DBI\/Iaker

Q\ CASEMaker. ..

CASEMaker Inc./Cotporate Headquarters
1680 Civic Center Drive

Santa Clara, CA 95050, U.S.A.
www.casemaker.com

www.casemaker.com/support

©Copyright 1995-2008 by CASEMaker Inc.
Document No. 645049-232045/DBM501-M01312008-ESQL

Publication Date: 2008-01-31

All rights reserved. No part of this manual may be reproduced, stored in a retrieval system, or transmitted in any
form, without the prior written permission of the manufacturer.

For a description of updated functions that do not appear in this manual, read the file named README. TXT
after installing the CASEMaker DBMaker software.

Trademarks

CASEMaker, the CASEMaker logo, and DBMaker are registered trademarks of CASEMaker Inc. Microsoft, MS-
DOS, Windows, and Windows NT are registered trademarks of Microsoft Corp. UNIX is a registered trademark
of The Open Group. ANSI s a registered trademark of American National Standards Institute, Inc.

Other product names mentioned herein may be trademarks of their respective holders and are mentioned only
form information purposes. SQL is an industry language and is not the property of any company or group of

companies, or of any organization or group of organizations.

Notices
The software described in this manual is covered by the license agreement supplied with the software.

Contact your dealer for warranty details. Your dealer makes no representations or warranties with respect to the
merchantability or fitness of this computer product for any particular purpose. Your dealer is not responsible for
any damage caused to this computer product by external forces including sudden shock, excess heat, cold, or
humidity, nor for any loss or damage caused by incorrect voltage or incompatible hardware and/or software.

Information in this manual has been carefully checked for reliability; however, no responsibility is assumed for
inaccuracies. This manual is subject to change without notice.

www.casemaker.com
www.casemaker.com/support

Contents

Contents

1 134 e T LT 1. T, e —— Y, |
1.1 Additional ReSourcescccuuuumnnnnnnsnnsnnnnnnnnnnns 1-3
1.2 Technical Supportccccriri s 14
1.3 Document Conventionscccceeesmsnsssssnnnnnnnns 1=5

2 ESQL Basics --------------------------------------2-1
2.1 Using dmppcc for Preprocessing.....cccceueeeeea 2-3

Singleton Select Optionccccuveeiiiniiiieiiiiiieeeiieeeeeeeeeees 2-4
SQLCHECKuuiiiiiiiiiii s 2-4

3 EsQL syntax --------------------------------------3-1
3.1 Static/Dynamic SyntaxXccceeeeemsnnsnnsnnnnnnnnnnnns 3-2
3.2 VariableS ...icmiiiimsssiimnsssssnsssssssaasssasnanssannnnnnnnnn 3-4
DEClare SECTION «u et eeeenas 3-4

Host Variable Data Types....cccoooviiiiiiiiiiieiiiiiiiiiieeceeeeeeeee 3-4

HOSE Variables ...eeninee e 3-9
Variable SCOPE ..ccoiviiiiiiiiiiiiiiiie e 3-10
Indicator Variables ... e 3-12

3.3 Status CodeS...ccmrmmmmmmmmmnmnnssnnnnnsssnnnnnsnnnnnnnnnnn 3-14
A NIV CA ettt 3-14

N1 0) 5 O TR 3-15

©Copyright 1995-2008 CASEMaker Inc. i

O\ ESQL User’s Guide

ii

3.4 The WHENEVER statement SEEEEEEEEEEEEEEEEEEEEEEN 3-1 7

Data Manipulation (L A R R R R R R R R R RRRRRERREREREEREORIO D} 4-1
4.1 Data Manipulation SN EE S SN NSNS EEEEEEEEEEEEEEEEN 4-2
4.2 Retrieving Single-Row Data.....cccceeeennnnnnnnnnns 4-4

4.3 Transaction Processing...cccccccnnnnnnnnnnnnnnnss 4-6
4.4 Dynamic connection syntaxXccccceemnnnnnnnnnes 4-7
4.5 Using a CUrSOr...ccceeersssnssnssnssnnsnnnnnnnnnnnnnnnnnnnns 4=8
Declaring @ CursOor ..cceeeueeeeeiiniiieeieeiieee et e 4-9
Opening @ CurSOT.....cccuviiiiiiiiiiiiiiiiie e 4-9
Using a Cursor to Retrieve Data.......cccooooiiiiiiiiii. 4-10
Deleting Data with @ Cursorcccoeecveeeeiniiieeeeeneiieeee e 4-13
Updating Data with @ Cursor......ccoeeuveeeeeiniieeiinniieee e 4-14
Closing the Cursorcccuiiiiiiiiiiiiiiiiiiccc e 4-14
BLOB Data.....cccccscsnsnsnssnsnssssnsnsnnnnnnnnns =1
5.1 PUT BLOB Statement..........cccciiiiieiiiccnnineess 5-2
5.2 GET BLOB Statement........ccccsiiissiiiiieeiiiianne 5-6
Dynamic ESQL.......ccccvmmnmnnnnnnnnnnnnnnnnnns 6=1
6.1 Type 1 Dynamic ESQL........cccciiiiieiiiiccaninsass 6-3

6-2 Type 2 Dynamic ESQLllllllllllllllllllllllllllllllllll 6-4
6-3 Type 3 Dynamic EsQLIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 6-5

6.4 Type 4 Dynamic ESQL.......ccccccmimmmmmnsnnnnnnnnnnns 6-7
SQLDA DESCIIPTOL c.eeeiiiiiiiiteeeeeeeeeeiiieeteeeeee e eeeeeeeeee e 6-7
Describe Commandceeeiiiiiieiiiiiiiee e 6-7
Passing information through SQLDAccccooviiiiiinnnnneen. 6-8
ApPPlication STEPSeeeeeeiiiiiiiiiiiiiiiieeeeee e 6-15

6.5 Dynamic ESQL BLOB Interface 6-33
Storing File Objects......ccccueiiiiiiiiiiiiiiiiiiiiiii 6-33
Get a File Object. .o 6-35
Putting BLOB Datacccceviiiiiiiiiiiiiiiieeeee 6-36
Get BLOB Data...coicveiiiieecieeeeeeeeeeee e 6-38

©Copyright 1995-2008 CASEMaker Inc.

Contents

7 Project and Module Management7-1

7.1

Project and Module objects ...ccceerrrrnrnnnnnnnnnn 7=3

Dropping a Project ..o 7-5
Loading or Unloading Projects or Modules............cccceeuueeeeee. 7-5
Granting or Revoking Privileges for Projects..........ccccceeeinnns 7-6

©Copyright 1995-2008 CASEMaker Inc. il

O\ ESQL User’s Guide

v ©Copyright 1995-2008 CASEMaker Inc.

Introduction 1

Introduction

Welcome to the ESQL\C User’s Guide. DBMaker is a powerful and flexible SQL
Database Management System (DBMS) that supports an interactive Structured Query
Language (SQL), a Microsoft Open Database Connectivity (ODBC) compatible
interface, and Embedded SQL for C (ESQL/C). The unique open architecture and
native ODBC interface give you the freedom to build custom applications using a wide
variety of programming tools or to query databases using existing ODBC-compliant

applications.

DBMaker is easily scalable from personal single-user databases to distributed
enterprise-wide databases. The advanced security, integrity, and reliability features of
DBMaker ensure the safety of critical data. Extensive cross-platform support permits
you to leverage existing hardware, allows for expansion and upgrades to more powerful

hardware as your needs grow.

DBMaker provides excellent multimedia handling capabilities to store, search, retrieve,
and manipulate all types of multimedia data. Binary Large Objects (BLOBs) ensures the
integrity of multimedia data by taking full advantage of the advanced security and
crash recovery mechanisms included in DBMaker. File Objects (FOs) manage
multimedia data while maintaining the capability to edit individual files in the source

application.

This manual includes the basic operations of ESQL\C and provides systematic
instructions that guide you through the management of a database. The User's Guide
content is intended for designers and administers of DBMaker databases. It will assist

those unfamiliar with using DBMaker, but have some understanding of how a

©Copyright 1995-2008 CASEMaker Inc. 1-1

O\ ESQL User’s Guide

relational database works. The user should have some operating systems knowledge
working with Windows and/or UNIX environments. Information in this manual may

also be helpful for experienced users for reference purposes.

The manual shows various commands and procedures used in maintaining a database
with ESQL\C. Although the manual is for DBMaker on Windows NT and Windows 98
environments, it can perform all functions on a UNIX platform. For clarity purposes,

portions of sample databases appear through out this manual.

SQL is a dual-mode language. It is both an interactive tool to communicate and access
a database, commonly referred as an Interactive SQL, and a database programming

language used by application programs for database access.

Generally, all major RDBMS provide their own user interface for using SQL. For
example, DBMaker provides dmSQL/C. Users can input SQL syntax directly through

the tool to access and maintain their database.

For the second mode, most major RDBMS also provide two basic techniques for users
to use SQL in their program. They are Database API and Embedded SQL. DBMaker
also comes with a variety of Java Tools. For more information on a particular subject,
refer to the “Additional Resources” section that follows and select the appropriate

manual.

©Copyright 1995-2008 CASEMaker Inc.

Introduction 1

1.1

Additional Resources

DBMaker provides a complete set of RDBMS manuals in addition to this one. For

more information on a particular subject, consult one of the books listed below:

For an introduction to DBMaker’s capabilities and functions, refer to the
“DBMatker Tutorial”.

For more information on designing, administering, and maintaining a
DBMaker database, refer to the “Database Administrator's Guide’.

For more information on DBMaker management, refer to the “/Server Manager
User’s Guide”.

For more information on DBMaker configurations, refer to the “/Configuration
Tool Reference”.

For more information on DBMaker functions, refer to the “/DBA Tool User’s
Guide’.

For more information on the DCI COBOL interface tool, refer to the “DC7
User’s Guide”.

For more information on the SQL language used in dmSQL, refer to the “SQL

Command and Function Reference’.
For more information on the dmSQL, refer to the “dmSQL User’s Guide™.

For more information on the native ODBC API, refer to the “ODBC

Programmer’s Guide’.

For more information on error and warning messages, refer to the “Error and

Message Reference”.

©Copyright 1995-2008 CASEMaker Inc. 1-3

O\ ESQL User’s Guide

1.2

Technical Support

CASEMaker provides thirty days of complimentary email and phone support during
the evaluation period. When software is registered, an additional thirty days of support
will be included, thus, extending the total support period for software to sixty days.
However, CASEMaker will continue to provide email support for any bugs reported

after the complimentary support or registered support has expired (free of charges).

Additional support is available beyond the sixty days for most products and may be
purchased for twenty percent of the retail price of the product. Please contact

sales@casemaker.com for more details and prices.

CASEMaker support contact information for your area (by snail mail, phone, or
email) can be located at: www.casemaker.com/support. It is recommended that the
current database of FAQ’s be searched before contacting CASEMaker support staff.

Please have the following information available when phoning support for a

troubleshooting enquiry or include the information with a snail mail or email enquiry:

. Product name and version number

o Registration number

. Registered customer name and address

. Supplier/distributor where product was purchased

) Platform and computer system configuration

° Specific action(s) performed before error(s) occurred
o Error message and number, if any

J Any additional information deemed pertinent

©Copyright 1995-2008 CASEMaker Inc.

mailto:sales@casemaker.com
http://www.casemaker.com/support

Introduction 1

1.3 Document Conventions

This book uses a standard set of typographical conventions for clarity and ease of use.
The NOTE, Procedure, Example, and CommandLine conventions also have a second

setting used with indentation.

Figure 1-1 Document Conventions Table

©Copyright 1995-2008 CASEMaker Inc.

O\ ESQL User’s Guide

1-6 ©Copyright 1995-2008 CASEMaker Inc.

ESQL Basics 2

ESQL Basics

This chapter is an introduction to compiling mixed ESQL and C source programs
using the ESQL/C preprocessor. Using SQL within an Application exclusively for
such programs is possible using an Application Program Interface (API); a set of
function calls that submits the SQL statements to the DBMS and retrieve query
results. DBMaker provides the industry standard database API-ODBC (Open
Database Connectivity).

Embedded SQL (ESQL) uses another approach. SQL statements, with some minor
changes to form, can be written directly into the source code of an application
program of the host programming language. This mixed source code is then
precompiled by SQL, stored in the database, and host language function calls are

generated to execute the stored commands.

You can write C application programs that use ESQL commands to access a DBMS.
The DBMaker ESQL/C preprocessor prepares the application program containing the
SQL commands for the C compiler. The preprocessor then converts the SQL

commands to C statements, with C comments, to perform the database operations.

To create and run an ESQL/C application program:

1. Design and write the program with embedded SQL.

2. Preprocess the program using the DBMaker ESQL/C preprocessor dmppcc.
3. Compile and link the program generated by the preprocessor.
4

. Execute the program.

©Copyright 1995-2008 CASEMaker Inc 2-1

O\ ESQL User’s Guide

2-2

Precompiled
plan is
stored in
the database

DBMaker
database

Figure 2-1; ESQL program flowchart

Create the
application

.ec files
are created

iy

Precompile the
program

iy

Compile the
program

1l

.c files
are created

Object files
are created

Link DBMaker
libraries

Executable
files
are created

©Copyright 1995-2008 CASEMaker Inc

ESQL/C
Source File
(-ec file)

C statement
C statement
EXEC SQL
C statement
EXEC SQL
C statement
C statement

Preprocessed
Source File
(-c file)

C statement

C statement
Function Call
C statement
Function Call
C statement

C statement

Object
File

Executable
File

2.1

Using dmppcc for
Preprocessing

The DBMaker preprocessor command is dmppec. The input ESQL/C file has the suffix
“.ec” and the output of dmppce is a C language file. During pre-compiling, dmppce
creates a stored command for each ESQL DML statement and converts the ESQL
statement in the original source to function calls that invoke the stored command.

©Copyright 1995-2008 CASEMaker Inc 2

O\ ESQL User’s Guide

Figure 2-2 dmppcc Command Options

Singleton Select Option

Example 1

To use the Singleton Select Option:
dmppcc -s exl.ec

Example 2

To turn on the Singleton Select Option and confirm run time checking while
preprocessing:
EXEC SQL SELECT salary FROM emp table WHERE emp id = 1000 INTO :var salary;

If singleton select error checking is on, and if the number of the resulting tuple is more

than one, then it will return an error.

Example 3

Returned error:
singleton SELECT can only retrieve at most one row

If this check is not turned on, the singleton select query will only retrieve the first

tuple column into the host parameter and not check for more resulting tuples.

SQLCHECK

When the SQLCHECK option is set to LIMIT (set -cl), it enables the ESQL
preprocessor to continue preprocessing the ESQL/C program without returning an
error if a table in the EXEC SQL statement does not exist.

When the SQLCHECK option is set to SYNTAX (set -cs), it enables the ESQL
preprocessor to continue preprocessing the ESQL/C program without returning an

error when a user gives the correct SQL syntax in the EXEC SQL statement.

It will not check the related semantic information on the SQL statement for the table,

column, or security. When this option check is on, dmppcc won’t connect to a

©Copyright 1995-2008 CASEMaker Inc

ESQL Basics 2

database, but the user still has to provide the database name for dmppcc to check the

database related information in DBMaker's dmconfig.ini file.

When this option is on, dmppcc will not store a precompiled plan in the database.
The dmppcc will still check for syntax errors. This option is mainly for multiple user
environments, which have multiple persons preprocessing different files that have the
same link to an executable file and are testing the executable file with a function that
has been preprocessed again but not linked. Users may receive an-- “executable maybe

out of date, please rebuild it” error.

Use this option if you receive this type of error message and if you are sure that other

people are preprocessing the file or if you receive a “lock timeout” error message.

Syntax
FULL (default) /LIMIT (-cl) /SYNTAX (-cs)

Mandatory Pre-compiling Parameters

Example 1

A list of the options that must be set when pre-compiling the ESQL/C program:
dmppcc -d test db -u db user id -p db user passwd esqgl source.ec

Where, test_db —u = database name, db_user_id =user name, and db_user_passwd =
user’s password. These parameters must be provided in the command line or dmppce
will try to open and search a local dmppc.ini file. You can also put dmppcc parameters

in the dmppc.ini file.

©Copyright 1995-2008 CASEMaker Inc 2-5

O\ ESQL User’s Guide

2-6

Example 2

Syntax in a dmppcc.ini file:
DATABASE = database name
USER = user id

PASSWORD = password

SELECT ERROR = yes/no
OUTFILE
LOGFILE = log_filename
PROJECT = project name
MODULE = module name
SQOLCHECK = FULL/LIMIT/SYNTAX

output filename

The “.c” file created by dmppce is an ordinary C source code file. You can combine

other “.c” or “.0” files to create the final executable file.

Example 3

To use a pre-source program exl.ec and access the database "TESTDB" with the user

"john" and the password "johnspwd".
dmppcc -d TESTDB -u john -p johnspwd example.ec

Example 4

To use the C compiler to compile the output file ex1.c, and to link it with the ESQL

library and other DBMaker libraries as an executable:
cc -I. -ISINCDIR -c example.c

If the file example.c is preprocessed by the dmppcc compiler and compiled to

example.o, we may link it with other object files as an executable.

Example 5

To link —o to other object files as an executable.
acc -o driver example.o otherap.o -LS$SLIBDIR -ldmapic -1lm

You can also reference the Makefile in the DBMaker’s samples directory:

~DBMatker/ $SVERSION/samples/ESQLC.

©Copyright 1995-2008 CASEMaker Inc

ESQL Syntax 3

ESQL Syntax

The ESQL/C preprocessor will preprocess all statements that are prefixed by “EXEC
SQL” or “$” in the ESQL source program. An SQL statement can be placed anywhere
in a C application program. However, the ESQL preprocessor cannot handle the
EXEC SQL statement in a macro definition, and the ESQL/C pre-processor will not
preprocess EXEC SQL statements in header files. An SQL statement must be preceded
by "EXEC SQL” or “$”, both keywords must be placed on the same line and end with

a semicolon ().

Example
if (cl > 0) EXEC SQL COMMIT WORK;

©Copyright 1995-2008 CASEMaker Inc 3-1

O\ ESQL User’s Guide

3.1

3-2

Static/Dynamic Syntax

If the SQL statement is known at preprocessing time, the ESQL program uses static
ESQL syntax. When performing a delete, insert, update, or select operation and the
referenced table and search conditions are known then only the input parameter value
may be changed at execution time. For this kind of syntax, DBMaker will check

security, compile it into an execution plan, and then store the plan in the database.

If the SQL statement is unknown at the time of writing and preprocessing it is known
as dynamic ESQL. Information on how to manage stored information in a database

will be covered in Chapter 7, on "Securizy”.

The application can use dynamic ESQL syntax when the complete or partial SQL
statement is unknown at preprocessing time. The SQL statement is given by the user,
(e.g. dmsglc), and the whole SQL statement is composed by the query tool (QBE).
DBMaker will not be able to compile the SQL syntax at preprocessing time for
dynamic ESQL syntax. Therefore, all compilation and security check operations are
executed at run time. Detailed dynamic ESQL syntax will be illustrated in Chapter
8, "Dynamic ESQL”.

When a host variable is referenced in a general C statement, the method is the same as
for other C variables. When the host variable is referenced in an EXEC SQL

statement, it must start with a colon (:).

Example
EXEC SQL INCLUDE DBENVCA;
EXEC SQL INCLUDE SQLCA;
main ()
{
EXEC SQL BEGIN DECLARE SECTION;
char sql string[255];
EXEC SQL END DECLARE SECTION;

EXEC SQL CONNECT TO testdb john johnspwd;

/* get user input for SQL statement x

©Copyright 1995-2008 CASEMaker Inc

ESQL Syntax 3

S Example 1
Static ESQL syntax:

S Example 2
Static ESQL/C program format:

©Copyright 1995-2008 CASEMaker Inc 3-3

O\ ESQL User’s Guide

3.2

Variables

You can use variables called host variables from the host program in ESQL statements
to pass data between the C application and the DBMaker database. A host variable is
always accompanied by another variable called an indicator variable. While the host
variable holds a value, the indicator variable registers the special nature of that value if
it is NULL or has been truncated.

Declare Section

Any host variable and indicator variable that have been referenced in EXEC SQL
statements must be in the declare section. The declare section is made up of C variable
declarations contained within the EXEC SQL statements, BEGIN DECLARE
SECTION, and END DECLARE SECTION.

There can be any number of declare sections within an application program. Every
function should have its own declare section if it has host variables and indicator
variables referenced in the EXEC SQL statement. DBMaker's dmppce will return an

error if the host variable and indicator variable cannot be found in the declare section.

Example

A BEGIN DECLARE SECTION:

EXEC SQL BEGIN DECLARE SECTION;

varchar hoEmpNo[8]; /* A host variable */
int inEmpNo; /* An indicator variable */

EXEC SQL END DECLARE SECTION;

Host Variable Data Types

A singleton C variable can be declared in a host variable. C structures and unions are
not allowed in a host variable, except for one-dimensional character arrays that are
used to specify char buffer length. The fileobj data type cannot be used for specifying a
one-dimensional array. Other types of C arrays can be declared as a one dimensional

array for fetching a row set with more than one data value in a single FETCH

©Copyright 1995-2008 CASEMaker Inc

ESQL Syntax 3

statement. The user can use a two dimensional array to retrieve more than one data

value in a single FETCH statement for CHAR or BINARY types.

Figure 3-1 ESQL types defined in esqltype.h
The following SQL data types can also be used in the declare section:

©Copyright 1995-2008 CASEMaker Inc 3-5

O\ ESQL User’s Guide

Figure 3-2 Declare Section SQL data types

3-6 ©Copyright 1995-2008 CASEMaker Inc

ESQL Syntax 3

The varchar type is a null terminated variable length character string, and varbinary is
a variable length binary string without null terminate. Vary the input or output
variable’s length by assigning the actual length in the varchar or varbinary type’s len
field. The buffer length and buffer addresses are not defined for the varcptr or varbptr
type; remember to assign them before using them in the program.

For these non-standard C data types, dmppce converts them into C structures that are
recognized by the C compiler. For example, varchar is resolved into a C structure

having a field length and character array elements.

Figure 3-3Blob Data Types

©Copyright 1995-2008 CASEMaker Inc 3-7

O\ ESQL User’s Guide

FILEOBJ’S
If the file type is not set then the default type is ESQL_STORE_FILE_ CONTENT,

and the database server will store the user specified file content. It will not matter if the

file has been deleted after you have inserted the file.

However, if you set file type = ESQL_STORE_FILE_NAME, the database will only
store the file name specified in the fname field; you must make sure that the file is
accessible by DBMaker’s database server. If you delete the file, DBMaker will return an
error when you reference it. The settings of file type will only work when fileobj type
is used as an input parameter. As an output parameter, the database will always try to

copy the data into the file specified.

S Example 1

Fileobj type as an input host variable:

EXEC SQL BEGIN DECLARE SECTION;

fileobj fnamel;

EXEC SQL END DECLARE SECTION;

EXEC SQL CREATE TABLE tl (cl file);

strcpy (fnamel.name , “u:\image path\testl.gif”;
/* This INSERT statement will store all the content of file test.gif */
EXEC SQL INSERT INTO tl1 VALUES (:fnamel);
fnamel.type = ESQL STORE FILE NAME;

strcpy (fnamel.name , “u:\image path\test2.gif”;
EXEC SQL INSERT INTO tl1 VALUES (:fnamel);

S Example 2

Fileobj type as an output variable with the schema for table t2 as c1 long varchar:

EXEC SQL BEGIN DECLARE SECTION;

fileobj fnamel;

EXEC SQL END DECLARE SECTION;

strcpy (fnamel.name , “u:\image path\testl.gif”;

/* This SELECT statement will fetch the blob data from server site and put into user’s
local file. */

strcpy (fnamel.name , “u:\local path\testl.gif”;

EXEC SQL select cl from t2 into :fnamel;

3-8 ©Copyright 1995-2008 CASEMaker Inc

ESQL Syntax 3

S Example 3

Fileobj as an output variable using cursor:
EXEC SQL BEGIN DECLARE SECTION;
fileobj fnamel;
EXEC SQL END DECLARE SECTION;
int idx1=0;
strcpy (fnamel.name , “u:\image path\testl.gif”;
EXEC SQL DECLARE myCurl CURSOR FOR select cl from t2 into :fnamel;
While (1)
{
idxl++;
/* This FETCH statement will fetch the blob data from server site and store it into
user’s local file. If you do not change output file name, in the next FETCH statement,
the output file will be overwritten. */
sprintf (fnamel.name , “test%d.gif”, idxl);
EXEC SQL FETCH myCurl;
if (SQLCODE)

{ /* Break while loop when no more data or there’s error */

if (SQLCODE != SQL SUCCESS WITH INFO)

break;

}

Host Variables

Once host variables are established, the data can be stored in the variable by DBMaker
for use by the application program. A host variable can also be used to insert and
update data, or in the WHERE and HAVING clauses.

Apply the following when using host variables in a C application program:

e Declare the host variables according to the regular syntax of the Clanguage and

DBMaker's ESQL supported data types.

e The INTO clause host variables is equal to or less than the number of columns
named in the SELECT statement and the data type of the input or output host
variable is a compatible data type corresponding with the parameter or projection

column.

©Copyright 1995-2008 CASEMaker Inc 3-9

O\ ESQL User’s Guide

e Use host variables compatible with column value types.

e Use host variables prefixed by a colon (;) in SQL statements; when used elsewhere

in an application program no colon is necessary.

S Example 1
EXEC SQL BEGIN DECLARE SECTION;
char emp id[20]; /* employee ID */
char emp tel[20]; /* employee telephone # */

int indvalue = SQL NTS
EXEC SQL END DECLARE SECTION;
EXEC SQL SELECT emp id, emp tel FROM emp tab INTO :emp id :indvalue,

:emp_tel :indvalue

S Example 2
EXEC SQL BEGIN DECLARE SECTION;
char emp id[20]; /* employee ID */
char emp tel[20]; /* employee telephone # */

int indvalue = SQL NTS; /* indicates input parameter is null terminated */
EXEC SQL END DECLARE SECTION;
strcpy (emp_id, "john Smith");
strcpy (emp _tel, "765-4321");
EXEC SQL INSERT INTO emp tab VALUES (:emp id :indvalue, :emp tel :indvalue);

S Example 3:

To use output host variable hoDeptNo and input host variable hoEmpNo, initialized

with the code for select criteria.

EXEC SQL BEGIN DECLARE SECTION;

int hoDeptNo, hoEmpNo;

EXEC SQL END DECLARE SECTION;

EXEC SQL SELECT deptNo FROM Employee WHERE empNo = :hoEmpNo INTO :hoDeptNo;

Variable Scope

Declare the variable scope as EXTERN or STATIC in the declare section in the same

way as other C variables.

3-10 ©Copyright 1995-2008 CASEMaker Inc

ESQL Syntax 3

S Example 1

To reference an external (Global) variable with a supported ESQL data type, add
“extern” in front of the ESQL variable declaration:

S Example 2

To set the local (Static) variable as a static variable, add "static" in front of the ESQL
variable declaration:

S Example 3

To reference the value from the function's input variable, or to return the value
obtained from an ESQL or SQL query statement, copy the variable data or reassign
the pointer to the ESQL variable's data structure.

©Copyright 1995-2008 CASEMaker Inc 3-11

O\ ESQL User’s Guide

Indicator Variables

Indicator variables are an optional means to handle null values and truncation for host
variables in the application program. When an indicator variable is used, it follows a
host variable in the SQL statements. Declare indicator variables are integers only.

The indicator variable indDeptNo, immediately follows the host variable hoDeptNo
and is prefixed with a colon.

S Example 1

Declare indicator variable:

Figure 3-4 Example 1Indicator Variable Values

3-12 ©Copyright 1995-2008 CASEMaker Inc

ESQL Syntax 3

S Example 2

Use an indicator variable to input a NULL value in the database; the corresponding

host variable is ignored.

The above example will insert the NULL value into the DeptNo column, and the
value of hoDeptNo will be ignored.

Figure 3-5 Example 2 Indicator Variable Values

©Copyright 1995-2008 CASEMaker Inc 3-13

O\ ESQL User’s Guide

3.3

3-14

Status Codes

There are three kinds of declarations for special data structures required by DBMaker's
preprocessor or the runtime application that can be used with the Include Variable.
The syntax for declaring sqlca and sqlda are the same as dbenvca. Sqlca is used to

communicate the status code and sqlda is used in dynamic ESQL.

e dbenvca

e sqlca
e sqlda
dbenvca

The dbenvca declaration is an environment variable DBMaker uses in an application

program; it must be declared in the program.

Syntax
EXEC SQL INCLUDE [EXTERN] dbenvca;

Example

filel.c

EXEC SQL INCLUDE DBENVCA;
main ()

{
EXEC SQL .

}
file2.c
EXEC SQL INCLUDE EXTERN DBENVCA;
funcl ()

{

©Copyright 1995-2008 CASEMaker Inc

ESQL Syntax 3

SQLCA

Status codes for each executed SQL command are returned into the SQL
Communication Area (SQLCA). DBMatker uses variables contained in this data
structure to pass status information to the C program, where the information can be

analyzed and handled if any problems arise.

DECLARING SQLCA

The SQLCA structure variable must be globally accessible in ESQL/C programs.
SQLCA and DBENVCA are both global variables that must be declared in the
ESQL/C source program. SQLCA is a structure declared automatically by the

preprocessor when it encounters the following statement.

Example

To automatically declare SQLCA:
EXEC SQL INCLUDE [EXTERN] SQLCA;

STATUS RETURNED IN SQLCA

Status information from the database server is returned through the SQLCA. It is the

application program’s responsibility to analyze the data and handle errors or warnings.

There are two ways to instruct the application program to examine the status codes in
the SQLCA and handle errors and warnings. You can write the commands for this in
C code or use the SQL, WHENEVER command, to generate error handling during C

code preprocessing.

Example

SQLCA syntax definition:

#define MAX ERR STR LEN 256

/*

* SQLCA - the SQL Communications Area (SQLCA)

* */

typedef struct sqglca

{
unsigned char sqglcaid[8]; /* the string "SQLCA " x

©Copyright 1995-2008 CASEMaker Inc 3-15

O\ ESQL User’s Guide

3-16

DBMatker's error, warning, and other codes are stored in sglca.sqlerrd[0]. The number
of fetched rows is stored at sqlca.sqlerrd[3]. You can reference them when fetching
more than one row in a FETCH statement. For more information, refer to the
DBMaker “Error and Message Reference Guide”.

Figure 3-6 Sample Codes

©Copyright 1995-2008 CASEMaker Inc

ESQL Syntax 3

3-4

The WHENEVER Statement

The WHENEVER statement can be used to handle errors. When the ESQL/C
preprocessor encounters the WHENEVER statement, it generates C error handling

code with execution dependent on the outcome of an SQL statement.

The default value of each condition is CONTINUE. A WHENEVER statement
affects all SQL statements that come after it in an application program, up to the next
WHENEVER for the same condition. In other words, the most recent setting of the
WHENEVER statement remains in effect for all of the following EXEC SQL
statements to the end of the file, unless another WHENEVER statement in the

middle overrides it.

To prevent the possibility of an infinite loop, do not forget to set WHENEVER
check_case CONTINUE in the error handler, or in any other functions containing an
EXEC SQL statement that requires error handling using the WHENEVER statement.

Use these conditions in the WHENEVER statement to direct an application program:

e STOP - rolls back your work, disconnects from the database, and terminates the
application program when an SQL statement’s return status meets the specified

condition.

e CONTINUE - disables the condition set in the previous WHENEVER statement

and continues execution with the statement next to the one that caused the error.

o GOTO label_name - directs execution to the label for an error-handling routine

within your application program.

o DO c_action_statement - Does a specified action when the returned status meets

the specified condition.

©Copyright 1995-2008 CASEMaker Inc 3-17

O\ ESQL User’s Guide

Figure 3-7 Sample Codes

< Example 1

< Example 2

3-18 ©Copyright 1995-2008 CASEMaker Inc

Data Manipulation 4

a4

Data Manipulation

In this chapter, we will give some examples of using ESQL in an application,
including how to use host variables, indicator variables, and NULL values. You can
issue the same SQL statements within an ESQL application that are available in

interactive SQL, plus some additional ones described in this manual.

All SQL commands can be prefixed by EXEC SQL in an ESQL application,
including: COMMIT, ROLLBACK, CONNECT, DISCONNECT, INSERT,
SELECT, UPDATE, DELETE, etc. However, it is not common to use DDL SQL
statements in an ESQL application.

Examples of additional embedded SQL statements used in ESQL are declarative
statements such as BEGIN (END) DECLARE SECTION, DECLARE CURSOR,
INCLUDE, and WHENEVER as well as additional executable statements such as
CLOSE, DESCRIBE, EXECUTE (IMMEDIATE), FETCH, OPEN, and
PREPARE. These executable statements are used in embedded SQL only.

©Copyright 1995-2008 CASEMaker Inc 4-1

O\ ESQL User’s Guide

4.1

4-2

Data Manipulation

Only host variables are used to pass data from the application to the database for
INSERT, UPDATE, and DELETE. In addition to declaring the host variables in the

declare section, initialize every input host variable before referencing it.

The keyword in SQL syntax for testing the NULL value in the WHERE clause, 'IS
NULL', cannot use an indicator variable to indicate the NULL value in the WHERE

clause.

Example 1
EXEC SQL BEGIN DECLARE SECTION;
int hoDeptNo, inDeptNo;
varchar hoDeptName[8];
EXEC SQL BEGIN DECLARE SECTION;
/* Use host variable hoDeptNo to input data into database =Y
hoDeptNo = 1001;
EXEC SQL INSERT INTO Department (DeptName, DeptNo)
VALUES ('Human Resource', :hoDeptNo);

Example 2

Input the NULL value in the database with the corresponding host variable ignored:
inDeptNo = SQL NULL DATA;
EXEC SQL INSERT INTO Department (DeptName, DeptNo)

VALUES ('Human Resource', :hoDeptNo :inDeptNo) ;

Example 3

To use the host variable of SQL pseudo data types such as varchar, which are not
directly supported by the C language:
strcpy (hoDeptName.arr, 'Human Resource');
hoDeptName. len = strlen(hoDeptName.arr);
hoDeptNo = 1001;
EXEC SQL INSERT INTO Department (DeptName, DeptNo)
VALUES (:hoDeptName, :hoDeptNo);

©Copyright 1995-2008 CASEMaker Inc

Data Manipulation

a4

< Example 4

To use the UPDATE and DELETE input host variables:

strcpy (hoDeptName.arr, 'Human Resource');

hoDeptName. len = strlen(hoDeptName.arr) ;

hoDeptNo = 1001;

EXEC SQL UPDATE Department SET DeptNo = :hoDeptNo WHERE DeptName = :hoDeptName;
EXEC SQL DELETE FROM Department WHERE DeptNo = :hoDeptNo + 1;

©Copyright 1995-2008 CASEMaker Inc

4-3

O\ ESQL User’s Guide

4.2

Retrieving Single-Row Data

Retrieve single-row data from the database to the output host variable, passing a value
to the application. Use output host variables in the INTO clause of a SELECT

statement.

In the example following, hoDeptName is an output host variable and hoDeptNo is
an input host variable. An indicator variable inDeptName has also been appended to
the output host variable to check whether the query retrieves the NULL value or a

truncated value. The 0 value indicates a normal result.

SQL_NULL_DATA indicates the host variable received a NULL value. A value
greater than 0 indicates that the result in the host variable is truncated and the value in

the indicator variable is the length of the original value.

For example, since the length of hoDeptName is 8, the result in the database has a
length of 12, the indicator variable will be 12 and the host variable will contain the

first 8 characters of the original value.

You can have the full range of standard SQL clauses (WHERE, GROUP BY, ORDER
BY, HAVING, etc.), within the embedded SELECT statement. You can use input
host variables in the WHERE clause and HAVING clause.

Every SELECT statement retrieves exactly one row, if a query returns more than one
row use a cursor (see below). Check the sqlca.sqlcode after each SELECT statement to
see how many rows have been retrieved. If the only sqlcode in SQLCA is
SQL_NO_DATA_FOUND, no data was found. This option has to be specified in
DBMaker's preprocessor dmppce to return an error when more than one row is
retrieved with the SELECT statement.

Example 1

EXEC SQL BEGIN DECLARE SECTION;

int hoDeptNo, inDeptNo, inDeptName;
varchar hoDeptName[8];

EXEC SQL BEGIN DECLARE SECTION;
hoDeptNo = 1001;

©Copyright 1995-2008 CASEMaker Inc

Data Manipulation 4

=

EXEC SQL SELECT DeptName FROM Department
WHERE DeptNo = :hoDeptNo
INTO :hoDeptName :inDeptName;

Example 2

If this option is set, an error will be shown when the result is more than one row.

dmppcc -d TESTDB -u john -p johnspwd -s exl.ec

AN

©Copyright 1995-2008 CASEMaker Inc

4-5

O\ ESQL User’s Guide

4.3

Transaction Processing

Use the EXEC SQL COMMIT and EXEC SQL ROLLBACK commands to control
the integrity of a transaction. For more advanced applications use SAVEPOINT and
ROLLBACK TO SAVEPOINT options to have better control over data processing.
COMMIT WORK and ROLLBACK WORK erase all of the Savepoints set in a
transaction. If you exit the program without issuing COMMIT or ROLLBACK, all

changes in the transaction will be rolled back.

You can set the AUTOCOMMIT connection option in the dmconfig.ini file. If the
AUTOCOMMIT connection option is set on, then all of the SQL statements
executed are committed immediately and the ESQL application cannot perform the
rollback statement. Be sure to turn the AutoCommit option off before running the
application or use the following syntax in an ESQL source file to turn on/off the

AutoCommit option after connecting to a database.

Example

To use the SET AUTOCOMMIT ON/OFF:
EXEC SQL SET AUTOCOMMIT {ON|OFF}

©Copyright 1995-2008 CASEMaker Inc

Data Manipulation 4

4.4

Dynamic connection syntax

Sometimes you might want to access multiple databases with an ESQL/C application.
Werite several ESQL programs, preprocess them with different database names, and
link all programs as an executable or add the “AT database name” in front of the SQL

statement, and specify the database names before executing the SQL statement.

Example

EXEC SQL BEGIN DECLARE SECTION;

char dbl[20];

char usrl[10];

char pwdl[10];

int cl;

EXEC SQL END DECLARE SECTION;

/* GetDBInfo ()is user function which will pass back database name, user, password */
GetDBInfo (dbl, usrl, pwdl);

EXEC SQL CONNECT TO :dbl :usrl :pwdl;

EXEC SQL AT :dbl select cl from tl into :cl;
EXEC SQL DISCONNECT :dbl;

©Copyright 1995-2083 CASEMaker Inc 4-7

O\ ESQL User’s Guide

4.5 Using a Cursor

When a query returns more than one row, the program must execute the query
differently. Multiple-row queries are handled in two stages. A program starts the query
and no data is returned immediately. Then, the program requests the data rows one at

a time via a cursor.

A cursor, as used in an application program, is a data selector that can operate on
specified rows from the database. The following operations are performed with the
DECLARE, OPEN, FETCH, and CLOSE statements.

2 To use a cursor:

1. Allocate storage to hold the cursor, declare the cursor and its associated
SELECT statement.
2. Start the execution of the associated SELECT statement and open the cursor.

NOTE: It actually contains three sub-steps, namely parse the SQL statements,
bind the host variables, and begin execution of the statement.

3. Fetch, delete, or update a row of data into host variables and process it.

NOTE: Repeat this step until all rows have been fetched.

4. Close the cursor.

4-8 ©Copyright 1995-2008 CASEMaker Inc

Data Manipulation 4

Declaring a Cursor

Declare a new cursor for each SELECT command within an application program,

except when retrieving a single row.

The INTO host_variable clause can also be defined in the FETCH statement. If you
want to use all available methods of fetching data (i.e., FETCH NEXT, PREVIOUS,
LAST, FIRST, ABSOLUTE, and RELATIVE), specify SCROLL when declaring a

cursor.

Example 1

The DECLARE syntax:
EXEC SQL DECLARE cursor name [SCROLL] CURSOR FOR select statement
[INTO :output host var :indicator var [, :output host var :indicator var]]

Example 2

To fetch more than one row in a single FETCH statement, specify the SCROLL

keyword.

EXEC SQL DECLARE vendCursor SCROLL CURSOR FOR
SELECT vendorName FROM vendors
WHERE vendorNumber = :inputNo;

Example 3

Alternatively use the INTO clause in the DECLARE statement.
EXEC SQL DECLARE vendCursor CURSOR FOR
SELECT vendorName FROM vendors
WHERE vendorNumber = :inputNo
INTO :vendName;

Opening a Cursor

A cursor must be in an open state to operate on the contents of the specified rows. The
OPEN command is followed by the name of the cursor given in the DECLARE

command.

©Copyright 1995-2008 CASEMaker Inc 4-9

O\ ESQL User’s Guide

4-10

When the OPEN command is executed, the cursor finds and points to the first row of
the result set that satisfies the search condition. If there are input host variables in the
cursor, you must specify the values for all input host variables before or in the OPEN
cursor statement. In the above case, because the input host variables have been defined
in the DECLARE statement, there's no need to specify the input host variables again
in the OPEN cursor statement.

Example 1

The OPEN syntax:
EXEC SQL OPEN cursor name
[USING :input host var [:indicator var]
[, :input host var [:indicator var]]]

Example 2:

The SQL command for opening a cursor:
EXEC SQL OPEN vendCursor;

Using a Cursor to Retrieve Data

A cursor retrieves data by using the FETCH command. In a loop, FETCH advances
the cursor in the result set and retrieves the current row, copying the values of the
columns specified in the SELECT list into the host variables designated by the INTO

clause.

The INTO clause can be omitted in the FETCH statement. Where nth_position and
num_rows can be a host variable or a constant integer. PREVIOUS, FIRST, LAST,
ABSOLUTE nth_position, RELATIVE nth_position and num_rows ROWS are
available only with cursors defined with the SCROLL option.

You must use a FETCH command for each row to be retrieved. After all rows in the
result set have been retrieved, DBMaker sets the SQLCODE field of SQLCA to the
value SQL_NO_DATA_FOUND to indicate that no more rows are found. Indicated

variables can be declared with the host variables to detect null values.

©Copyright 1995-2008 CASEMaker Inc

Data Manipulation 4

When the, num_rows ROW, syntax is specified in a FETCH statement or in an
INTO arrayed host variable, you can retrieve more than one data value in a FETCH
statement.

S Example 1

The FETCH syntax:

S Example 2

An SQL command for fetchini results from a cursor:
S Example 3

The FETCH ROWS command:

©Copyright 1995-2008 CASEMaker Inc 4-11

O\ ESQL User’s Guide

}
EXEC SQL CLOSE myCur;

S Example 4

Returns the next row within the results set. NEXT is the default cursor fetch.
EXEC SQL FETCH curl; /* default is fetch next */
EXEC SQL FETCH NEXT curl INTO :cl, :c2;

S Example 5

The PREVIOUS command returns the previous row within the results set.
EXEC SQL FETCH PREVIOUS curl INTO :cl, :c2;

S Example 6

The FIRST command moves the cursor to the first row within the result set and

returns the first row.
EXEC SQL FETCH FIRST curl INTO :cl, :c2;

S Example 7

The LAST command moves the cursor to the last row within the result set and returns

the last row.
EXEC SQL FETCH ILAST curl INTO :cl, :c2;

o Example 8

The ABSOLUTE n command returns the 7 th row within the results set. If 7 is a
negative value, the returned row will be the # th row counting backward from the last

row of the results set.
n = 10;
EXEC SQL FETCH ABSOLUTE :n curl INTO :cl, :c2;

S Example 9

The RELATIVE n command returns the ##h row after the currently fetched row. If 7
is a negative value, the returned row will be the nth row counting backward from the

relative position of the cursor.

4-12 ©Copyright 1995-2008 CASEMaker Inc

Data Manipulation 4

n = 10;
EXEC SQL FETCH RELATIVE :n curl INTO :cl, :c2;

Deleting Data with a Cursor

With a cursor, you can select one row at a time to be deleted from a table. Any

additional rows must be fetched individually for deletion.

Do not use the COMMIT WORK command between consecutive deletions.
Executing this command closes the cursor and terminates the deletion process.
Working with AUTOCOMMIT mode on will have the same results. Turn
AUTOCOMMIT mode off before using a DELETE or UPDATE WHERE
CURRENT OF cursor statement.

To delete a row:

1. Declare the cursor with a SELECT command.

2. Use the OPEN and FETCH commands to open the cursor and position it on

the row to be deleted.

3. Execute the DELETE command.

4. To delete another row, reposition the cursor with another FETCH command.

Example
EXEC SQL DELETE FROM supplier WHERE CURRENT OF vendCursor;

©Copyright 1995-2008 CASEMaker Inc

4-13

O\ ESQL User’s Guide

4-14

Updating Data with a Cursor

You can use a cursor to select one row at a time to update. Reposition the cursor to

update additional rows.

Do not use the COMMIT WORK command between consecutive updates, and make
sure AUTOCOMMIT mode is off. Either of these will close the cursor and terminate

the update process.

To update a row:

1. Declare the cursor with a SELECT command.

2. Use the OPEN and FETCH commands to open the cursor and position it on
the row to be updated.

3. Execute the UPDATE command.
4. To update another row, reposition the cursor with another FETCH command.
Example

EXEC SQL UPDATE supplier SET price = price + 10
WHERE CURRENT OF vendCursor;

Closing the Cursor

COMMIT WORK and ROLLBACK WORK commands will implicitly close a
cursor. You can explicitly close a cursor with the CLOSE CURSOR command. When
you no longer need a cursor, you should close it to free any allocated resources. The

cursor is dropped and cannot be used, opened or fetched, again.

Example 1

The CLOSE CURSOR syntax:
EXEC SQL CLOSE cursor name

Example 2

An SQL command for closing a cursor:
EXEC SQL CLOSE vendCursor;

©Copyright 1995-2008 CASEMaker Inc

BLOB Data 5

L

BLOB Data

When the BLOB data size is unknown at preparation time, or a buffer is not large
enough, you may want to PUT or GET partial BLOB data each time until the entire

data has been retrieved.

Use the original ESQL syntax to retrieve the BLOB column if you can allocate enough
buffer size in a program or do not care whether you can GET the whole BLOB or not.

Because it is not necessary to GET BLOB data in sequence, we can assign a column to
GET. Using the GET BLOB statement, data does not have to be retrieved from left
column to right column, (small column numbers to large column numbers). It is also

not necessary to GET the entire BLOB data if it is not required.

PUT BLOB must start from the first to the last BLOB column and indicated when to
begin and stop. If you did not PUT each BLOB column accordingly or indicate when
to end the PUT BLOB then the BLOB column will not be inserted in the database.

Therefore, the operation will be aborted, because it never finished, when you
disconnect or exit from the program. If you disconnect from the database, an error will

show that the last statement has been canceled.

©Copyright 1995-2008 CASEMaker Inc 5-1

O\ ESQL User’s Guide

5.1

PUT BLOB Statement

2 To use a PUT BLOB statement

1.

Prepare an ESQL statement and declare the BLOB host variable as a question
mark, to indicate that this BLOB host variable will be bound later.

The PREPARE syntax is:

EXEC SQL PREPARE stmt name FROM “SQL SYNTAX"”
| :sqgl string host variable];

dmppce will treat the “SQL SYNTAX?” as static ESQL syntax. The syntax will
be parsed and the execution plan will be stored when preprocessing.

dmppcc will treat PREPARE as Dynamic ESQL syntax when it includes
the :sql_string_host_variable,. The syntax will not be parsed until run time.
Refer to the Chapter on “Dynamic ESQL” for more details.

If you want to handle a BLOB with GET or PUT BLOB syntax later, define it
using “?” as the BLOB host variable.

To insert emp_pic into emp_table:

EXEC SQL PREPARE stmtl FROM

"INSERT INTO emp table (emp id, emp pic) VALUES
(:emp _id, ?)";

Execute this ESQL statement:

EXEC SQL EXECUTE stmt name;

Example

EXEC SQL EXECUTE stmtl;
Declare when to BEGIN to PUT the BLOB:

EXEC SQL BEGIN PUT BLOB FOR stmt name;

Example

EXEC SQL BEGIN PUT BLOB FOR stmtl;

©Copyright 1995-2008 CASEMaker Inc

BLOB Data 5

Syntax

Define which BLOB variable to use for putting the BLOB and filling the
information of the bufsize and bufptr. The order for PUT BLOB must be
sequential from the first to the last unbound BLOB column.

EXEC SQL PUT BLOB FOR stmt name USING :host var [:indicator var]

/*host_var's data type must be longvarchar or longvarbinary) =Y

Example

strcpy (buf, "This is a test"):;
bl.buf = buf;

bl.bufsize = strlen (buf);

EXEC SQL PUT BLOB FOR stmtl USING :bl;
Follow step 4 until there is no more BLOB data to PUT in this column.
If there is more than one BLOB column to PUT, declare when to begin

putting the next BLOB column and return to step 4.

EXEC SQL PUT NEXT BLOB FOR stmt name;

Example

EXEC SQL PUT NEXT BLOB FOR stmtl;

If the entire BLOB column has been PUT into the database, declare that the
PUT BLOB operation is finished.

EXEC SQL END PUT BLOB FOR stmt name;

Example

EXEC SQL END PUT BLOB FOR stmtl;

The entire PUT BLOB statement:

* Prepare an insert statement; the input BLOB columns should use a

* question mark to denote it.
**/

EXEC SQL PREPARE stmtl FROM "insert into emp table \

(emp id, emp pic, emp memo) values (:id, ?, ?)";

©Copyright 1995-2008 CASEMaker Inc 5-3

O\ ESQL User’s Guide

5-4 ©Copyright 1995-2008 CASEMaker Inc

BLOB Data 5

©Copyright 1995-2008 CASEMaker Inc

5-5

O\ ESQL User’s Guide

5.2

5-6

GET BLOB Statement

2 To use the GET BLOB statement:

1.

Prepare an ESQL statement and declare the BLOB host variable as a question
mark (it means this BLOB host variable is not yet bound).

EXEC SQL PREPARE stmt name FROM "SQL SYNTAX";

Unlike dynamic ESQL syntax, the SQL SYNTAX is known at preprocessing
time, and must include the bound host variable name; if it's a BLOB, and you
want to use the GET/PUT BLOB method, then you must define ?'.

Suppose we want to fetch emp_pic from emp_table:

Example

EXEC SQL PREPARE stmtl FROM "select emp pic from emp table into 2";

Declare a cursor for a prepared statement.

EXEC SQL DECLARE cursor name CURSOR FOR stmt name;

Example

EXEC SQL DECLARE myCur CURSOR FOR stmtl;
Open the cursor.

Example

EXEC SQL OPEN myCur;
Fetch the cursor.

Example

EXEC SQL FETCH myCur;

You do not need to declare when to begin a GET BLOB, but you must define
the column number in the BLOB host variable and the available buffer size
and valid buffer pointer.

EXEC SQL GET BLOB COLUMN :blobcol num FOR stmt name USING :host var
[:indicator var]

Syntax 1

©Copyright 1995-2008 CASEMaker Inc

BLOB Data 5

NOTE: You can specify an indicator variable to GET the remaining buffer size
before getting the BLOB column.
Syntax 2

©Copyright 1995-2008 CASEMaker Inc 5-7

O\ ESQL User’s Guide

5-8

bl.bufsize = 2; /* get 1 char plus null ptr at a time */
EXEC SQL GET BLOB COLUMN :nCol FOR stmtl USING :bl :i bl;
if (SQLCODE != SQL NO DATA FOUND)

printf ("bl = %s, last remain size is %d\n", bl.buf, i bl);

chkErr () ;

NOTE: You can also set bufsize = DB_ALLOCATE_MEMORY, when you
want DBMatker to allocate the memory for retrieving the BLOB.
DBMaker will free the allocated memory related to the BLOB when
you call next FETCH or CLOSE CURSOR statement. Use caution
with this option, because by allocating enough memory for the BLOB
may cause an “OUT OF MEMORY” problem in the system. In
addition, since the memory is freed by the database after the next
FETCH or CLOSE statement, the pointer of the BLOB variable will
refer to an invalid address. This may cause a core dump or error

execution result in your program.
Continue as in the previous step, if there is more BLOB data to GET.

Example
EXEC SQL PREPARE stmtl FROM "select c6 from dl into ?2";
EXEC SQL EXECUTE stmtl;

/* fetch BLOB with size = 0 first, to know total size with indicator
7

nCol =1;
bl.bufsize = 0;
bl.buf = wkbuf;

EXEC SQL GET BLOB COLUMN :nCol FOR stmtl USING :bl :i bl;

©Copyright 1995-2008 CASEMaker Inc

BLOB Data 5

7. Ifall data has been retrieved or you do not want to GET the rest of the BLOB
data, you can continue to FETCH the rest of the result buffer for the cursor
until no more rows are found.

Example

©Copyright 1995-2008 CASEMaker Inc 5-9

O\ ESQL User’s Guide

5-10 ©Copyright 1995-2008 CASEMaker Inc

BLOB Data 5

©Copyright 1995-2008 CASEMaker Inc 5-11

O\ ESQL User’s Guide

5-12 ©Copyright 1995-2008 CASEMaker Inc

Dynamic ESQL 6

Dynamic ESQL

You can write an ESQL statement in two ways. The simpler and more common way is
by static embedding, which means that the SQL statement is written as part of the
source program text before pre-compiling. Up to this point, we have exclusively

covered Static ESQL.

Although static ESQL is extremely useful, it requires you to know the exact syntax for
SQL statements at the time of writing a program. Some applications require the ability
to compose SQL statements in response to user input at run time. This can be done
with dynamic ESQL, in which the program composes an SQL statement as a string of
characters and passes it to the database at run time. All or part of the dynamic ESQL
statement is unknown at the precompiled time; the complete statement is constructed

in memory during run time.

The dynamic ESQL statements are categorize into four types according to whether it
is a SELECT statement and whether it has known or unknown host variables. Each

type of dynamic ESQL uses a different method to program the ESQL statement.

©Copyright 1995-2008 CASEMaker Inc 6-1

O\ ESQL User’s Guide

Figure 6-1ESQL Statement Catagories

6-2 ©Copyright 1995-2008 CASEMaker Inc

Dynamic ESQL 6

6.1

Type 1 Dynamic ESQL

Type 1 dynamic ESQL is a non-SELECT statement without input host variables. In
this simple case, you can use EXECUTE IMMEDIATE to process the dynamic
ESQL.

Example

Type 1 Dynamic ESQL:

EXEC SQL BEGIN DECLARE SECTION;

varchar upd str([100];

EXEC SQL END DECLARE SECTION;

sprintf (upd str.arr, "UPDATE part SET gty = gty -1 WHERE ");

gets (update condition); /* get dynamic upd condition */
strcat (upd str.arr, update condition); /* construct dynamic SQL */

upd str.len = strlen(upd str.arr);

EXEC SQL EXECUTE IMMEDIATE FROM :upd str; /* execute it sy
EXEC SQL COMMIT WORK;

©Copyright 1995-2008 CASEMaker Inc 6-3

O\ ESQL User’s Guide

6.2 Type 2 Dynamic ESQL

Type 2 dynamic ESQL is a little bit more complicated. It is a non-SELECT statement
with a known number of input host variables. If the number of input host variables is
undetermined at precompiled time, then you must use type 4 dynamic ESQL (see the

section later in this chapter).

S To construct a type 2 Dynamic ESQL application:
1. Declare all input host variables in the declare section.

2. Prepare this statement:

EXEC SQL PREPARE statement name FROM :statement_string.
3. Set value of all input host and indicate variables.

4. Execute this statement:
EXEC SQL EXECUTE statement name USING :input varl, :input var2.

S Example

To construct a type 2 Dynamic ESQL application:
EXEC SQL BEGIN DECLARE SECTION;

varchar del str([80];

int ord number;

EXEC SQL END DECLARE SECTION;

char del condition[80];

/* there is an input variable :iVord, it is a place holder =)
sprintf(del str.arr, "DELETE FROM order WHERE ordid = :iVord AND ");

gets (del condition); /* get the DYNAMIC delete condition */
strcat (del str.arr, del condition); /* construct dynamic SQL */

del str.len = strlen(del str.arr);
EXEC SQL PREPARE del stmt FROM :del str;

/* please note the relationship between the input host =Y
/* variable ord number and placeholder iVord. =Y
gets (ord number); /* set host variable value */

EXEC SQL EXECUTE del stmt USING :ord number;
EXEC SQL COMMIT WORK;

6-4 ©Copyright 1995-2008 CASEMaker Inc

Dynamic ESQL 6

6.3

Type 3 Dynamic ESQL

Type 3 dynamic ESQL is a SELECT statement with a known number of input and
output host variables. If the number of either input or output host variables is

undetermined at precompiled time, it becomes type 4 dynamic ESQL.

Processing type 3 dynamic ESQL:

1. Prepare a statement string inside a host variable, the statement string including
a SQL statement with a placeholder "?' for each input variable.

2. Execute an ESQL PREPARE statement specifying the statement name and

statement string.

EXEC SQL PREPARE statement name FROM :statement string;
3. Execute the ESQL DECLARE CURSOR statement specifying the cursor

name and the statement name.

EXEC SQL DECLARE cursor name CURSOR FOR statement name;

4. Specify a value for each input variable.

5. Open the cursor with a list of input variables.

6. In a loop, fetch the result to a list of output variables.
7. Close the cursor.

Example

Processing type 3 dynamic ESQL:

EXEC SQL BEGIN DECLARE SECTION;

varchar sel str[100];

int ord num, ord date, custor num;

EXEC SQL END DECLARE SECTION;

/* 1. Put a build statement string inside a host variable, including one */

/% placeholder for each input variable. sy

gets (condition)

sprintf(sel str.arr, "SELECT Ordid, Orddate FROM order WHERE CusId = :c \
AND %s", condition);

sel str.len = strlen(sel str.arr);

©Copyright 1995-2008 CASEMaker Inc 6-5

O\ ESQL User’s Guide

6-6 ©Copyright 1995-2008 CASEMaker Inc

Dynamic ESQL 6

6.4

Type 4 Dynamic ESQL

Type 4 dynamic ESQL is an SQL statement with input or output host variables
undefined at precompiled time. With this type of dynamic ESQL, the SQLDA
descriptor, host variables must be used. There are many steps for type 4, however in
certain situations some of the steps may be skipped. Like, the number of output host

variables is unknown but the number of input host variables is known, or vice versa.

SQLDA Descriptor

An SQLDA descriptor is an area in which the application and DBMaker store the
number, value, length, data type, and name of each host variable and indicates the

variable value in the dynamic ESQL statement.

SQLDA has the information for the number of host variables and the description of

the host variables. The number of host variables equals the number of input or output
host variables involved in the current SQL statement. The description information has
two sets of information: one contains the column information, and the other contains

the host variable information.

Describe Command

Type 4 dynamic ESQL does not know the number of columns that are involved in the
SQL statement until the user inputs the statement at run time. Hence, the application
does not know how many input or output host variables are needed to pass

information in and out of the database.

This is why we use a descriptor area to store host variable information in SQLDA.
After the dynamic ESQL is prepared, the application program should use the Describe
command to ask DBMaker how many columns are there for input (DESCRIBE
BIND VARIABLE) and how many output columns are there for the output
(DESCRIBE SELECT LIST) and what they are.

The Describe command will put the number of columns (i.e., host variables) and the

data of these columns into a descriptor. In a loop, the application should check what

©Copyright 1995-2008 CASEMaker Inc 6-7

O\ ESQL User’s Guide

kind of input or output columns are there, and then allocate space for the host

variables.

Passing information through SQLDA

DBMatker supports two functions for allocating and freeing SQLDA:
allocate_descriptor_storage()
free_descriptor_storage()

If any error occurs, information will also be stored in SQLCA.

o Prototype

int allocate descriptor storage (long maxNumber, char **descriptor name);

S Example

To allocate an SQLDA descriptor, 'descl’, with a maximum of 10:

char *descl;

long maxNumber = 10;

/* SQLCODE is macro of sglca.code */
/* support error handle() is a function for error handling sy
allocate descriptor storage (maxNumber, &descl);

if (SQLCODE == SQL ERROR) error handle();

S Example
To free an SQLDA descriptor, 'descl:

free descriptor storage (descl);
if (SQLCODE == SQL ERROR) error handle();

SQLDA contains host variable and column information. DBMaker sets the column
information during the description time. The host variable information is set by the
application. DBMaker or the application sets the indicator variable information. The
application can use the function SetSQLDA() to set host variable information and use
the function GetSQLDA() to get column information. If any error occurs,
information will also be stored in SQLCA.

6-8 ©Copyright 1995-2008 CASEMaker Inc

S Prototype
The SetSQLDA prototype command is:

S Prototype

The GetSQLDA proto

i ie command is:

Figure 6-2 Function Arguments:

When option is SQLDA_NUM_OF_HV or SQLDA_MAX_FETCH_ROWS,

host_variable_number or projection_column_number is not used. Option symbols are

used to specify what kind of information you will SET or GET.

1
N\=)

©Copyright 1995-2008 CASEMaker Inc 6

O\ ESQL User’s Guide

6-10

Figure 6-3 SET and GET Options

©Copyright 1995-2008 CASEMaker Inc

v
<
3
9
2
0
m
0
)
F
o

Figure 6-4 Data Types and Option Values

—_

©Copyright 1995-2008 CASEMaker Inc 6-

O\ ESQL User’s Guide

6-12

The value of the SQLDA_DATABUF_TYPE will tell DBMaker the type of data in the
data buffer specified by SQLDA_DATABUF.

Figure 6-5 Buffer Data Types

©Copyright 1995-2008 CASEMaker Inc

Figure 6-6 Column Data Types

You can get the values of all referenced options using GetSQLDA().

Only some options can be set:

SQLDA_COLTYPE

SQLDA_COLLEN

SQLDA_COLPREC

SQLDA_COLSCALE

SQLDA_COLNULLABLE

SQLDA_COLNAME

SQLDA_COLNAME_LEN

SQLDA_NUM_OF_HV

The following tables give detailed information about who will set the SQLDA options
and when they are set. Remember the application first uses DESCRIBE to ask for
column information from DBMaker. DBMaker sets the column information. The
application then sets host variable information and will ask DBMaker to execute the

statement.

—_

©Copyright 1995-2008 CASEMaker Inc 6-13

O\ ESQL User’s Guide

6-14

Figure 6-7 Input Host Variables

©Copyright 1995-2008 CASEMaker Inc

Dynamic ESQL 6

Figure 6-8 Output Host variables

Application Steps

There are many steps in constructing a type 4 dynamic ESQL application. Some of the

steps may be omitted if you know there are no input or output host variables.

To construct a type 4 dynamic ESQL application

1.

(2]

»

Declare descriptor variables.
Allocate SQLDA for dynamic input/output host variables by maxNumber.

Execute an SQL PREPARE statement specifying the statement name and
statement string.

Declare a cursor for the statement prepared in step 3.

—_

©Copyright 1995-2008 CASEMaker Inc 6-15

O\ ESQL User’s Guide

6-16

10.

11.
12.

EXEC SQL DECLARE cursor name CURSOR FOR statement name; // step 4 and
5 for input host variable.
NOTE: You only need ro go through step 5 when there are input host variables.
Describe the input host variables in the statement prepared in step 3 and put

the information into the bound descriptor.

EXEC SQL DESCRIBE BIND VARIABLES FOR statement name INTO
descriptor name;

a) Set the length of input host variables.

b) Set the data type of input host variables.

c) Allocate storage for the value of input host variables.

d) Set the value of input host variables.

e) Set the value of input indicator variables.

Open the cursor you declared in step 4, and specify the descriptor variables the

cursor should use.

EXEC SQL OPEN cursor name USING DESCRIPTOR descriptor name; // step

7 and 8 for output host variable.

Describe the output column projection in the statement prepared in step 3 and
put these describe information into the bound descriptor.

EXEC SQL DESCRIBE SELECT LIST FOR statement name INTO

descriptor name;

Set the length of the output host variables, set the data type of output host
variables, and allocate storage for the value of output host variables.

Fetch data by cursor declared in step 4 and put fetched data into data buffer of
bound descriptor.

EXEC SQL FETCH cursor name USING descriptor_name;

Close the cursor.

EXEC SQL CLOSE cursor name;
Free user allocated memory space for SQLDA (the pData field in SQLDA).

De-allocate the descriptor.

©Copyright 1995-2008 CASEMaker Inc

Dynamic ESQL 6

©Copyright 1995-2008 CASEMaker Inc 6-17

O\ ESQL User’s Guide

6-18 ©Copyright 1995-2008 CASEMaker Inc

Dynamic ESQL 6

©Copyright 1995-2008 CASEMaker Inc 6-19

O\ ESQL User’s Guide

6-20 ©Copyright 1995-2008 CASEMaker Inc

Dynamic ESQL 6

S Example 2

Using SQLDA to retrieve multiple-row in a single FETCH statement:

©Copyright 1995-2008 CASEMaker Inc 6-21

O\ ESQL User’s Guide

6-22 ©Copyright 1995-2008 CASEMaker Inc

Dynamic ESQL 6

©Copyright 1995-2008 CASEMaker Inc 6-23

O\ ESQL User’s Guide

6-24 ©Copyright 1995-2008 CASEMaker Inc

Dynamic ESQL 6

©Copyright 1995-2008 CASEMaker Inc 6-25

O\ ESQL User’s Guide

6-26 ©Copyright 1995-2008 CASEMaker Inc

Dynamic ESQL 6

©Copyright 1995-2008 CASEMaker Inc 6-27

O\ ESQL User’s Guide

6-28 ©Copyright 1995-2008 CASEMaker Inc

Dynamic ESQL 6

©Copyright 1995-2008 CASEMaker Inc 6-29

O\ ESQL User’s Guide

6-30 ©Copyright 1995-2008 CASEMaker Inc

Dynamic ESQL 6

©Copyright 1995-2008 CASEMaker Inc 6-31

O\ ESQL User’s Guide

printf (" $15d ", *(long *)pDatal[i]);
break;
case SQL C SHORT:
printf (" $5d ", *(short *)pDatal[i]);
break;
case SQL C FLOAT:
printf (" $f ", *(float *)pData[i]);
break;
case SQL C DOUBLE:
printf (" $1f ", *(double *)pDatal[i]);
break;
default:
break;
}
ind[i]++;
pData[i] += datalen[i];
}
printf ("\n");
}
}

S To pass the values of the input host variables into SQLDA, set the following options:

e Allocate a valid data buffer for a host variable and set the input value into the data

buffer according to the data type of the buffer.
e Set the pointer, type, length, and indicator of the data buffer.

NOTE: Ifyou do not set the indicator value, DBMaker will use the length of the data
buffer as the real input data length.

S To get the values of the output host variables from SQLDA, set the following options:
e Allocate a valid data buffer for a host variable.

e Set the pointer, type, and length of the data buffer.

6-32 ©Copyright 1995-2008 CASEMaker Inc

Dynamic ESQL 6

6.5

Dynamic ESQL BLOB Interface

Use the PUT BLOB or GET BLOB mechanisms in dynamic ESQL. In addition,
Type 4 dynamic ESQL can use the same BLOB mechanism for static ESQL to puz or
ger a BLOB.

In ESQL there are two BLOB styles —memory and file storage. BLOBs stored in
memory are referred to as BLOB data and data stored in files are file objects. Details
on how to PUT or GET BLOB data and file objects, with type 4 dynamic ESQL
(SQLDA,) are included in this section. In addition to the steps for the original type 4
dynamic ESQL, some extra steps must be considered for the BLOB interface.

Storing File Objects

You can store a file object by content or object name. Storing the file content in the
database will be saved as data, and the external file will no longer be related to the
database after storing it. Storing the file name in the database will be saved as data, and

the content of the file object will still be stored in the external file.

Specify the type of the stored file object using SQLDA_STORE_FILE_TYPE in the
SetSQLDA() function. Setting the option_value with the
ESQL_STORE_FILE_CONTENT, means that the content of the specified file, with
SQLDA_DATABUF, will be stored in the database. Setting the option_value, using
ESQL_STORE_FILE_NAME means that the file name specified with
SQLDA_DATABUEF will be stored in the database. In DBMaker, the default value of
SQLDA_STORE_FILE_TYPE is ESQL_STORE_FILE_CONTENT.

S To store a file object, set the following options in SQLDA:

o Allocate a character data buffer for the file name, the maximum file name length
is MAX_FNAME_LEN = 79 and set the file name in the data buffer.

e Set the pointer of the data buffer SQLDA_DATABUF into SQLDA.

e Set the data buffer type SQLDA_DATABUF_TYPE with SQL_C_FILE into the
data buffer type by SQL_C_FILE into SQLDA.

©Copyright 1995-2008 CASEMaker Inc 6-33

O\ ESQL User’s Guide

e Set file type SQLDA_STORE_FILE_TYPE with
ESQL_STORE_FILE_CONTENT or ESQL_STORE_FILE_NAME into
SQLDA.

e Set the indicator SQLDA_INDICATOR with real file name length into SQLDA.

S Example

To PUT data into the “memo” column from file object mary_memo.fo using the

customer table cid, cname, memo:

6-34 ©Copyright 1995-2008 CASEMaker Inc

Dynamic ESQL 6

/* suppose FreeSQLDA() can free SQLDA and all buffers allocated by application
*/
FreeSQLDA (input descriptor) ;

Get a File Object

If you want to GET a file object, set the following options in SQLDA:

. Allocate a character data buffer for the file name (the maximum file name length
is MAX_FNAME_LEN = 79) and set the file name into the data buffer (the file

will store the data of the column “memo”.

J Set the pointer of the data buffer into SQLDA by using the command
SQLDA_DATABUF.

. Set the data buffer type SQLDA_DATABUF_TYPE with SQL_C_FILE into
SQLDA.

. Set the data buffer maximum length SQLDA_DATABUF_LEN into SQLDA.

In this example, data will be retrieved from the column “memo” and placed into the

file object (mary_memo.fo).

Example

#define maxNumber 10

EXEC SQL BEGIN DECLARE SECTION;

varchar stmt str([128];

EXEC SQL END DECLARE SECTION;

char *select descriptor;

char *pData;

long datalen;

allocate descriptor storage (maxNumber, &select descriptor);

if (SQLCODE == SQL ERROR) error handle();

strcpy (stmt str.arr, "SELECT memo FROM customer WHERE cname = 'mary'");
stmt str.len = strlen(stmt str.arr);

EXEC SQL PREPARE demo stmt FROM :stmt str;

EXEC SQL DECLARE demo cursor CURSOR FOR demo stmt;

EXEC SQL OPEN demo cursor;

EXEC SQL DESCRIBE SELECT LIST FOR demo stmt INTO select descriptor;
pData = malloc (MAX FNAME LEN) ;

©Copyright 1995-2008 CASEMaker Inc 6-35

O\ ESQL User’s Guide

SetSQLDA (select descriptor, 1, SQLDA DATABUF, pData);

if (SQLCODE == SQL ERROR) error handle();

SetSQLDA (select descriptor, 1, SQLDA DATABUF TYPE, SQL C FILE);

if (SQLCODE == SQL ERROR) error handle();

SetSQLDA (select descriptor, 1, SQLDA DATABUF LEN, MAX FNAME LEN);

if (SQLCODE == SQL ERROR) error handle();

strcpy (pData, "mary memo.fo");

EXEC SQL FETCH demo cursor USING select descriptor;

/* support PrintFile() can print out content of file &7
printf ("mary memo content - " \n);

PrintFile ("mary memo.fo");

EXEC SQL CLOSE demo cursor;

/* support FreeSQLDA() can free SQLDA and all buffers allocated by application
*/

FreeSQLDA (select descriptor);

Putting BLOB Data

If you want to PUT BLOB data using a type 4 dynamic ESQL, set the following
options into SQLDA.

Before using the EXECUTE command:

e Allocate a data buffer for the input data.

e Set the pointer of the data buffer into SQLDA by using the SQLDA_DATABUF

command.

e Set the data buffer type into SQLDA by using the command
SQLDA_DATABUF_TYPE.

e Set the BLOB flag, SQLDA_BLOB_FLAG into SQLDA to specify that the host
variable will PUT in the database.

e Before “BEGIN PUT BLOB” fill the data buffer with input data.
o Specify the length of this data SQLDA_PUT_DATA_LEN into SQLDA.

6-36 ©Copyright 1995-2008 CASEMaker Inc

Dynamic ESQL 6

S Example

Data will be PUT into the column “memo” from the data bufferData.

©Copyright 1995-2008 CASEMaker Inc 6-37

O\ ESQL User’s Guide

/* support FreeSQLDA() can free SQLDA and all buffers allocated by application */
FreeSQLDA (input descriptor) ;

Get BLOB Data

If you want to retrieve BLOB data using type 4 dynamic ESQL, set the following
options in SQLDA.

Before using Get BLOB:

e Allocate a data buffer for storing fetched data.

e Set the pointer of the data buffer SQLDA_DATABUF in SQLDA.

e Set the data buffer type SQLDA_DATABUF_TYPE in SQLDA.

e Set the data buffer maximum length by SQLDA_DATABUF_LEN into SQLDA.
Before FETCH:

e Allocate a data buffer for stored fetch data.

e Set the pointer of the data buffer in SQLDA.

o Set the data buffer type in SQLDA.

e Set the BLOB flag to specify that the column will get data in SQLDA.

e Set the maximum length of data buffer in SQLDA.

Before GET BLOB: Specify GET DATA length to get data in SQLDA.

S Example

To GET data from the “memo” column in the data buffer “pData”:
#define maxbufsize 256

#define maxNumber 10

EXEC SQL BEGIN DECLARE SECTION;

varchar stmt str([128];

EXEC SQL END DECLARE SECTION;

char *select descriptor;

char *pData;

long datalen;

6-38 ©Copyright 1995-2008 CASEMaker Inc

Dynamic ESQL 6

©Copyright 1995-2008 CASEMaker Inc 6-39

O\ ESQL User’s Guide

S To GET the total data length for a column before using GET BLOB to GET data
from a column:

o Set SQLDA_DATABUF_LEN with 0.
e GET BLOB from the column.

e Getvalue of SQLDA_INDICATOR, the value is total data length of the column.

6-40 ©Copyright 1995-2008 CASEMaker Inc

Project and Module Management 7

Project and Module
Management

When using the DBMaker ESQL/C preprocessor dmppce to preprocess an ESQL/C
source file, provide the database name, user name, and password. The user name you
use for preprocessing the ESQL/C source file must have connect and resource

privileges for connecting to the database and preprocessing the file.

dbname, dbuser and dbusr_passwd can be an identifier or the char type's host variable
if it has been declared in the ESQL/C applications declare section. dbusr_passwd can
be ignored, if the user has no password. It is not necessary to use the same database
user name, dbuser, for preprocessing the ESQL/C program and execution time in the
ESQL/C program. For example, a banking database with the user “acc_dba” for
developing the “bank” program.

Syntax
dmppcc -d test db -u db user id -p db user passwd esqgl source.ec

Example 1
When writing an ESQL/C source file, you should add a CONNECT statement in the

source file to enable the application program to connect to the database.
EXEC SQL CONNECT TO dbname dbuser dbusr passwd;

©Copyright 1995-2008 CASEMaker Inc 7-1

O\ ESQL User’s Guide

Figure 7-1 Connect Statement Parameters and Syntax

S Example 3

In the shell command, type User acc_dba from the bank database.

S Example 4

Contents of the file connect.ec:

7-2 ©Copyright 1995-2008 CASEMaker Inc

Project and Module Management 7

7.1

Project and Module objects

When preprocessing an ESQL/C source file, DBMaker will create an execution plan
and store all related information in the database in a component called a module. If
you do not specify the module name, the default module name will be the ESQL/C

source file name.

An error occurs when user tries to access an older version of an execution plan. When
other ESQL developer’s preprocess the same ESQL program again, dmppcc will delete
the previously stored plan, and then create the new stored plan. If you often find the
error message “the executable may be out of date, please rebuild it” when you execute

the ESQL program, you should compile the related .c file and re-link to executables.

However, although this is an executable version error, you may still want to ignore it
where there are many developers developing different ESQL modules in the same
ESQL application, use the “-n” option to ignore this error message when you are in
the developing phase. To optimize performance and reduce problems in ESQL project
management, you should remove the “-n” option after you finish coding your

application.

Any developer's application system may contain more than one ESQL/C module. If
the developer tries to manage (grant/revoke or drop privilege) every module
individually, the burden will be big. The purpose of a project is to let the developer
group ESQL/C modules all together, and organize the application system more easily.
After preprocessing an ESQL/C source file, dmppce will store the project name in
addition to the module name. If you do not specify the project name, the default

project name will be the same as the module name.

When preprocessing any ESQL source file, if the project does not exist in the database,
DBMaker will automatically create a project to store the module. If the project already
exists, DBMaker will also automatically associate the new module to that project. Each

module can only be associated with one project.

To look for the information on ESQL projects and modules, you can reference the

database system table SYSPROJECT by an SQL statement.

©Copyright 1995-2008 CASEMaker Inc 7-3

O\ ESQL User’s Guide

=

Example

Figure 7-2 SYSPROJECT System Table

The information of the ESQL execution plan is stored in the SYSCMDINFO system
table. This system table not only stores the ESQL execution plan, but also other
execution plans for stored commands and procedures. You may reference the manual

on stored commands for more detailed information about each field.

If you set option —cs or —n in dmppcc, DBMaker will not store the execution plan,
module, project, or owner name of related table. To prevent an error caused by
different ESQL/C preprocessor users and the program execution user, it is
recommended that you put the owner name for every table in the SQL statement when

you set —cs or —n option.

©Copyright 1995-2008 CASEMaker Inc

Project and Module Management 7

Figure 7-3 SYSCMDINFO System Table

Dropping a Project

Since projects are used for maintaining the relationship of the ESQL modules, when
the project is no longer useful, you can use the DROP PROJECT statement to drop

all the related execution plans and information for the project.

You can also remove a module from a project and all stored commands related to the
module from the database. When a project contains only one module, , the project

will also be removed from the database.

Only the project owner or database administrator can drop a project or module and

grant or revoke execution privileges to other users.

Example

DROP PROJECT syntax:
DROP PROJECT project name;

Loading or Unloading Projects or Modules

You can use the LOAD or UNLOAD PROJECT or MODULE functions in dmSQL
to unload or load the related project or any specified module. For more information

see the UNLOAD/LOAD syntax in the “dmSQL User’s Guide”.

Example 1

The UNLOAD syntax:

UNLOAD PROJECT FROM [ower pattern.]project pattern TO script name

UNLOAD MODULE [ower pattern.]module pattern FROM PROJECT [owner name.]project name
TO script name.

Example 2

To use UNLOAD:
dmSQL> UNLOAD PROJECT FROM projectl TO project.scr;
dmSQL> UNLOAD MODULE modulel FROM PROJECT projectl TO module.scr;

©Copyright 1995-2008 CASEMaker Inc 7-5

O\ ESQL User’s Guide

S Example 3

The LOAD syntax:
LOAD PROJECT FROM script name.
LOAD MODULE FROM script name.

S Example 4

To use the LOAD command:
dmSQL> LOAD PROJECT FROM project.scr;
dmSQL> LOAD MODULE FROM module.scr;

NOTE: The UNLOAD/LOAD function can only be used in dmSQL.

Granting or Revoking Privileges for Projects

Execution privileges can be granted or revoked to other users for a project. When any
user tries to execute a project for which they don't have authority to execute, it will
return an error at run time. Because the project is for the developer to group or manage
modules in the database, it's possible that an application system has many linked to
modules from different projects. In this case, the application user can only execute the

part for which they have the execution privilege.

o Syntax

GRANT or REVOKE SQL syntax:
GRANT EXECUTE ON PROJECT project name TO auth user list;
REVOKE EXECUTE ON PROJECT project name FROM auth user list;

The authority information related to ESQL is stored in the SYSAUTHEXE system

table. You may look in the table to check for authorized users.

COLUMN MEANING

OBJNAME Project name

OWNER Project owner

OBJTYPE PROJECT or STORE COMMAND or STORE PROCEDURE

7-6 ©Copyright 1995-2008 CASEMaker Inc

Project and Module Management 7

GRANTEE

Authorized user

Figure 7-4 SYSAUTHEXE System Table

©Copyright 1995-2008 CASEMaker Inc 7-7

O\ ESQL User’s Guide

7-8 ©Copyright 1995-2008 CASEMaker Inc

	Introduction
	Additional Resources
	Technical Support
	Document Conventions

	ESQL Basics
	Using dmppcc for Preprocessing
	Singleton Select Option
	SQLCHECK
	Mandatory Pre-compiling Parameters

	ESQL Syntax
	Static/Dynamic Syntax
	Variables
	Declare Section
	Host Variable Data Types
	Host Variables
	Variable Scope
	Indicator Variables

	Status Codes
	dbenvca
	SQLCA

	The WHENEVER Statement

	Data Manipulation
	Data Manipulation
	Retrieving Single-Row Data
	Transaction Processing
	Dynamic connection syntax
	Using a Cursor
	Declaring a Cursor
	Opening a Cursor
	Using a Cursor to Retrieve Data
	Deleting Data with a Cursor
	Updating Data with a Cursor
	Closing the Cursor

	BLOB Data
	PUT BLOB Statement
	GET BLOB Statement

	Dynamic ESQL
	Type 1 Dynamic ESQL
	Type 2 Dynamic ESQL
	Type 3 Dynamic ESQL
	Type 4 Dynamic ESQL
	SQLDA Descriptor
	Describe Command
	Passing information through SQLDA
	Application Steps

	Dynamic ESQL BLOB Interface
	Storing File Objects
	Get a File Object
	Putting BLOB Data
	Get BLOB Data

	Project and Module Management
	Project and Module objects
	Dropping a Project
	Loading or Unloading Projects or Modules
	Granting or Revoking Privileges for Projects

