savepoints is that when
you roll back to a pre-defined savepoint, all the savepoints defined after that point are
discarded.

E.g. At point C in the above example, if you rollback to savepoint SVP1, then SVP2
is discarded and cannot be used any more. However, you can then define a new
savepoint called SVP2.

©Copyright 1995-2008 CASEMaker Inc.

Transaction Control 7

7.2

Terminating a Transaction

As described in the previous section, you can use SQLTransact to commit or rollback

a transaction.

Prototype

SQLTransact:

RETCODE SQLTransact (
HENV henv,
HDBC hdbc,
UWORD fType) ;

Where fType can be either SQL_COMMIT or SQL_ROLLBACK. As their names
imply, SQL_COMMIT commits the transaction and SQL_ROLLBACK rolls back

the transaction.

In DBMaker, unless the value of connection option SQL_CB_MODE is set to
SQL_CB_PRESERVE after a transaction is terminated (either committed or rolled
back), or the user rolls back to a defined savepoint, all pending results associated with

the statement handles in the current connection handle are cleared.

Example

SQLAllocEnv (&henv) ;
SQLAllocConnect (henv, &hdbc) ;
/* connect to a database */
SQLConnect (hdbc, ...)
SQLAllocStmt (hdbc, &hstmtl);

SQLAllocStmt (hdbc, &hstmt2);
/* fetch one tuple from account table */

SQLExecDirect (hstmtl, "select * from account", SQL NTS);

SQLBindCol (hstmtl, 1,)

©Copyright 1995-2008 CASEMaker Inc. 7-5

O\ ODBC Programmer’s Guide

When a transaction is committed, the unfetched data in the result sets associated with

hstmt1 and hstmt2 are cleared (suppose the account and branch tables have more than

one row).

7-6 ©Copyright 1995-2008 CASEMaker Inc.

Transaction Control 7

7-3

Auto-Commit & Manual-Commit

In general, application programs want to control the termination of transactions. In

this situation, manual-commit mode is needed.

ODBC defines many connection options, and one of them is
SQL_AUTOCOMMIT. This connection option indicates whether auto-commit
mode should be turned on or off. The default value of the SQL_AUTOCOMMIT

option is on. This means that every statement is committed automatically.

Example 1

To start transaction processing, turn off the SQL_AUTOCOMMIT option by using
the SQLSetConnectOption ODBC function.

SQLSetConnectOption (hdbc, SQL AUTOCOMMIT, SQL AUTOCOMMIT OFF)

The user controls the commit action after this function call. If the auto-commit mode
is off and the transaction is not committed when the user calls SQLDisconnect,
DBMaker will rollback the transaction and return a warning.

Example 2

To get the value of the current auto-commit mode, use the SQLGetConnectOption :

SQLGetConnectOption (hdbc, SQL AUTOCOMMIT, &optVal);

If the option value in optVal is SQL_AUTOCOMMIT_ON, then each SQL

statement will be committed automatically after it is successfully executed.

©Copyright 1995-2008 CASEMaker Inc. 7-7

O\ ODBC Programmer’s Guide

7-8 ©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

8 ODBC 3.0 Functions

The Application Program Interface (API) found in DBMaker is now ODBC 3.0
compatible. To be ODBC 3.0 compatible, some new functions have been added,
some old functions have been deprecated, and other functions have been modified.
As a result, some of the existing functions may behave differently than in previous
versions of DBMaker, while the use of other functions is discouraged. For a full
description of ODBC 3.0 functions and how to use them, refer to the “Microsoft
ODBC 3.0 Programmer’s Reference”.

©Copyright 1995-2008 CASEMaker Inc. 8-1

O\ ODBC Programmer’s Guide

8.1

8-2

Deprecated functions

The following functions or function argument values have been deprecated in the
DBMaker API (ODBC 3.0). DBMaker currently retains these functions for
purposes of backward compatibility, but does not guarantee that they will appear in
future versions.

¢ SQLAllocConnect—SQLAllocConnect has been replaced by
SQLAllocHandle function with HandleType SQL_HANDLD_DBC. You
should use SQLAllocHandle for this function in the future.

e SQLAIllocEnv—SQLAIllocEnv has been replaced by SQLAIllocHandle
function with HandleType SQL_HANDLD_ENV. You should use
SQLAIllocHandle for this function in the future.

e SQLAllocStmt—SQLAllocStmt has been replaced by SQLAllocHandle
function with HandleType SQL_HANDLD_STMT. You should use
SQLAllocHandle for this function in the future.

¢ SQLColAttributes—SQLColAttribute has replaced the SQLColAttribute
function. You should use SQLColAttribute instead of SQLColAttributes for

this function in the future.

¢ SQLExtendedFetch—SQLFetchScroll has replaced the SQLExtendedFetch
function. You should use SQLFetchScroll instead of SQLExtendedFetch for
this function in the future.

e SQLFreeConnect—SQLFreeConnect has been replaced by SQLFreeHandle
with HandleType SQL_HANDLE_DBC. You should use SQLFreeHandle for

this function in the future.

e SQLFreeEnv—SQLFreeEnv has been replaced by SQLFreeHandle with
HandleType SQL_HANDLE_ENV. You should use SQLFreeHandle for this

function in the future.

e SQLFreeStmt—the SQL_DROP value of the Option argument in
SQLFreeStmt has been replaced by SQLFreeHandle with HandleType

©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

SQL_HANDLE_STMT. You should use SQLFreeHandle for this function in
the future.

SQLGetConnectOption-- SQLGetConnectAttr has replaced the
SQLGetConnectOption function. You should use SQLGetConnectAttr instead
of SQLGetConnectOption for this function in the future.

SQLGetStmtOption-- SQLGetStmtALttr has replaced the SQLGetStmtOption
function. You should use SQLGetStmtALttr instead of SQLGetStmtOption for
this function in the future.

SQLSetConnectOption-- SQLSetConnectAttr has replaced the
SQLSetConnectOption function. You should use SQLSetConnectAttr instead
of SQLSetConnectOption for this function in the future.

SQLSetPos—the SQL_ADD value of the fOption argument in the SQLSetPos
function has been replaced by the SQL_ADD value of the Operation value in
the SQLBulkOperations function. You should use SQLBulkOperations instead
of SQLSetPos for this function in the future.

SQLSetStmtOption-- SQLSetStmtAttr has replaced the SQLSetStmtOption
function. You should use SQLSetStmtAttr instead of SQLSetStmtOption for
this function in the future.

SQLTransact—SQL Transact has been replaced by the SQLEndTran function.
You should use SQLTransact instead of SQLEndTran for this function in the
future.

©Copyright 1995-2008 CASEMaker Inc. 8-3

Ol ODBC Programmer’s Guide

8.2

Modified functions

The following functions have been modified in the DBMaker AP1 (ODBC 3.0).
The behavior of these functions will differ somewhat from DBMaker 3.01 and
earlier APIs (ODBC 2.0). However, the behavior of these functions will remain
unchanged if you are using client software from versions of DBMaker before
version 3.5.

SQLCancel

The SQLCancel function is fully supported in the DBMaker API (ODBC 3.0). In
previous versions of DBMaker (ODBC 2.0), when there was no processing being
done on a statement calling the SQLCancel function, it had the same effect as
calling SQLFreeStmt with the SQL_CLOSE option. In DBMaker, no processing
being done on a statement calling the SQLCancel function has no effect. If you
have a cursor open and want to close it, you should call SQLCloseCursor instead
of SQLCancel.

SQLColumns

The SQLColumns function is fully supported in the DBMaker API (ODBC 3.0).
The SQLColumns function will now return 18 columns, regardless of whether the
client is using the ODBC2.0 or 3.0 API. The following table lists the column
names returned by this function for SQLColumns function for both DBMaker and
for previous versions of DBMaker.

DBMaker 3.5 - 4.x (ODBC 3.0) DBMaker 2.0x, 3.0x (ODBC 2.0)
TABLE_CAT TABLE_QUALIFIER
TABLE_SCHEM TABLE_OWNER

TABLE_NAME TABLE_NAME

COLUMN_NAME COLUMN_NAME

DATA_TYPE DATA _TYPE

TYPE_NAME TYPE_NAME

COLUMN_SIZE PRECISION

©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

DBMaker 3.5 - 4.x (ODBC 3.0) DBMaker 2.0x, 3.0x (ODBC 2.0)
BUFFER_LENGTH LENGTH
DECIMAL_DIGITS SCALE
NUM_PREC_RADIX RADIX
NULLABLE NULLABLE
REMARKS —
COLUMN_DEF —

SQL_DATA TYPE —
SQL_DATETIME_SUB —
CHAR_OCTET_LENGTH —
ORDINAL_POSITION —
IS_NULLABLE —

SQLFetch

The SQLFetch function is fully supported in the DBMaker APl (ODBC 3.0). In
DBMaker, the SQLFetch function can now support rowsets with multiple rows.
Earlier versions of DBMaker only supported single-row operations with the
SQLFetch function.

SQLGetData

The SQLGetData function is fully supported in the DBMaker API (ODBC 3.0). In
DBMaker, the SQLGetData function can now support rowsets with multiple rows.
Earlier versions of DBMaker only supported single-row operations with the
SQLGetData function.

SQLGetFunctions

The SQLGetFunctions function is fully supported in the DBMaker APl (ODBC
3.0). In DBMaker, you can call the SQLGetFunctions function with a value of
SQL_API_ODBC3_ALL_FUNCTIONS or SQL_API_ALL_FUNCTIONS for the
Functionld parameter. SQL_API_ODBC3_ALL_FUNCTIONS is used by ODBC
3.0 applications to determine support for ODBC 3.0 or earlier functions, while

©Copyright 1995-2008 CASEMaker Inc. 8-5

O\ oDBC Programmer’s Guide

SQL_API_ALL_FUNCTIONS is used by ODBC 2.0 applications to determine
support for ODBC 2.0 or earlier functions.

If the value of Functionld is SQL_API_ODBC3_ALL_FUNCTIONS,
SupportedPtr points to a 4000-bit bitmap that can be used to determine whether an
ODBC 3.0 or earlier function is supported. You can use
SQL_API_ODBC3_ALL_FUNCTIONS with either ODBC 3.0 or 2.0 drivers. If
the value of FunctionID is SQL_API_ALL_FUNCTIONS, then SupportedPtr
returns an array of 100 elements that you can use to determine whether an ODBC
2.0 function is supported.

SQLGetlInfo

The SQLGetlInfo function is now fully supported in the DBMaker APl (ODBC
3.0).

SQLProcedureColumns

The SQLProcedureColumns function is now fully supported in the DBMaker API
(ODBC 3.0). DBMaker SQLProcedureColumns function will now return 19
columns, regardless of whether the client is using the ODBC 2.0 or 3.0 API. The
following table lists the column names returned by this function for
SQLProcedureColumns function for both DBMaker and for previous versions of

DBMaker.

DBMaker 3.5 - 4.x (ODBC 3.0) DBMaker 2.0x, 3.0x (ODBC 2.0)
PROCEDURE_CAT PROCEDURE _QUALIFIER
PROCEDURE _SCHEM PROCEDURE _OWNER
PROCEDURE _NAME PROCEDURE _NAME
COLUMN_NAME COLUMN_NAME
COLUMN_TYPE COLUMN_TYPE
DATA_NAME DATA_NAME
TYPE_NAME TYPE_NAME
COLUMN_SIZE PRECISION
BUFFER_LENGTH LENGTH

8-6 ©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

©Copyright 1995-2008 CASEMaker Inc. 8-

~

o\ obpBC Programmer’s Guide

8.3 New functions

This section lists all new functions in DBMaker, the supported options of each
function, and whether the function fully or partially supports the ODBC 3.0
standard.

SQLAIllocHandle

The SQLAIllocHandle function is fully supported in the DBMaker APl (ODBC
3.0). It is a generic function for allocating environment, connection, statement, or
descriptor handles, and replaces the ODBC 2.0 functions SQLAIllocConnect,
SQLAlIllocEnv, and SQLAIllocStmt.

> Prototype
SQLAllocHandle:

RETCODE SQLAllocHandle (
SQLSMALLINT HandleType,
SQLHANDLE InputHandle,
SQLHANDLE * OutputHandlePtr) ;

The following example uses the SQLAIllocHandle function to allocate the
environment, connection, and statement handles.

> Example
SQLHANDLE henv, hdbc, hstmt;
SQLRETURE retcode;
retcode = SQLAllocHandle (SQL HANDLE ENV, SQL NULL HANDLE, &henv) ;

Retcode = SQLSetEnvAttr (henv, SQL ATTR ODBC VERSION,
(void*)SQL OV_ODBC3, 0);

retcode = SQLAllocHandle (SQL HANDLE DBC, henv, &hdbc) ;
retcode = SQLConnect (hdbc, (SQLCHAR*) “test”, SQL NTS,
(SQLCHAR*) ”Sysadm”, SQL NTS,

(SQLCHAR*) “coffee”, SQL NTS) ;

8-8 ©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

retcode = SQLAllocHandle (SQL HANDLE STMT, hdbc, &hstmt) ;

SQLBulkOperations

The SQLBulkOperations function is fully supported in the DBMaker API (ODBC
3.0). The SQLBulkOperations function performs bulk insertions and bookmark
operations, including update, delete, and fetch by bookmark operations.

Prototype
SQLBulkOperations:

RETCODE SQLBulkOperations (
SQLHSTMT StatementHandle,
SQLUSMALLINT Operation) ;

The following table shows a list of options for the SQLBulkOperations function,
and whether they are supported.

Operation Supported?
SQL_ADD Y
SQL_UPDATE_BY_BOOKMARK Y
SQL_DELETE_BY_BOOKMARK Y
SQL_FETCH_BY_BOOKMARK Y

The following uses SQLBulkOperations function with option value SQL_ADD to
insert two rows of data into table Employee.

Example

SQLRETCODE retcode;

SQLHANDLE hstmt;

SQLUINTEGER CustID[2];

SQLCHAR Name [2] [18] , Address[2] [100], Phone[2] [11];
SQLINTEGER CustIDInd[2], NameInd[2], AddressInd[2], PhoneIbd[2];
/* set necessary statement attributes */

retCode = SQLSetStmtAttr (hstmt, SQL ATTR CURSOR TYPE, SQL CURSOR DYNAMIC) ;

©Copyright 1995-2008 CASEMaker Inc. 8-9

Ol ODBC Programmer’s Guide

retcode = SQLSetStmtAttr (hstmt, SQL ATTR CONCURRENCY, SQL CONCUR LOCK) ;
retcode = SQLSetStmtAttr (hstmt, SQL ROW ARRAY SIZE, 2);

/* binding columns */

retcode = SQLBindCol (hstmt, 1, SQL C LONG, CustID, 0, CustIDInd);
retcode = SQLBindCol (hstmt, 2, SQL C CHAR, Name, 18, NameInd) ;
retcode = SQLBindCol (hstmt, 3, SQL C CHAR, Address, 100, AddressInd) ;
retcode = SQLBindCol (hstmt, 4, SQL C CHAR, Phone, 11, PhonelInd) ;
/* execute a query */

SQLExecDirect (hstmt, “select * from Customers”, SQL NTS) ;

/* prepare data for insertion */

CustID([0] = 1;

CustID[1] = 2;

strcpy (Name [0], “Jackson”) ;

strcpy (Name [1], “Clinton”) ;

strcpy (Address [0], “107 Castlewood, Cary, NC11256”) ;

strcpy (Address[1], “305 N. Frances St., Madison, WI95868”);

strcpy (Phone [0], “02-78923423") ;

strcpy (Phone [1], “03-7893933”) ;

/* insert data */

retcode = SQLBulkOperations (hstmt, SQL ADD) ;

SQLCloseCursor

The SQLCloseCursor function is fully supported in the DBMaker API (ODBC
3.0). The SQLCloseCursor function closes a cursor that is open on a statement, and
discards pending results.

> Prototype
SQLCloseCursor:

RETCODE SQLCloseCursor (

8-10 ©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

SQLColAttribute

The SQLColAttribute function is fully supported in the DBMaker API (ODBC
3.0). The SQLColAttribute function returns information about a column in a result
set either as a character string, a 32-bit value, or an integer value.

Prototype
SQLColAttribute:

The following table lists the descriptor types returned by this function.

—_
—_

©Copyright 1995-2008 CASEMaker Inc. 8-

Ol ODBC Programmer’s Guide

8-12

©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

—_

3

©Copyright 1995-2008 CASEMaker Inc. 8-

Ol ODBC Programmer’s Guide

FIELD IDENTIFIER PURPOSE

SQL_DESC_UNSIGNED Determines whether the column is
unsigned (SQL_TRUE) or not
(SQL_FALSE).

SQL_DESC_UPDATABLE Describes if the column in the result set
can be updated or not (not the column
in the base table).

SQLCopyDesc

The SQLCopyDesc function is fully supported in the DBMaker APl (ODBC 3.0).
The SQLCopyDesc function copies descriptor information from one descriptor
handle to another.

> Prototype
SQLCopyDesc:

RETCODE SQLCopyDesc (

SQLHDESC SourceDescHandle,

SQLHDESC TargetDescHandle) ;
In the following example, descriptor operations are used to copy fields of the
Partinfo table into Backup table. To do so, copy the fields of the IRD of hstmt1 to

the fields of the IPD in hstmt2, and the fields of the ARD of hstmt1 to the fields of
the APD in hstmt2.

2 Example

/* the structure of a record row */

typedef struct{
SQLINTEGER PartID;
SQLINTEGER PartIDInd;
SQLUCHAR Description[100] ;
SQLINTEGER DescriptionInd;
DOUBLE Price;

SQLINTEGER PriceInd;

8-14 ©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

©Copyright 1995-2008 CASEMaker Inc. 8-15

Ol ODBC Programmer’s Guide

8-16

retcode = SQLFetchScroll (hstmtl, SQL FETCH NEXT, O0);

SQLENndTran

The SQLENdTran function is fully supported in the DBMaker API (ODBC 3.0).
The SQLENdTran requests the DBMaker server to perform a commit or rollback
for all active operations on all statements associated with a connection, or for all
connections associated with an environment. DBMaker supports the following
values for the CompletionType argument: SQL_COMMIT and SQL_ROLLBACK.

Prototype
SQLENndTran:

RETCODE SQLEndTran (
SQLSMALLINT HandleType,
SQLHANDLE Handle,

SQLSMALLINT CompletionType) ;

SQLFetchScroll

The SQLFetchScroll function is fully supported in the DBMaker APl (ODBC 3.0).
The SQLFetchScroll function fetches a rowset of data, at a relative or absolute
position, or by a bookmark, from the result set and returns all bound columns.
DBMaker supports the following values for the FetchOrientation argument:
SQL_FETCH_NEXT, SQL_FETCH_PRIOR, SQL_FETCH_FIRST,
SQL_FETCH_LAST, SQL_FETCH_ABSOLUTE, SQL_FETCH_BOOKMARK,
and SQL_FETCH_RELATIVE.

Prototype
SQLFetchScroll:

RETCODE SQLFetchScroll (

SQLHSTMT StatementHandle,

©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

SQLSMALLINT Handle,

SQLINTEGER FetchOffset) ;
The following code fragment shows how to use SQLFetchScroll function with
option SQL_NEXT to fetch the whole result set. To get the row status, you need to

use SQLSetStmtAttr function with SQL_ATTR_ROW_STATUS PTR, which is
different from SQLEXxtendedFetch.

Example

#define LENGTH 18

#define ROWSET SIZE 5

SQLHandle hstmt;

RETCODE retcode;

SQLUCHAR empid [ROWSET SIZE] [LENGTH]
SQLUCHAR name [ROWSET SIZE] [LENGTH] ;
FLOAT salary [ROWSET SIZE] ;

SQLINTEGER empidInd [ROWSET_SIZE] , nameInd [ROWSET_SIZE] 0
salaryInd [ROWSET SIZE] ;

SQLUSMALLINT status [ROWSET SIZE] ;

SQLUSMALLINT i;

/* set row status pointer */

retcode = SQLSetStmtAttr (hstmt, SQL ATTR ROW STATUS PTR, status, 0);
/* set rowset size */

retcode = SQLSetStmtAttr (hstmt, SQL ROW ARRAY SIZE, ROWSET SIZE) ;
/* execute a statement */

SQLExecDirect (hstmt, “SELECT * FROM EMPLOYEE”, SQL NTS) ;

/* binding columns */

SQLBindCol (hstmt, 1, SQL C CHAR, empid, LENGTH, empidInd) ;
SQLBindCol (hstmt, 2, SQL C CHAR, name, LENGTH, nameInd) ;
SQLBindCol (hstmt, 3, SQL C FLOAT, salary, 0, salaryInd);

retcode = SQLFetchScroll (hstmt, SQL FETCH NEXT, O0);

for (i = 0; 1 < ROWSET SIZE; i++)

©Copyright 1995-2008 CASEMaker Inc. 8-17

Ol ODBC Programmer’s Guide

{ if (status[i] == SQL ROW SUCCESS)

{

printf (“tuple $1d is - Employee ID : %s, Employee Name : %s,
Salary : %$f \n”, i+l, empid[i], name([i], salaryl[i]);

}
else {

printf (“fetch tuple %1d error \n”, i+l);

SQLForeignKeys

The SQLForeignKeys function is fully supported in the DBMaker APl (ODBC
3.0). The SQLForeignKeys function returns a list of foreign keys in the specified
table, or a list of foreign keys in other tables that reference the primary key in the
specified table.

> Prototype
SQLForeignKeys:

RETCODE SQLForeignKeys (

SQLHSTMT StatementHandle,
SQLCHAR * PKCatalogName,
SQLSMALLINT NameLengthl,
SQLCHAR * PKSchemaName,
SQLSMALLINT NameLength2,
SQLCHAR * PKTableName,
SQLSMALLINT NameLength3,
SQLCHAR * FKCatalogName,
SQLSMALLINT NameLength4,
SQLCHAR * FKSchemaName,
SQLSMALLINT NameLength5,
SQLCHAR * FKTableName,

8-18 ©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

SQLSMALLINT NameLengthé) ;

This example uses two tables: ORDER (ORDERID, CUSTID, OPENDATE) and
CUSTOMER (CUSTID, NAME, ADDRESS, PHONE).

In the ORDER table, CUSTID identifies the customer to whom the sale has been
made. A foreign key refers to ORDERID in the CUSTOMER table.

This example calls SQLForeignKeys to get foreign keys in other table that
reference the primary key of the ORDER table.

Example
#define TAB LEN 18
#define COL_LEN 18
SQLUCHAR pkTable [TAB LEN+1], fkTable[TAB LEN+1] ;
SQLUCHAR pkCol [COL LEN+1], fkCol [COL LEN+1] ;
SQLHANDLE hstmt;
SQLINTEGER pkTableInd, fkTableInd, pkColInd, fkColInd;
SQLRETCODE retcode;
/* Bind the columns that describe the primary and foreign keys */
SQLBindCol (hstmt, 3, SQL C CHAR, pkTable, TAB LEN, &pkTableInd) ;
SQLBindCol (hstmt, 4, SQL C CHAR, pkCol, COL_LEN, &pkColInd);
SQLBindCol (hstmt, 7, SQL C CHAR, fkTable, TAB LEN, &fkTableInd);
SQLBindCol (hstmt, 8, SQL C CHAR, fkCol, COL_LEN, &fkColInd) ;
/* Get the names of columns in the primary key. */
retcode = SQLForeignKeys (hstmt, NULL, 0, NULL, 0, “ORDER”, SQL NTS,
NULL, 0, NULL, 0, NULL, O);
while (retcode == SQL SUCCESS || retcode == SQL SUCCESS WITH INFO) {
retcode = SQLFetchScroll (hstmt, SQL FETCH NEXT, O0);
printf (“Primary Table : %s, Primary Column : %s \n”, pkTable, pkCol) ;
printf (“Foreign Table : %s, Foreign Column : %s \n”, fkTable, fkCol) ;

}

/* close the cursor */

©Copyright 1995-2008 CASEMaker Inc. 8-19

Ol ODBC Programmer’s Guide

SQLCloseCursor (hstmt) ;

SQLFreeHandle

The SQLFreeHandle function is fully supported in the DBMaker APl (ODBC 3.0).
The SQLFreeHandle function frees resources associated with an environment,
connection, statement, or descriptor handle that was previously allocated using the
SQLAIllocHandle function.

8-20 ©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

> Prototype
SQLFreeHandle:

RETCODE SQLFreeHandle (
SQLSMALLINT HandleType,
SQLHANDLE Handle) ;

The following code fragment shows how to use SQLFreeHandle function to free
the environment handle.

2 Example
SQLHANDLE ~ henv;

SQLAllocHandle (SQL HANDLE ENV, SQL NULL HANDLE, &henv);

SQLFreeHandle (SQL. HANDLE ENV, henv) ;

SQLGetConnectAttr

The SQLGetConnectAttr function is partially supported in the DBMaker API
(ODBC 3.0). The SQLSetConnectAttr function gets attributes for a database
connection. This function replaces the SQLGetConnectOption function in ODBC
2.0.

> Prototype
SQLGetConnectAttr:

RETCODE SQLGetConnectAttr (
SQLHDBC ConnectionHandle,
SQLINTEGER Attribute,
SQLPOINTER ValuePtr,
SQLINTEGER BufferLength,
SQLINTEGER *StringlengthPtr) ;

The following table lists the attributes that can be retrieved using this function, and
whether they are supported in DBMaker.

©Copyright 1995-2008 CASEMaker Inc. 8-21

o\ obpBC Programmer’s Guide

8-22

SQLGetDescField

The SQLGetDescField function is fully supported in the DBMaker APl (ODBC
3.0). The SQLGetDescField function gets the value of a single field of a descriptor
record.

> Prototype
SQLGetDescField:

©Copyright 1995-2006 CASEMaker Inc.

ODBC 3.0 Functions 8

The following table lists the descriptor fields that can be retrieved using this
function in DBMaker. In the table, the “G” represents Get, S represents Set, and
“I” represents Invalid. SQL_DESC_ARRAY_SIZE only supports a value of one.

©Copyright 1995-2008 CASEMaker Inc. 8-23

Ol ODBC Programmer’s Guide

The following code fragment shows how to use SQLGetDescField to get the
columns’ information.

2 Example

8-24 ©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

SQLGetDescField(ird, index, SQL DESC PRECISION, é&prec, 0, NULL);
SQLGetDescField(ird, index, SQL DESC SCALE, &scale, 0, NULL);
SQLGetDescField(ird, index, SQL DESC LENGTH, &len, 0, NULL) ;

printf (*Column No : %d, Name : %s, Type : %s, Length : %d,
Precision : %d, Scale : %d \n”, index, colName, typeName, len, prec, scale);

}

SQLGetDescRec

The SQLGetDescRec function is fully supported in the DBMaker APl (ODBC
3.0). The SQLGetDescRec function returns the settings or values of multiple fields
in a descriptor record.

Prototype

SQLGetDescRec:

RETCODE SQLGetDescRec (
SQLHDESC DescriptorHandle,
SQLSMALLINT RecNumber,
SQLCHAR* Name,
SQLSMALLINT BufferLength,
SQLSMALLINT* StringlengthPtr,
SQLSMALLINT* TypePtr,
SQLSMALLINT* SubTypePtr,
SQLINTEGER* LengthPtr,
SQLSMALLINT* PrecisionPtr,
SQLSMALLINT* ScalePtr,
SQLSMALLINT* NullablePtr) ;

The following code fragment shows how to use SQLGetDescRec function to get
column information.

©Copyright 1995-2008 CASEMaker Inc. 8-25

Ol ODBC Programmer’s Guide

8-26

2 Example

#define LEN 19

SQLHANDLE hstmt, ird;

SQLINTEGER count, index;

SQLUCHAR colName [LEN] ;

SQLSMALLINT type, prec, scale, nullable;

SQLUINTEGER length;

/* execute the statement */

SQLExecDirect (hstmt, “select * from EMPLOYEE”, SQL NTS) ;
/* get the ird descriptors */

SQLGetStmtAttr (hstmt, SQL ATTR IMP ROW DESC, &ird, SQL IS POINTER, NULL) ;
/* get the number of columns */

SQLGetDescField(ird, 0, SQL DESC COUNT, &count, 0, NULL) ;
for (index = 1; index <= count; index++)

{

SQLGetDescRec (ird, index, colName, LEN, NULL, &type, NULL, &len,
&prec, &scale, &nullable);

printf (*Column No. : %d, Name : %s, Type : %d, Length : %d,
Precision : %d, Scale : %d, Nullable : %d \n”, index, colName, type, len,
prec, scale, null);

}

SQLGetDiagField

The SQLGetDiagField function is partially supported in the DBMaker API
(ODBC 3.0). The SQLGetDiagField function returns the current value of a field
from a record in a specified handle’s diagnostic data structure. The field contains
error, warning, and status information.

Prototype

SQLGetDiagField:

©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

The following table shows the identifier of the field required from the diagnostic
data structure, and whether it is supported in DBMaker.

The following code fragment shows how to use SQLGetDiagField function and
SQLGetDiagRec function to get the error information.

> Example

N

©Copyright 1995-2008 CASEMaker Inc. 8-27

A\OoDBC Programmer’s Guide

8-28

SQLINTEGER num, index, nativerc;

SQLUCHAR state[20], errmsg[200];

SQLSMALLINT retLen;

/* execute a statement */

retcode = SQLExecDirect (hstmt, “SELECT * FROM EMPLOYEE”, SQL NTS) ;
/* if error, get error info */

if (retcode != SQL SUCCESS) {

SQLGetDiagField (SQL HANDLE STMT, hstmt, 0, SQL DIAG NUM, &num, O,
NULL) ;

for (index = 1; index <= num; index++) {

SQLGetDiagRec (SQL HANDLE STMT, hstmt, index, state, &nativerc,
errmsg, 200, &retlen);

}

SQLGetDiagRec

The SQLGetDiagRec function is fully supported in the DBMaker API (ODBC
3.0). The SQLGetDiagRec function returns the values of several commonly used
fields of a diagnostic record, including SQLSTATE, the native error code, and the
diagnostic message text. DBMaker supports the following values for the
HandleType argument: SQL_HANDLE_ENV, SQL_HANDLE_DBC,
SQL_HANDLE_STMT, and SQL_HANDLE_DESC.

Prototype
SQLGetDiagRec:

RETCODE SQLGetDiagRec (
SQLSMALLINT HandleType,
SQLHANDLE Handle,
SQLSMALLINT RecNumber,

SQLCHAR * Sglstate,

©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

SQLINTEGER * NativeErrorPtr,
SQLCHAR * MessageText,
SQLSMALLINT BufferLength,

SQLSMALLINT * TextLengthPtr) ;

SQLGetEnvAttr

The SQLGetEnvAttr function is partially supported in the DBMaker AP (ODBC
3.0). The SQLGetEnvALttr function gets attributes for an environment handle.

Prototype
SQLGetEnvAttr:

RETCODE SQLSetEnvAttr (
SQLHENV EnvironmentHandle,
SQLINTEGER Attribute,
SQLPOINTER ValuePtr,
SQLINTEGER BufferLength,
SQLINTEGER * StringLengthPtr) ;

The following table lists the attributes that can be retrieved using this function, and
whether they are supported in DBMaker.

Attribute Supported?
SQL_ATTR_ODBC_VERSION Y
SQL_ATTR_OUTPUT_NTS
SQL_ATTR_CONNECTION_POOLING
SQL_ATTR_CP_MATCH

Z2 Z2 <

SQLGetStmtAttr

The SQLGetStmtAttr function is partially supported in the DBMaker APl (ODBC
3.0). The SQLGetStmtAttr function sets attributes for a statement. This function
replaces the SQLGetStatementOption function in ODBC 2.0.

©Copyright 1995-2008 CASEMaker Inc. 8-29

Ol ODBC Programmer’s Guide

> Prototype
SQLGetStmtAttr:

The following table lists the attributes that can be retrieved using this function, and
whether they are supported in DBMaker.

8-30 ©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

SQLPrimaryKeys

The SQLPrimaryKeys function is fully supported in the DBMaker APl (ODBC
3.0). The SQLPrimaryKeys function returns the column names that make up the
primary key of a table as a result set.

Prototype

SQLPrimaryKeys:

This example uses the table CUSTOMER (CUSTID, NAME, ADDRESS,
PHONE), and CUSTID is the primary key in the CUSTOMER table.

This example calls SQLPrimaryKeys to get primary keys information of the
CUSTOMER table.

©Copyright 1995-2008 CASEMaker Inc. 8-31

Ol ODBC Programmer’s Guide

8-32

2 Example

#define TAB LEN 19
#define COL_LEN 19
SQLUCHAR pkTable [TAB LEN], fkTable[TAB LEN] ;
SQLHANDLE hstmt;
SQLINTEGER pkTableInd, pkColInd;
SQLRETCODE retcode;
/* Bind the columns that describe the primary and foreign keys */
SQLBindCol (hstmt, 3, SQL C CHAR, pkTable, TAB LEN, &pkTableInd) ;
SQLBindCol (hstmt, 4, SQL C CHAR, pkCol, COL_LEN, &pkColInd) ;
/* Get the names of columns in the primary key. */
retcode = SQLPrimaryKeys (hstmt, NULL, 0, NULL, 0, “CUSTOMER”, SQL NTS) ;
while (retcode == SQL SUCCESS || retcode == SQL SUCCESS WITH INFO) {
retcode = SQLFetchScroll (hstmt, SQL FETCH NEXT, O0);
printf (“Table : %s, Column : %$s \n”, pkTable, pkCol);
}
/* close the cursor */

SQLCloseCursor (hstmt) ;

SQLSetConnectAttr

The SQLSetConnectAttr function is partially supported in the DBMaker API
(ODBC 3.0). The SQLSetConnectAttr function sets attributes for a database
connection. The function replaces the SQLSetConnectOption function in ODBC
2.0. The function prototype for SQLSetConnectAttr is:

RETCODE SQLSetConnectAttr (
SQLHDBC ConnectionHandle,
SQLINTEGER Attribute,
SQLPOINTER ValuePtr,

SQLINTEGER StringLength) ;

©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

The following table lists the attributes that can be set using this function, and
whether they are supported in DBMaker.

The following attributes apply: SQL_ATTR_ASYNC_ENABLE only supports
SQL_ASYNC_ENABLE_OFF. SQL_ATTR_CONNECTION_TIMEOUT only
supports a value of 0 (no time-out). SQL_ATTR_METADATA_ID only supports
SQL_FALSE. SQL_ATTR_MAX_ROWS only supports a value of 0 (all rows).

wn
Q
=
w
@
o
D
0
o
1
@
o

The SQLSetDescField function is fully supported in the DBMaker API (ODBC
3.0). The SQLSetDescField function sets the value of a single field of a descriptor
record.

©Copyright 1995-2008 CASEMaker Inc. 8-

O

3

O\ oDBC Programmer’s Guide

8-34

=

Prototype
SQLSetDescField:

The following table lists the descriptor fields that can be set using this function in
DBMaker. In the table, the G represents Get, S represents Set, and | represents
Invalid. SQL_DESC_ARRAY_SIZE only supports a value of one.

©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

The following code fragment shows some commonly used options in the
SQLSetDescField function. To simplify the program, table EMPLOYEE only has

=

m
¥ 5
3 o
s 3
@
E
7
=
>
<
m
wm
>
-
>
o
=X

(SN

©Copyright 1995-2008 CASEMaker Inc. 8-35

o\ obpBC Programmer’s Guide

/* retrieve the ard descriptor */
SQLGetStmtAttr (hstmt, SQL ATTR APP ROW DESC, &ard, NULL, O0);
/* execute a statement */
SQLExecDirect (hstmt, “SELECT * FROM EMPLOYEE”, SQL NTS) ;
/* set the row size, status and the binding type */
SQLSetDescField(ard, 0, SQL DESC ARRAY SIZE, 2, 0);
SQLSetDescField(ard, 0, SQL DESC ARRAY STATUS PTR, status, 0);
SQLSetDescField(ard, 0, SQL DESC BIND TYPE, SQL BIND BY COLUMN, 0);
/* set necessary fields to fetch the record */
SQLSetDescField (ard, 1, SQL DESC CONCISE TYPE, SQL C CHAR, 0);
SQLSetDescField(ard, 1, SQL DESC LENGTH, 18, 0);
SQLSetDescField(ard, 1, SQL DESC DATA PTR, name, 18);
SQLSetDescField(ard, 2, SQL DESC CONCISE TYPE, SQL C FLOAT, O0);
SQLSetDescField(ard, 2, SQL DESC DATA PTR, salary, O0);
/* fetch the records */
retcode = SQLFetch (hstmt) ;
while (retcode == SQL SUCCESS) {

for (1 = 0; 1 <2; i++)

{

printf (“Employee Name : %s, Salary : %f \n”, name[i], salaryl[il);

}

retcode = SQLFetch (hstmt) ;

SQLSetDescRec

The SQLSetDescRec function is fully supported in the DBMaker APl (ODBC
3.0). The SQLSetDescRec function sets the value of multiple descriptor fields that
affect the data type and buffer bound to a column or parameter.

8-36 ©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

> Prototype

SQLSetDescRec:

The following code fragment shows how to use SQLSetDescRec function to bind

columns. To simplify the program, table EMPLOYEE only has two columns
(NAME, SALARY).

2 Example

©Copyright 1995-2008 CASEMaker Inc. 8-37

Ol ODBC Programmer’s Guide

8-38

/* set the row size, status and the binding type */
SQLSetDescField(ard, 0, SQL DESC ARRAY SIZE, 2, 0);
SQLSetDescField(ard, 0, SQL DESC ARRAY STATUS PTR, status, 0);
SQLSetDescField(ard, 0, SQL DESC BIND TYPE, SQL BIND BY COLUMN, 0);
/* set necessary fields to fetch the record */
SQLSetDescRec (ard, 1, SQL C CHAR, 0, 0, 0, 0, name, 19, nameInd) ;
SQLSetDescRec (ard, 2, SQL C FLOAT, 0, 0, 0,, salary, 0, NULL);
/* fetch the records */
retcode = SQLFetch (hstmt) ;
while (retcode == SQL SUCCESS) {
for (1 = 0; i < 2; i++)

{

printf (“Employee Name : %s, Salary : %f \n”, name[i], salaryl[il);

}

retcode = SQLFetch (hstmt) ;

SQLSetEnvAttr

The SQLSetEnvALttr function is partially supported in the DBMaker APl (ODBC
3.0). The SQLSetEnvAttr function sets attributes for an environment handle.

Prototype
SQLSetEnvAttr:

RETCODE SQLSetEnvAttr (
SQLHENV EnvironmentHandle,
SQLINTEGER Attribute,
SQLPOINTER ValuePtr,

SQLINTEGER StringLength) ;

©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

The following table lists the attributes that can be set using this function, and
whether they are supported in DBMaker. SQL_ATTR_OUTPUT_NTS only
supports SQL_TRUE (always NULL terminated).

Attribute Supported?
SQL_ATTR_ODBC_VERSION Y
SQL_ATTR_OUTPUT_NTS
SQL_ATTR_CONNECTION_POOLING
SQL_ATTR_CP_MATCH

zZ2 2 <

SQLSetStmtAttr

The SQLSetStmtAttr function is partially supported in the DBMaker APl (ODBC
3.0). The SQLSetStmtAttr function sets attributes for a statement. This function
replaces the SQLSetStatementOption function in ODBC 2.0.

Prototype
SQLSetStmtALttr:

RETCODE SQLSetStmtAttr (
SQLHSTMT StatementHandle,
SQLINTEGER Attribute,
SQLPOINTER ValuePtr,

SQLINTEGER StringLength) ;

The following table lists the attributes that can be set using this function, and
whether they are supported in DBMaker. SQL_ATTR_ASYNC_ENABLE and
SQL_ATTR_PARAMS_PROCESSED_PTR only support
SQL_ASYNC_ENABLE_OFF. SQL_ATTR_CONCURRENCY only supports
SQL_CONCUR_READ_ONLY and SQL_CONCUR_LOCK.
SQL_ATTR_CURSOR_SENSITIVITY only supports SQL_UNSPECIFIED.
SQL_ATTR_KEYSET_SIZE and SQL_ATTR_MAX_LENGTH only support a
value of 0. SQL_ATTR_METADATA _ID only supports SQL_FALSE.
SQL_ATTR_NOSCAN only supports SQL_NOSCAN_ON.
SQL_ATTR_PARAMSET_SIZE only supports a value of one.

©Copyright 1995-2008 CASEMaker Inc. 8-39

Ol ODBC Programmer’s Guide

8-40

wn
Q
II_I
>
_|
_|
po)
[
2}
<
C
.
>
_|
M
O
C
o)
%)
(@]
Py
o
=3
<
w
c
S
S
Q
7
w
OI
ll_
w
IO
C .
Z
Q
C
m

©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

©Copyright 1995-2008 CASEMaker Inc. 8-41

Ol ODBC Programmer’s Guide

8.4

8-42

ODBC Support 64Bit

ODBC functions

The Open Database Connectivity (ODBC) headers and libraries that ship with the
Microsoft Data Access Components (MDAC) 2.7 software development kit (SDK)
contain some changes from earlier versions of ODBC to allow programmers to
code to the new 64-bit platforms.

By ensuring that your code uses the ODBC-defined types listed below, you will be
able to compile your code for both 64-bit and 32-bit platforms based on the
WING64 or WIN32 macros.

There are several points of particular importance:

Although the size of a pointer has gone from 4 bytes to 8 bytes, integers and longs
remanin 4-bytes values. The types INT64 and UINT64 have been defined for 8-
byte integers. These are converted in ODBC to SQLLEN and SQLULEN for 64-
bit compiles. Some ODBC functions which were previously defined with
SQLINTEGER and SQLUINTEGER parameters have therefore been changed
where appropriate. These cases are enumerated below, as well as the specific
changes to the ODBC-defined data types.

There are several functions in ODBC that are declared as taking a pointer
parameter. In 32-bit ODBC, that pointer type is frequently used to pass integer data
as well as pointers to buffers depending on the context of the call. This was
possible, of course, because pointers and integers have the same length; this is not
the case in 64-bit windows.

Some descriptor fields that can be set and retrieved through the various
SQLSet...and SQLGet...functions have been changed to accomodate 64-bit
values, while others are still 32-bit values. Take care in calling these methods to
make sure that you use the appropriate size buffer in setting and retrieving these
fields. The specifics of which descriptor fields have been changed are listed in the
last section of this article.

©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

FUNCTION DECLARATION CHANGE

The following function signatures have changed for 64-bit programming to
accommodate the new types. The items in bold text are the specific parameters that
have changed.

e SQLBindCol (SQLHSTMT StatementHandle, SQLUSMALLINT
ColumnNumber, SQLSMALLINT TargetType, SQLPOINTER TargetValue,
SQLLEN BufferLength, SQLLEN * StrLen_or_Ind);

. SQLBindParam (SQLHSTMT StatementHandle, SQLUSMALLINT
ParameterNumber, SQLSMALLINT ValueType, SQLSMALLINT
ParameterType, SQLULEN LengthPrecision, SQLSMALLINT
ParameterScale, SQLPOINTER ParameterValue, SQLLEN
*StrLen_or_Ind);

. SQLBindParameter (SQLHSTMT hstmt, SQLUSMALLINT ipar,
SQLSMALLINT fParamType, SQLSMALLINT fCType, SQLSMALLINT
fSqlType, SQLULEN cbColDef, SQLSMALLINT ibScale, SQLPOINTER
rgbValue, SQLLEN cbValueMax, SQLLEN *pcbValue);

. SQLColAttribute (SQLHSTMT StatementHandle, SQLUSMALLINT
ColumnNumber, SQLUSMALLINT Fieldldentifier, SQLPOINTER
CharacterAttribute, SQLSMALLINT BufferLength, SQLSMALLINT *
StringLength, SQLLEN* NumericAttribute)

) SQLColAttributes (SQLHSTMT hstmt, SQLUSMALLINT icol,
SQLUSMALLINT fDescType, SQLPOINTER rgbDesc, SQLSMALLINT
chDescMax, SQLSMALLINT *pcbDesc, SQLLEN * pfDesc);

. SQLDescribeCol (SQLHSTMT StatementHandle, SQLUSMALLINT
ColumnNumber, SQLCHAR *ColumnName, SQLSMALLINT
BufferLength, SQLSMALLINT *NamelLength, SQLSMALLINT
*DataType, SQLULEN *ColumnSize, SQLSMALLINT *DecimalDigits,
SQLSMALLINT *Nullable);

. SQLDescribeParam (SQLHSTMT hstmt, SQLUSMALLINT ipar,
SQLSMALLINT *pfSqlType, SQLULEN *pcbParamDef,
SQLSMALLINT *pibScale, SQLSMALLINT *pfNullable);

©Copyright 1995-2008 CASEMaker Inc. 8-43

o\ obpBC Programmer’s Guide

8-44

SQLExtendedFetch(SQLHSTMT hstmt, SQLUSMALLINT fFetchType,
SQLLEN irow, SQLULEN * pcrow, SQLUSMALLINT * rgfRowStatus)

SQLFetchScroll (SQLHSTMT StatementHandle, SQLSMALLINT
FetchOrientation, SQLLEN FetchOffset);

SQLGetData (SQLHSTMT StatementHandle, SQLUSMALLINT
ColumnNumber, SQLSMALLINT TargetType, SQLPOINTER TargetValue,
SQLLEN BufferLength, SQLLEN *StrLen_or_Ind);

SQLGetDescRec (SQLHDESC DescriptorHandle, SQLSMALLINT
RecNumber, SQLCHAR *Name, SQLSMALLINT BufferLength,
SQLSMALLINT *StringLength, SQLSMALLINT *Type, SQLSMALLINT
*SubType, SQLLEN *Length, SQLSMALLINT *Precision,
SQLSMALLINT *Scale, SQLSMALLINT *Nullable);

SQLParamOptions(SQLHSTMT hstmt, SQLULEN crow, SQLULEN *
pirow)

SQLPutData (SQLHSTMT StatementHandle, SQLPOINTER Data,
SQLLEN StrLen_or_Ind);

SQLRowCount (SQLHSTMT StatementHandle, SQLLEN* RowCount);

SQLSetConnectOption(SQLHDBC ConnectHandle, SQLUSMALLINT
Option, SQLULEN Value);

SQLSetPos (SQLHSTMT hstmt, SQLSETPOSIROW irow,
SQLUSMALLINT fOption, SQLUSMALLINT fLock);

SQLSetDescRec (SQLHDESC DescriptorHandle, SQLSMALLINT
RecNumber, SQLSMALLINT Type, SQLSMALLINT SubType, SQLLEN
Length, SQLSMALLINT Precision, SQLSMALLINT Scale, SQLPOINTER
Data, SQLLEN *StringLength, SQLLEN *Indicator);

SQLSetParam (SQLHSTMT StatementHandle, SQLUSMALLINT
ParameterNumber, SQLSMALLINT ValueType, SQLSMALLINT
ParameterType, SQLULEN LengthPrecision, SQLSMALLINT
ParameterScale, SQLPOINTER ParameterValue, SQLLEN
*StrLen_or_Ind);

©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

. SQLSetScrollOptions (SQLHSTMT hstmt, SQLUSMALLINT
fConcurrency, SQLLEN crowKeyset, SQLUSMALLINT crowRowset);

. SQLSetStmtOption (SQLHSTMT StatementHandle, SQLUSMALLINT
Option, SQLULEN Value);

VALUES RETURNED FROM ODBC API CALLS THROUGH
POINTERS

The following ODBC function calls take as an input parameter a pointer to a buffer
in which data is returned from the driver. The context and meaning of the data
returned is determined by other input parameters for the function. In some cases,
these methods may now return 64-bit (8-byte integer) values instead of the typical
32-bit (4-byte) integer values. These cases are as follows:

SQLColAttribute

When the Fieldldentifier parameter has one of the following values, a 64-bit value
is returned in *NumericAttribute:

SQL_DESC_DISPLAY_SIZE

SQL_DESC_LENGTH

SQL_DESC_OCTET_LENGTH

SQL_DESC_COUNT

SQLColAttributes

When the fDescType parameter has one of the following values, a 64-bit value is
returned in *pfDesc:

SQL_COLUMN_DISPLAY_SIZE

SQL_COLUMN_LENGTH

SQL_COLUMN_COUNT

SQLGetConnectAttr

When the Attribute parameter has one of the following values, a 64-bit value is
returned in Value:

SQL_ATTR_QUIET_MODE

©Copyright 1995-2008 CASEMaker Inc. 8-45

Ol ODBC Programmer’s Guide

SQLGetConnectOption

When the Attribute parameter has one of the following values, a 64-bit value is
returned in Value:

SQL_ATTR_QUIET_MODE

SQLGetDescField

When the Fieldldentifier parameter has one of the following values, a 64-bit value
is returned in *ValuePtr:

SQL_DESC_ARRAY_SIZE

SQLGetDiagField

When the Diagldentifier parameter has one of the following values, a 64-bit value
is returned in *DiaglnfoPtr:

SQL_DIAG_CURSOR_ROW_COUNT

SQL_DIAG_ROW_COUNT

SQL_DIAG_ROW_NUMBER

SQLGetlInfo

When the InfoType parameter has one of the following values, a 64-bit value is
returned in *InfoValuePtr:

SQL_DRIVER_HENV

SQL_DRIVER_HDBC

SQL_DRIVER_HLIB

When InfoType has either of the following 2 values *InfoValuePtr is 64-bits on
both input and ouput:

SQL_DRIVER_HSTMT

SQL_DRIVER_HDESC

SQLGetStmtAttr

When the Attribute parameter has one of the following values, a 64-bit value is
returned in *ValuePtr:

SQL_ATTR_APP_PARAM_DESC

8-46 ©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

SQL_ATTR_APP_ROW_DESC
SQL_ATTR_IMP_PARAM_DESC
SQL_ATTR_IMP_ROW_DESC
SQL_ATTR_MAX_LENGTH
SQL_ATTR_MAX_ROWS
SQL_ATTR_PARAM_BIND_OFFSET PTR
SQL_ATTR_ROW_ARRAY_SIZE
SQL_ATTR_ROW_BIND_OFFSET PTR
SQL_ATTR_ROW_NUMBER
SQL_ATTR_ROWS_FETCHED_PTR
SQL_ATTR_KEYSET _SIZE

SQLGetStmtOption

When the Option parameter has one of the following values, a 64-bit value is
returned in *Value:

SQL_MAX_LENGTH

SQL_MAX_ROWS

SQL_ROWSET_SIZE

SQL_KEYSET_SIZE

SQLSetConnectAttr

When the Attribute parameter has one of the following values, a 64-bit value is
passed in Value:

SQL_ATTR_QUIET_MODE

SQLSetConnectOption

When the Attribute parameter has one of the following values, a 64-bit value is
passed in Value:

SQL_ATTR_QUIET_MODE

SQL SetDescField

When the Fieldldentifier parameter has one of the following values, a 64-bit value
is passed in *ValuePtr:

©Copyright 1995-2008 CASEMaker Inc. 8-47

Ol ODBC Programmer’s Guide

8-48

SQL_DESC_ARRAY_SIZE

SQLSetStmtAttr

When the Attribute parameter has one of the following values, a 64-bit value is
passed in *ValuePtr:
SQL_ATTR_APP_PARAM_DESC
SQL_ATTR_APP_ROW_DESC
SQL_ATTR_IMP_PARAM_DESC
SQL_ATTR_IMP_ROW_DESC
SQL_ATTR_MAX_LENGTH
SQL_ATTR_MAX_ROWS
SQL_ATTR_PARAM BIND_OFFSET PTR
SQL_ATTR_ROW_ARRAY_SIZE
SQL_ATTR_ROW_BIND_OFFSET_PTR
SQL_ATTR_ROW_NUMBER
SQL_ATTR_ROWS_FETCHED PTR
SQL_ATTR_KEYSET_SIZE

SQLSetConnectAttr

When the Option parameter has one of the following values, a 64-bit value is
passed in *Value:

SQL_MAX_LENGTH

SQL_MAX_ROWS

SQL_ROWSET SIZE

SQL_KEYSET_SIZE

NOT SUPPORT SQL TYPES

The following four SQL types are still supported on 32-bit only; they are not
defined for 64-bit compiles. These types are no longer used for any parameters in
MDAC 2.7; use of these types will cause compiler failures on 64-bit platforms.

#ifdef WIN32
typedef SQLULEN SQLROWCOUNT;

©Copyright 1995-2008 CASEMaker Inc.

ODBC 3.0 Functions 8

typedef SQLULEN SQLROWSETSIZE;
typedef SQLULEN SQLTRANSID;
typedef SQLLEN SQLROWOFFSET;
#endif

The definition of SQLSETPOSIROW has changed for both 32-bit and 64-bit
compiles:

#ifdef WIN64

typedef UINT64 SQLSETPOSIROW:;

#else

#define SQLSETPOSIROW SQLUSMALLINT
#endif

The definitions of SQLLEN and SQLULEN have changed for 64-bit compiles:
#ifdef WIN64

typedef INT64 SQLLEN;

typedef UINT64 SQLULEN;

#else

#define SQLLEN SQLINTEGER

#define SQLULEN SQLUINTEGER

#endif

Although SQL_C_BOOKMARK is deprecated in ODBC 3.0, for 64-bit compiles
on 2.0 clients, this value has changed:

#ifdef WING4
#define SQL_C BOOKMARK SQL_C _UBIGINT
#else

#define SQL_C_BOOKMARK SQL_C_ULONG

©Copyright 1995-2008 CASEMaker Inc. 8-49

Ol ODBC Programmer’s Guide

#endif
The BOOKMARK type is defined differently in the newer headers:
typedef SQLULEN BOOKMARK;

8-50 ©Copyright 1995-2008 CASEMaker Inc.

Unicode Support 9

Unicode Support

DBMaker now supports native unicode data, so users can now store and process data
from multiple languages in the database. Data from multiple languages must be passed
as unicode data, however.

The data types NCHAR, NVARCHAR, and NCLOB have been provided to support
storage of unicode data. Furthermore, a wide array of unicode functions are now

supported.

©Copyright 1995-2008 CASEMaker Inc. 9-1

O\ ODBC Programmer’s Guide

9.1 Unicode Encoding Interfaces

Input data passed from ODBC functions can be UTF-16LE or UTF-8 encoded. You
may use a connection option to specify the input Unicode encoding rule. The default
encoding is UTF-16LE. When you set this option to UTF-8, DBMaker assumes all
input strings are UTF-8 encoded, and the Unicode string is output as UTFS8.
Windows applications and development tools such as Visual Basic use UTF-16LE
encoding; if your AP uses UTF8 (mostly Unix applications), then set the connect

option by calling the ODBC set connection option in your program.

DBMaker supports two unicode encoding types to input and output string data,
UTF-8 and UTF-16. You can call SQLSetConnectAttr with the options
SQL_CLI_UCODE_TYPE and its value SQL_CLI_UTYPE_UTF16 or
SQL_CLI_UTYPE_UTFS to set the input/output unicode string encoding type.

The default value for SQL_CLI_UCODE_TYPE is SQL_CLI_UTYPE_UTF16
(UTF-16LE).

Unicode Functions:

The following ODBC Unicode functions are supported by DBMaker.
SQLColAttribute W

SQLColAttributesW

SQLConnectW

SQLDescribeColW

SQLErrorW

SQLExecDirectW

SQLGetConnectAttrW

SQLGetCursorNameW

SQLGetDescFieldW

9-2 ©Copyright 1995-2008 CASEMaker Inc.

Unicode Support 9

SQLGetDescRecW
SQLGetDiagFieldW
SQLGetDiagRecW
SQLPrepareW
SQLSetConnectAttrW
SQLSetCursorNameW
SQLSetDescNameW
SQLSetStmtAter W
SQLGetStmtAterW
SQLColumnsW
SQLGetConnectOptionW
SQLGetInfoW
SQLGetTypelnfoW
SQLSetConnectOptionW
SQLSpecial ColumnsW
SQLStatistics W
SQLTablesW
SQLDriverConnectW
SQLForeignKeysW
SQLPrimaryKeysW
SQLProcedureColumnsW
SQLProceduresW

Related Unicode ODBC Types

©Copyright 1995-2008 CASEMaker Inc.

O\ ODBC Programmer’s Guide

9-4

For Unicode support, DBMaker supports the following data types: SQL_C_WCHAR
for C, and SQL_WCHAR, SQL_WVARCHAR, and SQL_WLONGVARCHAR for
SQL. These data types are supported for related ODBC functions, such as
SQLBindCol, SQLBindParameter, SQLGetData, SQLPutData, and so on.

The input parameter/output column's length for SQL._C_WCHAR is specified in
bytes. The precision of SQL_C_WCHAR is specified in characters.

©Copyright 1995-2008 CASEMaker Inc.

Function Sequence Differences A

Function Sequence
Differences

This appendix lists differences in function sequences between the DBMaker ODBC
API and the Microsoft ODBC 3.0 API.

©Copyright 1995-2008 CASEMaker Inc. A-1

O\ ODBC Programmer’s Guide

A.1 SQLRowCount

SQLRowCount can be called in state S1, S2, and S3 successfully. DBMaker will
return no error. ODBC 3.0 will return error S1010.

A-2 ©Copyright 1995-2008 CASEMaker Inc.

Function Sequence Differences A

A.2

SQLGetCursorName

If you call the SQLGetCursorName function before setting a cursor name with the
SQLSetCursorName function, DBMaker will not return error S1015 because

DBMaker automatically generates a cursor name after allocating a statement handle.

©Copyright 1995-2008 CASEMaker Inc. A-3

O\ ODBC Programmer’s Guide

A-4 ©Copyright 1995-2008 CASEMaker Inc.

Function Property Differences B

Function Property
Differences

This appendix lists differences in function properties between the DBMaker ODBC
API and the Microsoft ODBC 3.0 API. These differences include useful extended
options for connection and statements supported by DBMaker that have slightly
different behavior than standard ODBC functions.

©Copyright 1995-2008 CASEMaker Inc.

O\ ODBC Programmer’s Guide

B.1

B-2

SQLPutData

ODBC 3.0 allows the SQLPutData function to send data in parts to a column with
CHAR, BINARY, LONG VARCHAR and LONG VARBINARY data types.
However, DBMaker restricts the data types that can be used with the SQLPutData
function to LONG VARCHAR and LONG VARBINARY.

©Copyright 1995-2008 CASEMaker Inc.

Function Property Differences B

SQLColumns

DBMaker does not allow you to retrieve information from temporary tables by using
the SQLColumns function.

©Copyright 1995-2008 CASEMaker Inc. B-3

O\ ODBC Programmer’s Guide

B.3 SQLTables

DBMaker does not allow you to retrieve information from temporary tables by using

the SQLTables function.

B-4 ©Copyright 1995-2008 CASEMaker Inc.

Function Property Differences B

B-4

SQLDriverConnect

In the SQLDriverConnect function, the behavior of the prompt flags
SQL_DRIVER_PROMPT and SQL_DRIVER_COMPLETE_REQUIRED are the
same as the behavior of the prompt flag SQL_DRIVER_COMPLETE. Prompt
behavior is controlled by the fDriverComplete argument of SQLDriverConnect.

©Copyright 1995-2008 CASEMaker Inc. B-5

O\ ODBC Programmer’s Guide

B.5 sSQLBindParameter

For the SQLBindParameter function, the behavior when pcbValue is set to
SQL_LEN_DATA_AT_EXEC (length) is the same as the behavior when pcbValue is
set to SQL_DATA_AT_EXEC. The length value of SQL_LEN_DATA_AT_EXEC

will be ignored.

B-6 ©Copyright 1995-2008 CASEMaker Inc.

Function Property Differences B

Positioned DELETE/UPDATE

An SQL statement containing a positioned DELETE or positioned UPDATE usually
refers to a cursor name. If the cursor specified by the cursor name is not open,
DBMaker will detect it and return error 34000 at execution time- not preparation

time.

©Copyright 1995-2008 CASEMaker Inc. B-7

O\ ODBC Programmer’s Guide

B.7 SQLSetConnectOption

In the SQLSetConnectOption function, several extended connection options are

proprietary to DBMaker. These options allow you to set some of the advanced

connection options available when using a DBMaker data source.

B-8 ©Copyright 1995-2008 CASEMaker Inc.

Function Property Differences B

©Copyright 1995-2008 CASEMaker Inc. B-9

O\ ODBC Programmer’s Guide

B-10 ©Copyright 1995-2008 CASEMaker Inc.

Function Property Differences B

SQLGetConnectOption

The SQLGetConnectOption function has several extended connection options that
are proprietary to DBMaker. These options allow you to get information on some of

the advanced connection options available when using a DBMaker data source.

The extended options are:

©Copyright 1995-2008 CASEMaker Inc. B-1

—_

O\ ODBC Programmer’s Guide

B-12 ©Copyright 1995-2008 CASEMaker Inc.

OoODBC 3.0 Errors C

C

ODBC 3.0 Errors

This appendix lists errors in the Microsoft ODBC 3.0 API.

©Copyright 1995-2008 CASEMaker Inc. C-1

O\ ODBC Programmer’s Guide

C.1 SQLParambData

If the current state is S8, the driver should return SQL_NEED_DATA, not
SQL_SUCCESS as defined by ODBC 3.0, after calling SQLParamData.

C-2 ©Copyright 1995-2008 CASEMaker Inc.

OoODBC 3.0 Errors C

C.2

SQLPrepare

If the current state is S2, the state should be changed to S3 after calling SQLPrepare if
the result set is possibly empty.

If the current state is S3, the state should be changed to S2 after calling SQLPrepare if

no result set is created.

©Copyright 1995-2008 CASEMaker Inc. C-3

O\ ODBC Programmer’s Guide

C-4 ©Copyright 1995-2008 CASEMaker Inc.

Data Types D

Data Types

A driver maps data source-specific SQL data types to ODBC SQL data types and
driver-specific SQL data types. Each SQL data type corresponds to an ODBC C data
type. The application can specify the correct C data type with the fCType argument
in SQLBindCol, SQLGetData, or SQLBindParameter. Before sending data to the

data source, the driver converts it from the specified C data type. Before retrieving

data from the data source, the driver converts it to the specified C data type.

In the following topics will be covered in this section:

ODBC SQL data types

ODBC C data types

Default ODBC C data types

Precision, scale, length and display size of SQL data types

Data type conversions

©Copyright 1995-2008 CASEMaker Inc. D-1

O\ ODBC Programmer’s Guide

D.1 ODBC SQL Data Types

The following table lists the mapping between ODBC SQL data types (the fSqlType
column) and the corresponding DBMaker SQL data types (SQL Data Type column).
A description of the data types is also listed in the table.

D-2 ©Copyright 1995-2008 CASEMaker Inc.

Data Types D

Table 22 ODBC SQL DataTypes

©Copyright 1995-2008 CASEMaker Inc.

O\ ODBC Programmer’s Guide

D-4

ODBC C Data Types

The ODBC C data type is the data type used by an application to store data. The C
dara type used is specified in the SQLBindCol, SQLGetData, and SQLBindParameter
functions with the fCType argument.

Valid year values are in the range 1 to 9999. Valid year values are in the range 1 to
9999. Valid day values are in the range 1 — number of days in the month. Valid
month values are in the range 1 to 12. Valid day values are in the range 1 — number of
days in the month. Valid hour values are in the range 0 to 23. Valid minute values are
in the range 0 to 59. Valid second values are in the range 0 to 59. Valid fraction values
are in the range 0 t0 999,999,999. (For example, 500,000,000 represents a half-
second, 1, 000,000 is a thousandth of a second, 1,000 is a millionth of a second (a

microsecond), and 1 is a billionth of a second (a nanosecond).)

The following table lists the valid fCType values, the ODBC C data type that
implements each fCType value, and the corresponding C type in Windows and

UNIX environments.).

©Copyright 1995-2008 CASEMaker Inc.

Data Types D

©Copyright 1995-2008 CASEMaker Inc.

D-5

O\ ODBC Programmer’s Guide

D-3

D-6

Default ODBC C Data Types

If an application specifies SQL_C_DEFAULT for the fCType argument in
SQLBindCol, SQLGetData, or SQLBindParameter, the driver assumes that the C
data type of the output or input buffer corresponds to the SQL data type of the
column or parameter to which the buffer is bound. The following table shows the
default C data type for each ODBC SQL data type. Slight differences exist between
the DBMaker and ODBC 2.0 definition of this data type.

©Copyright 1995-2008 CASEMaker Inc.

Data Types D

Precision, Scale, Length, and
Display Size

SQLColAttributes, SQLColumns, and SQLDescribeCol return the precision, scale,
length, and display size of a column in a table. SQLDescribeParam returns the
precision or scale of a parameter in an SQL statement. SQLBindParameter sets the
precision or scale of a parameter in an SQL statement. SQLGetTypelnfo returns the
maximum precision and the minimum and maximum scales of an SQL data type on a

data source.

A ‘— means the value has no meaning or the corresponding type cannot be
determined. (For example, scale is not applicable for dates, and the precision of
SQL_LONGVARCHAR cannot be determined as it only refers to how many bytes of

data are stored.)

The precision of date, time and timestamp are all defined as the same as their largest
display size, which are the maximum respective lengths of date, time and timestamp
format (dd/mon/yyyy, hh:mm:ss.nnn tt, dd/mon/yyyy hh:mm:ss.nnn tt). The scale of
time and timestamp are 3. It means the number of digits in fractional part that could

be precisely accepted by DBMaker.

The following table lists the precision, scale, length, and display size for each ODBC
SQL type.

©Copyright 1995-2008 CASEMaker Inc. D-7

O\ ODBC Programmer’s Guide

D-8 ©Copyright 1995-2008 CASEMaker Inc.

Data Types D

D.5

Data Type Conversions

Two sections are used to explain data type conversion; one is for SQL to C data
conversion, the other is for C to SQL data conversion. In each section, we also

illustrate the examples to show the results of specified data type conversion.

SQL to C Data Conversion

Before retrieving data with SQLFetch, you should specify the data type to which the
retrieved data is converted in the argument fCType of SQLBindCol. Finally, the
driver will store the data in the location pointed to by the rgbValue argument in
SQLBindCol. SQLGetData has a similar situation. The table following lists the data
type conversions, from SQL to C data type, which are provided by DBMaker.

©Copyright 1995-2008 CASEMaker Inc. D-9

O\ ODBC Programmer’s Guide

SQL_C_TIMESTAMP

C DATA TYPE
SQL_C_CHAR
SQL_C_SSHORT
SQL_C_SHORT
SQL_C_SLONG
SQL_C_LONG
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_BINARY
SQL_C_DATE
SQL_C_WCHAR

SQL_C_TIME
SQL_C_FILE

SQL DATA TYPE
SQL_CHAR

[]
O

SQL_VARCHAR °

(@)

SQL_LONGVARCHAR . o) o

SQL_DECIMAL

[]
O
o
o
o
O
O

SQL_FILE
SQL_SMALLINT

SQL_INTEGER

°
e O
e O/ O O O

SQL_REAL

SQL_FLOAT

O O 0|0 O
0O O 0|0
O O 0|0 O
o O O

[]

SQL_DOUBLE

SQL_BINARY
SQL_LONGVARBINARY
SQL_DATE

SQL_TIME e O

O 0 000 00 00 0 0 0 0|0 O

SQL_TIMESTAMP O O e

SQL_WCHAR

SQL_WLONGVARCHAR

o
°

O O 0O/ 0O O 0O/0 O O|0 O O |0 e

O O O/ 0O O O e

SQL_WVARCHAR

® _ default conversion
O - supported conversion

The table on the following three pages illustrates how DBMaker converts SQL data to
C data. The output data and returned code are according to the date output format
set by the user. If the output format for date is yyyy-mm-dd, then the size of the user
buffer must be at least 11 bytes, otherwise an ERROR will be returned. The output
data and returned code are according to the date output format set by the user. If the

output format for the date is mm-dd-yy, then the size of the user buffer must be at

©Copyright 1995-2008 CASEMaker Inc.

Data Types D

least 9 bytes, otherwise an ERROR will be returned. The output data and returned
code are according to the time output format set by the user. If the time output
format specifies a fractional part, ex: hh:mmuss.fff, and the user buffer is not large
enough to put the fractional digits, then a warning message of data truncated will be

returned.

If the time output format contains a field for seconds, ex: hh:mm:ss, but the user
buffer is not large enough to carry the second value, ERROR will be returned.
Suppose a user specifies the time output format as hh tt; even though minute and
second data is lost, no error will be returned because user only wants the information
for hour. The rule for timestamp format combines both the date format rules and
time format rules above. So, if the date output format is mm/dd/yy and time output
format is hh:mm:ss, and then the buffer size must be at least 18 (8 + 1 + 8 + 1),

otherwise an error will be returned.

Suppose a column type is FILE, use SQL_C_CHAR to bind this column will fetch
the contents of this file into the user buffer, ex: abcedefg is the contents of a file called

'homework’, then abcdefg will be put into the user buffer. The same example as 7, but
if you use SQL_C_FILE to bind this column it will fetch the file contents into the
new file (ex: student) which is specified by the user buffer.

—_

©Copyright 1995-2008 CASEMaker Inc. D-1

O\ ODBC Programmer’s Guide

©Copyright 1995-2008 CASEMaker Inc.

Data Types D

[SN]

©Copyright 1995-2008 CASEMaker Inc. D-1

O\ ODBC Programmer’s Guide

C to SQL Data Conversion

When an application calls SQLExecute or SQLExecDirect, the driver retrieves the
data for any parameters bound with SQLBindParameter from storage locations in the
application. If necessary, before the driver sends data to the data source, it converts the
data from the data type specified by the f{CType argument in SQLBindParameter to
the data type specified by the fSqlType argument in SQLBindParameter. For data-at-
execution parameters, the application sends the parameter with SQLPutData. The
following table shows the supported conversions from ODBC C data types to ODBC
SQL data types by DBMaker.

D-14 ©Copyright 1995-2008 CASEMaker Inc.

Data Types D

g 2
EEE o g>
LI PR LI P EN
EUI >I 8\ g| E\ (I)‘ EI \EI 8I ﬁ\ 8I g\ \EI B\ EI §I
C DATA TYPE
SQL_C_CHAR e/e e/® ¢ O O/O OO OOOOOO|O O
SQL_C_SSHORT o o o o0 o|0O
SQL_C_SHORT' o e O/ 0O 0O O
SQL_C_SLONG e} o o0 o0 o|0O
SQL_C_LONG') O e /0 O
SQL_C_FLOAT e} o o0 o0 o|l0O
SQL_C_DOUBLE ¢} OO0 0O e e
SQL_C_BINARY o o0/ 0 o0 0O 00 0O e/e 0|0 O O 0O|O
SQL_C_DATE [e}NeRie] . o o|lo o
SQL_C_TIME [elNeRie] o o|lo o
SQL_C_TIMESTAMP o o0 o O 0 e 0|0 O
SQL_C_FILE o ¢}
SQL_C_WCHAR 0O 0000 O0/00|00 00000 e e e

® _ default conversion
O - supported wnversion

The table on the following three pages illustrates how DBMaker converts C data to
SQL data. The behavior of this data type is the same as the previous data type in the
table. If there is one file in the server site named 'homework' then use SQL_C_CHAR
to bind a parameter that will let the specified FILE column link to the file
'homework'. SQL_C_SSHORT, SQL_C_SHORT, SQL_C_SLONG,
SQL_C_LONG, SQL_C_FLOAT and SQL_C_DOUBLE are numeric ODBC C
data types. SQL_C_DATE cannot be converted to SQL_TIME.

When converting SQL_C_DATE to SQL_TIMESTAMP, the time portion of the
timestamp is set to zero. SQL_C_TIME cannot be converted to SQL_DATE. The
date part of timestamp will be set to the current date when converting SQL_TIME to
SQL_C_TIMESTAMDP. If the time portion is not zero, a ‘data truncated’ warning

©Copyright 1995-2008 CASEMaker Inc. D-15

O\ ODBC Programmer’s Guide

D-16

will be returned when converting SQL_C_TIMESTAMP to SQL_DATE. If the
fractional part is not zero, a ‘data truncated’ warning will be returned when converting

SQL_C_TIMESTAMP to SQL_TIME.

Since only 3 digits after a decimal in the fractional portion of the timestamp are
assured, a warning message will be returned when there are more than 3 digits after
decimal. If there is one file called 'homework' on the client site, and its contents are
abedefg, then use SQL_C_FILE to bind a parameter that will insert its contents into
the BLOB or FILE column.

©Copyright 1995-2008 CASEMaker Inc.

U
]
m
p
=
<
L]
0
0
v

—_

©Copyright 1995-2008 CASEMaker Inc. D-17

O\ ODBC Programmer’s Guide

©Copyright 1995-2008 CASEMaker Inc.

Data Types D

©Copyright 1995-2008 CASEMaker Inc.

O\ ODBC Programmer’s Guide

D-20 ©Copyright 1995-2008 CASEMaker Inc.

ODBC Log Function E

ODBC Log Function

This paragraph lists all configuration options supported by DBMaker for trace logging
ODBC functions. You can trace ODBC functions through the Microsoft ODBC

Driver Manager on windows platforms, but it does not log functions that are called by
Driver Manager itself. In Addition, Microsoft’s log function only can be set log on/off
to trace all ODBC functions or to not trace them at all, and it can only be used on the
windows platform. DBMaker supports a more powerful log function that not only can

set log on/off, but also it can specify the ODBC functions that you want to log

You must set a special section named “DM_COMMON_OPTION” in dmconfig.ini,
and then you can set various option keywords in this section to enable or disable the
ODBC log function.

Note: If you decide not to log ODBC functions later, please remember to remove
“DM_COMMON_OPTION?” section or set LG_TRACE = 0 in dmconfig.ini to
turn off tracing. Otherwise, this log function will record any action you do in data

source.

©Copyright 1995-2008 CASEMaker Inc. E-1

O\ ODBC Programmer’s Guide

The following table lists the options that can be set on the log function in

dmconfig.inj, as well as their description and values.

E-2 ©Copyright 1995-2008 CASEMaker Inc.

ODBC Log Function E

©Copyright 1995-2008 CASEMaker Inc. E-3

O\ ODBC Programmer’s Guide

E-4 ©Copyright 1995-2008 CASEMaker Inc.

	Introduction
	Additional Resources
	Technical Support
	Document Conventions

	Example Application
	Library Model
	Required Files
	Header Files
	Link Libraries

	Example ODBC Application
	Compiling and Linking
	Sample Programs

	Database Connections
	Environment Handle
	Connection Handle
	Connecting to a Data Source
	SQLConnect
	SQLDriverConnect
	Multiple Connections

	Connect Options
	SQLSetConnectOption
	SQLGetConnectOption

	Freeing Handles
	SQLDisconnect
	SQLFreeConnect
	SQLFreeEnv

	SQL Statements
	The SQL Language
	The Role of SQL with ODBC
	Basic SQL Statements
	Data Definition Language (DDL)
	Data Manipulation Language (DML)

	Executing SQL Statements
	SQLAllocStmt
	SQLExecDirect
	SQLRowCount
	SQLFreeStmt
	SQLPrepare and SQLExecute

	Parameters
	Parameter Functions
	Using Parameters in SQLExecDirect
	Clearing Bound Parameters

	Entering Large Data
	How to Enter Large Data
	Canceling the Execution of SQLPutData
	Placing Large Data in a File Object

	Get and Set Options

	Retrieving Results
	Queries Using ODBC
	Binding Storage Locations and Fetching Data
	Result Columns Characteristics
	More about Result Columns
	Clear Bound Columns

	Cursors
	When to Use Cursors
	Getting the Cursor Name
	Using Cursors
	Setting the Cursor Name

	Fetching Large Data
	SQLGetData
	Stopping SQLGetData Operations
	Binding Columns to Retrieve File Objects
	Fetching the Filename of File Objects

	Manipulating Result Sets
	Rowsets
	Program Flow
	Storage Binding
	Positioning the Cursor
	Arguments of SQLExtendedFetch
	Returning Values and Processing Errors
	Table Modification Using SQLSetPos
	Column Indicators
	SQLPutData
	Using SQLSetPos

	Error Handling
	Retrieving Error Information
	Common Error Codes Defined in ODBC
	How to Use SQLError
	Error Queues

	Catalog Functions
	Search Patterns
	SQLTables
	SQLColumns
	SQLStatistics
	SQLSpecialColumns

	System Information
	SQLGetTypeInfo
	SQLGetInfo
	SQLGetFunctions

	Procedure Information
	SQLProcedureColumns
	SQLProcedures

	Transaction Control
	Transactions and Savepoints
	Terminating a Transaction
	Auto-Commit & Manual-Commit

	ODBC 3.0 Functions
	Deprecated functions
	Modified functions
	SQLCancel
	SQLColumns
	SQLFetch
	SQLGetData
	SQLGetFunctions
	SQLGetInfo
	SQLProcedureColumns

	New functions
	SQLAllocHandle
	SQLBulkOperations
	SQLCloseCursor
	SQLColAttribute
	SQLCopyDesc
	SQLEndTran
	SQLFetchScroll
	SQLForeignKeys
	SQLFreeHandle
	SQLGetConnectAttr
	SQLGetDescField
	SQLGetDescRec
	SQLGetDiagField
	SQLGetDiagRec
	SQLGetEnvAttr
	SQLGetStmtAttr
	SQLPrimaryKeys
	SQLSetConnectAttr
	SQLSetDescField
	SQLSetDescRec
	SQLSetEnvAttr
	SQLSetStmtAttr

	ODBC Support 64Bit
	ODBC functions

	Unicode Support
	Unicode Encoding Interfaces
	Unicode Functions:

	Function Sequence Differences
	SQLRowCount
	SQLGetCursorName

	Function Property Differences
	SQLPutData
	SQLColumns
	SQLTables
	SQLDriverConnect
	SQLBindParameter
	Positioned DELETE/UPDATE
	SQLSetConnectOption
	SQLGetConnectOption

	ODBC 3.0 Errors
	SQLParamData
	SQLPrepare

	Data Types
	ODBC SQL Data Types
	ODBC C Data Types
	Default ODBC C Data Types
	Precision,Scale,Length and Display Size
	Data Type Conversions
	SQL to C Data Conversion
	C to SQL Data Conversion

	ODBC Log Function

