

DBMaster
Reference Guide for PostgreSQL 8.4
Migration to DBMaster 5.1
Version: 01.00

Author: DBMaster Support Team and Research & Development Division, Syscom
Computer Engineering CO.
Document No: 51/DBM51-T11152010-02-MRPS

Publication Date: November 15, 2010

 Content

 ©Copyright 1995-2012 CASEMaker Inc. i

Content
1. Overview... 1

2. Analyze the current system............................... 2

2.1 Analyze AP system .. 2

2.2 Analyze Database Objects 2

3. Setup migration environment 4

4. Methods for migrating table schema and data . 5

4.1 Database transfer tools... 5

4.1.1 JDATATRANSFER TOOL IN DBMASTER 5

4.2 Other Third party tools .. 13

4.2.1 POSTGRESQL DATA WIZARD .. 14
4.2.2 SQL SCRIPT BUILDER ... 22

4.3 Modify DDL manually ... 25

4.4 Write code.. 26

5. Compare PostgreSQL and DBMaster............... 27

5.1 Schema Comparison.. 27

5.1.1 THE TERMINOLOGY COMPARISON 27
5.1.2 STORAGE STRUCTURE COMPARISON 28
5.1.3 PROCESS AND RELATED TERM DEFINITION......................... 28
5.1.4 RESERVED WORD CONFLICT IN DATABASE OBJECT 29
5.1.5 DATABASE OBJECT DESIGN CONCERNS............................ 30

5.2 Data Types Mapping .. 33

5.2.1 COMMON DATA TYPE MAPPING.. 33
5.2.2 DATA TYPES MAPPING CONCERN..................................... 37

5.3 Index Mapping ... 38

5.4 Data Manipulation Language (DML) 42

5.4.1 CONNECTING TO THE DATABASE 43
5.4.2 SELECT STATEMENTS ... 43
5.4.3 INSERT STATEMENTS .. 44
5.4.4 UPDATE STATEMENTS... 44
5.4.5 DELETE STATEMENTS ... 45
5.4.6 OPERATORS ... 45
5.4.7 BUILT-IN FUNCTIONS ... 47
5.4.8 LOCKING CONCEPTS AND DATA CONCURRENCY ISSUES..... 50
5.4.9 TRIGGER DIFFERENCE... 51

 Content

 Copyright 1995-2012 CASEMaker Inc. ii

5.4.10 STORED PROCEDURES AND STORED FUNCTIONS............. 51
5.4.11 USER-DEFINED TYPES ... 52
5.4.12 PRIVILEGES .. 52
5.4.13 POSTGRSQL AND DBMASTER IN AP 53

5.5 System Tables ... 53

6. DB Object Migration procedures 55

6.1 SCHEMA AND DATE MIGRATION... 55
6.2 CONVERT USER-DEFINED TYPES ... 55
6.3 CONVERT TRIGGER .. 55
6.4 CONVERT STORED PROCEDURE.. 55

7. AP migration procedures 57

7.1 AP interface and Connect string 57

7.1.1 AP IN CLIENT.. 57
7.1.2 MIDDLE-TIER .. 57
7.1.3 AP OR (WEB) SERVER .. 57
7.1.4 AP IN SERVER .. 57

7.2 PostgreSQL special syntax and feature................ 58

7.2.1 FOR SELECT STATEMENT ... 58
7.2.2 FOR INHERITANCE AND PARTITIONING............................... 58
7.2.3 FOR NESTED QUERY .. 58

8. Testing application with new DB..................... 59

8.1 How to pre-run for skip any object........................ 59

8.2 Test application with DBMaster after migration .. 59

9. Performance tuning.. 60

9.1 Application... 61

9.2 Database System... 61

9.2.1 TUNING MEMORY ALLOCATION... 61
9.2.2 QUERY OPTIMIZATION ... 63

9.3 OS... 63

9.4 Hardware ... 63

10. Appendix – Migration Samples......................... 64

10.1 Table Schema for all Types................................ 64

10.1.1 CREATE TABLE WITH ALL TYPES IN POSTGRESQL........... 64
10.1.2 MIGRATE WITH JDATATRANSFER TOOL 65
10.1.3 MODIFY TABLE SCHEMA MANUALLY................................ 66

 Content

 Copyright 1995-2012 CASEMaker Inc. iii

10.2 Table Schema and Data...................................... 67

10.2.1 ORDINARY CHARACTER AND NUMERIC DATA TYPE 67
10.2.2 SPECIAL DATA TYPE.. 68

10.3 Applications (Source Code segment)................. 70

10.3.1 JAVA LANGUAGE.. 71
10.3.2 C# LANGUAGE .. 71
10.3.3 PHP LANGUAGE ... 73

 Overview 1

©Copyright 1995-2012 CASEMaker Inc. 1

1. Overview

This document is meant to help users successfully migrate their PostgreSQL RDBMS System to
DBMaster. This migration process includes not only the schema transition, but also DML, Data
Storage.

PostgreSQL is known as a powerful, open source object-relational database product in industry at
present. With this document, users easily understand the pros and cons between PostgreSQL and
DBMaster. Users are also aware of the characteristics of both DBMaster and PostgreSQL.

In addition, this document can be considered as a reference for people who are already familiar
with PostgreSQL, but unfamiliar with DBMaster. It is easy to catch the similar idea from DBMaster
that they has already known in PostgreSQL. It can shorten the duration of learning curve.

We will introduce DBMaster in the following aspects:

 Migrate PostgreSQL database to DBMaster 5.1

 Create ANSI-compliant names.

 Customize users, tables, indexes, and tablespaces.

 Remove and rename database objects if they are reserved words in DBMaster.

 To migrate groups, users, tables, primary keys, foreign keys, unique constraints, indexes,
rules, check constraints, views, triggers, stored procedures, user-defined types and privileges
to DBMaster.

 Customize the default data types mapping rules.

 Analyze the current system 2

©Copyright 1995-2012 CASEMaker Inc. 2

2. Analyze the current system

We should analyze the system before migrating it from PostgreSQL to DBMaster in some aspects,
through which we can evaluate the workloads and costs of the migration.

For example, we should analyze current operating system and get to know what system we will
use (Windows, Linux or Unix). Different operating systems have different characteristics. We also
need to know what should be considered as emphasis and difficulty in the migration process.

System analyses include both AP system analyses and DB system analyses. In the following
chapters we will introduce them in two aspects.

2.1 Analyze AP system
Users should understand system architectures first and know what technologies have been used.
Such as Hiberanate, Nhibernate, C, C++, Java, .Net, PHP, Ruby, etc..

In addition, the driver type is also important and users should know which one is used. For
example: JDBC, ODBC, DCI, OLEDB, and so on.

Next, analyze the hierarchical structure of AP system, for example: Client/Server, Browser/Server,
N-Tier.

Last, users need to analyze the special feature of PostgreSQL and get to know how to convert
them into DBMaster. For the special feature, we should consider the following aspects before
migration.

 Special features of PostgreSQL

 The workaround of PostgreSQL special feature

 Special syntax of PostgreSQL

 How to convert special syntax into DBMaster

2.2 Analyze Database Objects
For a database, we should analyze all database objects. First of all, we have to know how many
database objects should be migrated, for example: tables, views, trigger, etc.. We need to evaluate
how much space is required for storing data.

Next, we should analyze all tables’ structures and get to know what contents will be stored in these
tables. It can help us divide tables into different table spaces to improve performance. Then users
can begin preparing for creating a corresponding database with DBMaster.

There are many differences between PostgreSQL and DBMaster. So we should consider these
differences in advance. We will introduce some aspects as followings:

 Data types belong to PostgreSQL but not apply to DBMaster.

 Analyze the current system 2

©Copyright 1995-2012 CASEMaker Inc. 3

 Data types belong to DBMaster but not apply to PostgreSQL.

 Built-functions belong to PostgreSQL but not apply to DBMaster.

 Built-functions belong to DBMaster but not apply to PostgreSQL.

 Indexes belong to PostgreSQL but not apply to DBMaster.

 Indexes belong to DBMaster but not apply to PostgreSQL.

In addition, users can evaluate workloads with above analyses. It’s helpful for customers
estimating the costs of migration.

 Setup migration environment 3

©Copyright 1995-2012 CASEMaker Inc. 4

3. Setup migration environment

We mainly introduce environment and which aspects users should pay high attention to in this
section.

We must ensure the application can run normally with PostgreSQL before doing anything. Then we
will install DBMaster and create a database. Certainly, users should reserve enough disk space for
DBMaster database db files at first. Here it’s only for convenience, you can install DBMaster in the
same machine with PostgreSQL.

Next, we need to adjust or configure web server if users’ system has web server which is used for
deployment and testing web applications.

We also need to pay attention to the following aspects before migrating a database from
PostgreSQL to DBMaster.

 Adjust DBMaster configure parameters if necessary.

 Enroll settings in windows system.

 Special workaround for migration.

 DSN or environment variables should be set.

- UnixODBC in Linux system (only Migration on Linux system)

- ODBC Driver Manager in Windows

 Which DBMaster. (Normal version or bundle version).

 How to start the DB service? (via Dmserver or via Dmservice)

- Dmservice is only for windows system, customers can install it as a windows service with
JServer Manager Tool or dmsvcutl.exe. Then, the user can set the database service as
Auto Start when OS being started.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 5

4. Methods for migrating table
schema and data

Database Migration involves all of the database objects. But we only introduce the migration
methods for table schemas and data in this section and other aspects will be described in chapter
6 and chapter 7.

4.1 Database transfer tools
PostgreSQL doesn’t provide any tool of itself for migration, so we only introduce the JdataTransfer
tool of DBMaster in this chapter.

4.1.1 JDATATRANSFER TOOL IN DBMASTER

DBMaster offers users a tool - JDATA Transfer Tool for migrating from a third-party database to
DBMaster. The Data Transfer Tool provides a user-friendly interface for transferring data in and
out of the database. The tool performs the following functions:

 Import from text

 Import from XML

 Import from ODBC

 Export to text

 Export to XML

 Batch transfer

For more information about performing each type of data transformation please reference JDBA
Tool Chapter Data Transfer.

Here we mainly introduce Import from ODBC. DBMaster supports importing data from other data
sources via ODBC. Other data sources may include other database engines, such as PostgreSQL,
Microsoft SQL Server, etc..

A large number of software applications have been developed to be compatible with Open
Database Connectivity (ODBC). ODBC is an industry standard for sharing data among diverse
data sources. DBMaster can import data from any ODBC compliant data sources through Import
from ODBC wizard.

Data may be imported using the flowing three methods:

 Choose the tables directly

 With one or more SQL SELECT statements

 Via an XML batch file

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 6

Furthermore, you may specify the mapping of column data through transformation function. The
transformation function supports direct column-to-column mapping or mapping through SQL
SELECT and SQL INSERT statements. When importing data directly from tables or through SQL
SELECT statements which allow saving a ‘map’ of the data transformation to an XML batch file.
The XML batch files are saved as a well-formed XML document with a form that can be parsed by
the Data Transfer Tool. Batch files can be used to import table schema from a data source to
multiple DBMaster database.

4.1.1.1 How to start the DBMaster JDataTransfer
The Data Transfer Tool is a separate application which can be started as GUI.

Start>programs>DBMaster 5.1>JDataTransfer, or start within JDBA Tool.

4.1.1.2 Execute steps Import from ODBC
Step 1: Open the Data Transfer Tool.

Step 2: selected Import from ODBC option and open the Import from ODBC Wizard.

Step3: Click on Next. The Choose a Source Database window appears.

Database: Select the DSN name in the Database drop-down list.

Username: Enter a user name into the appropriate field.

Password: Enter corresponding password into the appropriate field.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 7

Step 4: Click on Next. The Choose a Destination Data Source window appears.

Database: Select the DSN name in the Database drop-down list.

Username: Enter a user name into the appropriate field.

Password: Enter corresponding password into the appropriate field.

Step 5: Click on Next. The Table Copy or Query window appears.

There are three provided options. Select one of the three methods for data transfer:

Table: To import data from a list of tables,

SQL query: To import data using a series of SQL SELECT statements

Batch file: To import data through an XML file.

Three choices and corresponding operations:

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 8

 Selected” Table” check box
Sub_step 1: Click on Next. The Source Tables and Views window appears. All tables from the
source database will appear in the Source Table column. Check the box to the left of each table to
import.

Sub_step 2: For each source table or view selected, click on the Destination Table field. If
desired, change the name of the destination table by selecting a new table from the menu or
entering a new name.

Sub_step 3: You can modify Column mapping or the result set to import by clicking on the
Transformation button of the corresponding source and destination table.

Sub_step 4: Change the name of the Destination Column by selecting a new column from the
menu or entering a new name.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 9

Sub_step 5: Click on the Transformation tab to specify constraints on the result set. Enter a Valid
SQL SELECT statement into the Select SQL field and a valid SQL INSERT statement into the
Insert SQL field.

Sub_step 6: Click on OK to return to the Source Tables and Views window. You may also
choose to save the map of the import ODBC schema to an XML file by clicking on save batch.

 Select “SQL query” check box
Sub_step 1: Click on Next. The Table Copy or Query window appears. Click on Add SQL. The
SQL Query Statement window appears. And enter a valid SQL SELECT statement into the SQL
Query field.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 10

Sub_step 2: Click on OK. The Source Query window reappears.

Sub_step 3: Click on Add SQL. The SQL Query Statement window appears. Enter a valid SQL
SELECT statement into the SQL Query field.

Sup_step 4: click on OK to return to Source Query page.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 11

Sub_step 5: You can add more SQL query statements by clicking on Add SQL and change the
name of the destination column by selecting a new column from the menu or entering a new name.

Sub_step 6: you also can modify the mapping of source and destination columns by clicking on
the Transformation button.

Sub_step 7: Click on the Transformation tab to specify constraints on the result set. Enter a Valid
SQL SELECT statement into the Select SQL field and a valid SQL INSERT statement into the
Insert SQL field.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 12

Sub_step 8: click on OK and return to Source Query page. You also can choose to save the map
of the import ODBC schema to an XML file by clicking on Save batch. The Save Batch File will
open. Select or create an XML file to save the imported ODBC map schema. Click on Save Batch
File to create the XML file.

 Select “Batch file” Check box
Sub_step 1: Select an XML file from which to import the ODBC map schema. Click on Open. The
Table Copy or Query window reappears.

Sub_step 2: Click on Next. The Source Query window will open, displaying a mapping Schema
according to the XML file.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 13

Note: The remaining operations are same as select Table.

Step 5: Click on Execute to import the source data. The Import Status window appears.

Step 6: If errors appear, click on View log and scroll to the bottom to see the error message. If no
error occurs, click on done.

4.2 Other Third party tools
Currently，there are many kinds of database migration tools can be used. Some of them are
popular which can be used for most of databases. Certainly, some of them are only designed for
special databases.

The user can choose a popular tool for their migration according to different requests.

In following sections, we will introduce two popular database migration tools.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 14

4.2.1 POSTGRESQL DATA WIZARD

PostgreSQL Data Wizard is a powerful Windows GUI utility for managing your PostgreSQL data.

It provides you with a number of easy-to-use tools for performing the required data manipulation

easily and quickly. For example: Data Pump -- transfer any schemas and data to PostgreSQL;

Data export to as many as 18 file formats; Data import from Excel, CSV, text files and more;

ASP.NET Generator --create full set of ASP.NET scripts; Flexible Task Scheduler; The Agent

application to execute tasks in background mode; Powerful command-line interface.

Here, we only especially introduce Data export to CSV file formats, which can prepare the TEXT-

Format data for importing into DBMaster with JDataTransfer tool or Import command.

4.2.1.1 Export Data from PostgreSQL
Step 1: Start the tool in start menu

Start>programs>SQL Maestro Group>PostgreSQL Data Wizard>PostgreSQL Data Wizard

Step 2: Invoke Data Export by clicking on Data Export tool icon or hyperlink as shown in above
graphic.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 15

Step 3: Select CSV for output file-format

In this step, you can choose the output file format from the radio-box list; set the export file location
by entering the full path or clicking on the browse button; choose the file encoding in the dropdown
list.

Step 4: Click on Next and add tables or views as following.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 16

Step 5: Click on Next and Next (or Export directly) to generate the output file by default.

Of course, with Customize link buttons, you can define the result format for some types, and you
can choose the delimiter for separating the column.

4.2.1.2 Import Data to DBMaster
Import data from appropriate format files which are exported from PostgreSQL. Currently JDATA
Transfer supports three kinds of formats for importing: TEXT, XML and ODBC. So we should
select the format both JDATA Transfer and Data Wizard can support. Here we demonstrate both

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 17

import from Text and import from XML for your reference, which can import the data exported
from PostgreSQL into DBMaster.

4.2.1.2.1 Import from TEXT

The ability to import table data from a text file is an important feature in a database, and is made
easy with the Data Transfer Tool. Text data must be properly formatted to be acceptable for
importing. Data may be imported to the database only from a properly formatted text file.

Before attempting to import data from a text file, you should check the format of the output file that
you want to import. Some important settings to consider the format of a text file include: Row
Delimiter, Column Delimiter, Text Qualifier, Binary Qualifier, and so on.

 Importing a text file to a database:
Step 1: Open the Data Transfer Tool.

Step 2: Select Import from Text from the Transfer menu. The Welcome to Import from Text File
Wizard window will open, displaying a summary of the steps to be taken in the wizard.

Step 3: Click on Next, and select a text file which exported from PostgreSQL.

You can enter the full path for the text file, or click on the Browse button to search for the text file.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 18

Step4: After you have selected a text file, click on Next, the Text File Format Setting I Window
appears. You must choose the consistent Column delimiter and Text qualifier with the output
file-format which exported from PostgreSQL.

Step 5: Click on Next, the Text File Format Setting II window appears

You should choose the Include column name which is consistent with exported file-format.

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 37

Line
Lseg
Boxes
Paths
Polygons
Circles
Network
Address Types

Inet
Cidr
macaddr

N/A

Bit String
Types

bit(n)
bit varying(n)

Bit strings are strings of
1's and 0's. They can
be used to store or
visualize bit masks. A
bit string value requires
1 byte for each group
of 8 bits, plus 5 or 8
bytes overhead
depending on the
length of the string

N/A

New data
types

 New data types

N/A Media Types Large object columns may
also be specified as media
types to aid in media process
functions such as full text
search for Microsoft Word
documents. The following
media types are available:
MsWordType, HtmlType,
XmlType, MsPPTType,
MsExcelType, PDFType,
MsWordFileType,
HtmlFileType, XmlFileType,
MsPPTFileType,
MsExcelFileType and
PDFFileType.

5.2.2 DATA TYPES MAPPING CONCERN

This section outlines conversion considerations for Datetime and LARGE OBJECT as examples to
illustrate the factors you should consider:

 DATETIME Data Types

 IMAGE and TEXT Data Types (Binary/Character Large Objects)

5.2.2.1 DATETIME Data Types
The timestamp/time definition and its precision in PostgreSQL differ from the same name of data
types in DBMaster. For example, PostgreSQL also has the TIMESTAMP data type that stores date
and time values accurate to microsecond. But the TIMESTAMP data type is only accurate to
second in DBMaster. Another data types is TIME in PostgreSQL, which has a precision of
microsecond. In DBMaster, TIME has a precision of 1 second. According to the description here,
Migration from PostgreSQL to DBMaster will lose the precision of data in some cases.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 20

It is important to consider the structure of the XML file you wish to import to DBMaster. To ensure
that the structure of the XML file and associated DTD have compatible structure.

 Importing Data from an XML file
Step 1: Open the Data Transfer Tool.

Step 2: Select Import from XML from the Transfer menu. The Welcome to Import from XML File
Wizard window appears.

Step 3: Click on Next and choose a Source XML File.

You can enter the full path of a XML file to import or click the browse button to search for a XML
file.

Step 4: Click on Next. The Specify Base Element window appears. The node of the tree structure
represent elements in the XML file. Click on the node on the tree until they are fully expanded.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 21

Select a parent element to be the table name. The child elements will become the columns of the
table. Check out the legality of the column attribute.

Step 5: Click on Next and choose the destination data source.

Select the database name from the Database menu and enter the user name and the password
into the appropriate fields.

Step 6: Click on Next. The Transfer Setting window appears

You can enter a new table name into the Table Name field, or select a table from the menu.
Selecting a table from the menu will allow you to choose to replace the destination table, delete
rows in the destination table, or append new rows to the destination table.

Step 11: Click on Execute to import the XML file. A confirm dialog box appears.

Click on OK and check data in DBMaster.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 22

4.2.2 SQL SCRIPT BUILDER

SQL Script Builder is a powerful software by which users can create a database migration sql
script (or dump file) or database files from any ODBC data source. The script will migrate the
database (multiple tables’ selection) or only one table and records in it. Scripts are available in five
output formats; MySQL, MS SQL, Oracle, Pervasive and PostgreSQL, and files come in Access
mdb, Excel csv, MS xml. SQL Script Builder is very simple to use, you just have to choose the
database and tables from the list. SQL Script Builder scripts can be used on your DBMS (database
management system) or uploaded on a server.

SQL Script Builder can be used. For example, if you migrate a database from PostgreSQL
database to DBMaster, you don't have to transfer whole database, you can import only one table at
a time and have no limit, what you need is the ODBC driver for the database you wish to import
from. ODBC is a universal interface, almost every database provider supports it.

With SQL Script Builder, you can create an ODBC connection for origination database and
generate the script, and you need to ensure the script can work well on the destination database.

4.2.2.1 Migration methods
We need two steps for an integrity migration from PostgreSQL to DBMaster. One is exporting data
from PostgreSQL with SQL Script Builder and the other is importing data in DBMaster with
JDATA Transfer Tool.

First, Use this tool to convert the data from the origination database to a supported file format. For
DBMaster, we recommend the XML format.

Then, Use JDATA Transfer Tool in DBMaster and select Import from XML option to import data
files which have been exported from PostgreSQL.

4.2.2.2 Migration steps
 The simply operation steps for exporting XML file with SQL Script

Builder
Step 1: Open SQL Script Builder.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 23

Step 2: Select the source database type from the dropdown list.

Step 3: Select migration data contents from the dropdown list.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 24

 Step 4: Select XML file formats.

Step 5: Select export XML files location.

Step 6: Display source tables.

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 25

Step 7: Select tables that you want to migrate to DBMaster.

Step 8: XML files had been exported from PostgreSQL successfully.

 The simply operation steps for Import XML file with JDATA Transfer
More details of importing from XML please refer to chapter 4.2.1.2.2.

4.3 Modify DDL manually
If you are familiar with DDL, you can export all schemas and data with the TXT format from
PostgreSQL firstly. And modify the schema and make the syntax and data types fit to DBMaster.
Much of the conversion effort can be accomplished using a simple "search-and-replace" type of
approach in a text editor.

Then, run the schema script in dmSQL tool or JSQL tool. Please modify and try again if any error
occurs.

Certainly, if there are many errors or the data amount is huge, you can only export the DDL (not
include data) firstly. Then modify and successfully run DDL files in DBMaster. At last, export the

 Methods for migrating table schema and data 4

©Copyright 1995-2012 CASEMaker Inc. 26

data from PostgreSQL with TXT or XML file format described in chapter 4.2.1.1. And import into
DBMaster via JDATA Transfer Tool described in chapter 4.2.1.2.

Note: If you don’t want to use JDATA Transfer Tool to import, after exporting the data to TXT
format files, you can modify them for DBMaster and run in dmSQL or JSQL tool, or even use
import commands.

4.4 Write code
Users can use a programming language they are familiar with to develop a simple script or tool for
migrating databases. The work theory and process steps are similar with above manual methods.

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 27

5. Compare PostgreSQL and
DBMaster

5.1 Schema Comparison

5.1.1 THE TERMINOLOGY COMPARISON

The following table enlists the terminologies in DBMaster and PostgreSQL. In many aspects,
DBMaster has more common characteristics with PostgreSQL than SQL Server. However, there
are some differences between them.

PostgreSQL DBMaster

Database Database

Tablespace Tablespace

Page/TOAST Page/Frame

Role User/ Group

Schema Schema

Table Table

View View

Temporary Table Temporary Table (temporary create ‘.tmp’
file)

Cluster N/A

Check constraint Check constraint

Serial Serial

N/A Synonyms

Triggers Triggers

Column default Column default

Unique index Unique index

Primary key Primary key

Foreign key Foreign key

Index Index

PL/pgsql Embedded-SQL (ESQL/C) stored

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 28

procedure/

Java stored procedure / SQL SP is
supported after DBMaster 5.1

UDF UDF

Domain Domain

5.1.2 STORAGE STRUCTURE COMPARISON

Basically, DBMaster has many differences from PostgreSQL. User should recognize these
differences with discretion. Try to solicit and convert some missing setting or files to the
correspondence.

Item PostgreSQL DBMaster

Interfaces or tools to
configure
parameters

N/A JConfiguration tool

Temporary Tables Temporarily created in a file with
no extension names.

Temporarily created in ‘*.tmp’ file

Data Files Without extension names. *.SDB or *. DB

Journal
Files

*.LOG *.JNL

File
types

BLOB
Files

N/A *.SBB or *.BB

Note: a table in PostgreSQL that has columns with potentially large entries will have an associated
TOAST table, which is used for out-of-line storage of field values that are too large to keep in the
table rows proper.

In DBMaster, to increase database performance, there are two kinds of LOs to store large data
objects: Binary Large Objects (BLOBs), which are stored in database files, and File Objects (FOs),
which are stored as external files on a host file system. A BLOB, stored in database files, can only
be accessed through DBMaster and insists on the data integrity provided by DBMaster, such as
transaction controls, logging and recovery. A BLOB can only be shared among tuples in the same
table while updating recorders. However, a FO can be shared between tables in a database. In
addition, when the data needs to be shared by the other non-database applications, using FOs will
be more flexible. For details, please refer to DBA.

5.1.3 PROCESS AND RELATED TERM DEFINITION

In PostgreSQL, every task is taken care by some specific processes. DBMaster uses the general
process instead of individual processes. Therefore, a process in DBMaster usually comprises
many PostgreSQL processes.

Item PostgreSQL DBMaster

Start-up mode Single server supports multiple
databases

Single server supports one
database

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 29

Management
Daemon

postmaster

autovacuum

DBMaster Server

Backup Server

I/O server

DDB server

Replication server

5.1.4 RESERVED WORD CONFLICT IN DATABASE OBJECT

Reserved words vary between PostgreSQL and DBMaster. Many DBMaster reserved words are
valid object names or column names in PostgreSQL, e.g ADD, AFTER, ALTER and so on.
Likewise, many PostgreSQL reserved words are valid object names in DBMaster, e.g OLD, DO,
FREEZE, and so on. Using reserved words as database object names makes it impossible to use
the same names across the two databases.

Choose a unique database object name by case and by at least one other characteristic, and
ensure that the object name is not a reserved word from either database.

Customers can write object names in double quotation marks in DBMaster if you want to use
reserved words as object names. PostgreSQL can do the same treatment to use reserved words.

For example (COLLATE and CHECK are both reserved words in these two database).

In DBMaster: create table "COLLATE"("check" int);

In PostgreSQL: create table "COLLATE"("check" int);

Different from PostgreSQL, in DBMaster, we also can set keyword DB_ResWd to be 0 in the
dmconfig.ini file before database creation, which allows objects containing reserved words to be
imported.

For a list of reserved words in DBMaster, see the SQL Basics, Reserved Words in DBMaster 5.1
On-Line Help

PostgreSQL DBMaster

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 30

ALL, ANALYSE, ANALYZE,
AND, ANY, ARRAY, AS,
ASC, ASYMMETRIC,
AUTHORIZATION,
BETWEEN, BINARY, BOTH,
CASE, CAST, CHECK,
COLLATE, COLUMN,
CONSTRAINT, CREATE,
CROSS, RENT_CATALOG,

CRRENT_DATE,
CURRENT_ROLE,

CURRENT_SCHEMA,
CURRENT_TIME,
CURRENT_TIMESTAMP,
CURRENT_USER,
DEFAULT, DEFERRABLE,
DESC, DISTINCT, DO,
ELSE, END, EXCEPT,
FALSE, FETCH, FOR,
FOREIGN, FREEZE, FROM,
FULL, GRANT, GROUP,
HAVING, ILIKE, IN,
INITIALLY, INNER,
INTERSECT, INTO, IS,
ISNULL, JOIN, LEADING,
LEFT, LIKE, LIMIT,
LOCALTIME,
LOCALTIMESTAMP,
NATURAL, NEW, NOT,
NOTNULL, NULL, OFF,
OFFSET, OLD, ON, ONLY,
OR, ORDER, OUTER,
OVERLAPS, PLACING,
PRIMARY, REFERENCES,

RETURNING ,RIGHT,
SELECT, SESSION_USER,
SIMILAR, SOME,
SYMMETRIC, TABLE,
THEN, TO, TRAINLING,
TRUE, UNION, UNIQUE,
USER, USING, VARIADIC,
VERBOSE, WHEN,
WHERE,WITH,

ABSOLUTE, ACTION, ADD, ADMIN, AFTER, AGGREGATE, ALIAS,
ALLOCATE, ALTER, AND, ANY, ARE, ARRAY, AS, ASC, ASSERTION, AT,
AUTHORIZATION, BEFORE, BEGIN, BINARY, BIT, BLOB, BOOLEAN,
BOTH, BREADTH, BY, CALL, CASCADE, CASCADED, CASE, CAST,
CATALOG, CHECK, CLASS, CLOB, CLOSE, COLLATE, COLLATION,
COLUMN, COMMIT, COMPLETION, CONNECT, CONNECTION,
CONSTRAINT, CONSTRAINTS, CONSTRUCTOR, CONTINUE,
CORRESPONDING, CREATE, CROSS, CUBE, CURRENT,
CURRENT_DATE, CURRENT_PATH, CURRENT_ROLE, CURRENT_TIME,
CURRENT_TIMESTAMP, CURRENT_USER, CURSOR, CYCLE, DATE, DAY,
DEALLOCATE, DEC, DECIMAL, DECLARE, DEFAULT, DEFERRABLE,
DEFERRED, DELETE, DEPTH, DEREF, DESC, DESCRIBE, DESCRIPTOR,
DESTROY, DESTRUCTOR, DETERMINISTIC, DICTIONARY,
DIAGNOSTICS, DISCONNECT, DISTINCT, DOMAIN, DOUBLE, DROP,
DYNAMIC, EACH, ELSE, END, END-EXEC, EQUALS, ESCAPE, EVERY,
EXCEPT, EXCEPTION, EXEC, EXECUTE, EXTERNAL, FALSE, FETCH,
FIRST, FLOAT, FOR, FOREIGN, FOUND, FROM, FREE, FULL, FUNCTION,
GENERAL, GET, GLOBAL, GO, GOTO, GRANT, GROUP, GROUPING,
HAVING, HOST, IDENTITY, IGNORE, IMMEDIATE, IN, INDICATOR,
INITIALIZE, INITIALLY, INNER, INOUT, INPUT, INT, INTEGER, INTERSECT,
INTO, IS, ISOLATION, ITERATE, JOIN, KEY, LANGUAGE, LARGE, LAST,
LATERAL, LEADING, LESS, LEVEL, LIKE, LIMIT, LOCAL, LOCALTIME,
LOCALTIMESTAMP, LOCATOR, MAP, MATCH, MODIFIES, MODIFY,
MODULE, NAMES, NATIONAL, NATURAL, NCHAR, NCLOB, NEXT, NO,
NONE, NOT, NULL, NUMERIC, OBJECT, OF, OFF, ON, ONLY, OPEN,
OPERATION, OPTION, OR, ORDINALITY, OUT, OUTER, OUTPUT, PAD,
PARTIAL, PATH, POSTFIX, PREFIX, PREORDER, PREPARE, PRESERVE,
PRIMARY, PRIOR, PRIVILEGES, PROCEDURE, READ, READS, REAL,
RECURSIVE, REFERENCES, REFERENCING, RELATIVE, RESTRICT,
RESULT, RETURN, RETURNS, REVOKE, ROLE, ROLLBACK, ROLLUP,
ROUTINE, ROW, ROWS, SAVEPOINT, SCHEMA, SCROLL, SCOPE,
SEARCH, SECTION, SELECT, SEQUENCE, SESSION, SESSION_USER,
SET, SETS, SIZE, SMALLINT, SOME, SPECIFIC, SPECIFICTYPE, SQL,
SQLEXCEPTION, SQLSTATE, SQLWARNING, START, STATIC,
STRUCTURE, SYSTEM_USER, TABLE, TEMPORARY, TERMINATE, THAN,
THEN, TIME, TIMESTAMP, TIMEZONE_HOUR, TIMEZONE_MINUTE, TO,
TRAILING, TRANSACTION, TRANSLATION, TREAT, TRIGGER, TRUE,
UNDER, UNION, UNKNOWN, UNNEST, UPDATE, USAGE, USING,VALUES,
VARCHAR, VARIABLE, VARYING, VIEW, WHEN, WHENEVER, WHERE,
WITH, WITHOUT, WORK, WRITE, ZONE

5.1.5 DATABASE OBJECT DESIGN CONCERNS

For Database Objects, or Schema Objects, users need to put many factors into account before
migration. It contains a variety of constraints checking, data types mapping, and so on. We enlist
the factors as followings.

 Entity Integrity Constraints

 Referential Integrity Constraints

 Unique Key Constraints

 Check Constraints

 Object names Limitations

5.1.5.1 Entity Integrity Constraints
A primary key can be defined as part of a CREATE TABLE or an ALTER TABLE statement.
PostgreSQL internally creates a unique index to enforce the integrity.

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 31

So does DBMaster, a primary key constraint is applied to a unique index internally. The
performance is promoted for it’s an index too. The constraint is kept to retain integrity.

PostgreSQL DBMaster
CREATE TABLE table_name(
Column1 datatype PRIMARY KEY,
Column2 datatype,
…);

CREATE TABLE table_name(
Column1 datatype,
Column2 datatype,
…,
[CONSTRAINT pk_name]
 PRIMARY KEY (Column1, Column2,…)
);

CREATE TABLE table_name(
Column1 datatype PRIMARY KEY,
Column2 datatype,
…);

CREATE TABLE table_name(
Column1 datatype,
Column2 datatype,
…,
PRIMARY KEY (Column1, Column2,…)
);

ALTER TABLE table_name
ADD PRIMARY KEY (column_name)

ALTER TABLE Table_name
ADD [Constraint pk_name]
PRIMARY KEY (Column1, Column2,…);

ALTER TABLE table_name
PRIMARY KEY (Column1, column2,…);

ALTER TABLE table_name
ADD CONSTRAINT
pk_name PRIMARY KEY(Column1,column2,…);

5.1.5.2 Referential Integrity Constraints
PostgreSQL provides declarative referential integrity. A CREATE TABLE or an ALTER TABLE
statement can add foreign keys to the table definition.

You can also define a foreign key for a table in DBMaster. Foreign keys can be defined in a
CREATE TABLE statement or an ALTER TABLE statement.

DBMaster and PostgreSQL have many similarities in the term of Integrity Constraints. It makes the
migration process less labor.

PostgreSQL

DBMaster

CREATE TABLE table_name1
(
Column1 datatype NOT NULL
PRIMARY KEY,
Column2 datatype NOT NULL,
Column3 datatype
[,FOREIGN KEY(column_name1)]
REFERENCES
table_name2[(column_name2)])

CREATE TABLE table_name
(
Column1 datatype NOT NULL,
Column2 datatype NOT NULL,
Column datatype,…
PRIMARY KEY (column_nameF),
CONSTRAINT fk_name FOREIGN KEY
(column_nameP)
REFERENCES Persons(column_nameP)
)

CREATE TABLE table_name1(
Column1 datatype,
Column2 datatype,
…,
FOREIGN KEY fk_name(column1,…)
REFERENCES table_name2);

CREATE TABLE table_name(
Column1 datatype,
Column2 datatype,
…,
Column datatype CONSTRAINT fk_name
REFERENCES table_name2(column_name)
);

ALTER TABLE table_name1
ADD FOREIGN KEY (column_name)
REFERENCES table_name2
(column_name)

ALTER TABLE table_name1
ADD CONSTRAINT fk_name

ALTER TABLE table_name
ADD FOREIGN KEY (column_name)
REFERENCES Persons(column_name)

ALTER TABLE table_name1 ADD CONSTRAINT
fk_name
FOREIGN KEY (column_name)

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 32

FOREIGN KEY (column_name)
REFERENCES
table_name2(column_name)

REFERENCES table_name2(column_name)

ALTER TABLE tb_name1 FOREIGN
KEY(column1,column2,…) REFERENCES
table_name2;

5.1.5.3 Unique key Constraints
PostgreSQL defines unique keys as part of CREATE TABLE or ALTER TABLE statements.
PostgreSQL internally creates unique indexes to enforce these constraints.

You can also define a unique key for a table in DBMaster. Unique keys can be defined in a
CREATE TABLE statement or an ALTER TABLE statement. However, in DBMaster, the unique
key is referred to as the unique index. Users should be aware of the difference between the two
terminologies.

PostgreSQL

DBMaster

CREATE TABLE table_name1
(
Column1 datatype [NOT NULL] UNIQUE,
Column2 datatype,
,…)

CREATE TABLE table_name1
(
Column1 datatype NOT NULL,
Column2 datatype,
,…,
[CONSTRAINT uc_name]UNIQUE
(colunm1, column2,…)
)

CREATE TABLE table_name1
(
Column1 datatype NOT NULL UNIQUE,
Column2 datatype,
,…)

CREATE TABLE table_name1
(
Column1 datatype NOT NULL,
Column2 datatype,
,…,
CONSTRAINT uc_name UNIQUE (colunm1,
column2,…)
)

CREATE TABLE table_name1
(
Column1 datatype CONSTRAINT u UNIQUE,
Column2 datatype,
,…)

ALTER TABLE table_name
ADD UNIQUE (column_name)

ALTER TABLE table_name
ADD CONSTRAINT uc_name UNIQUE
(column1,column2,…)

ALTER TABLE table_name
ADD UNIQUE (column_name)

ALTER TABLE table_name
ADD CONSTRAINT uc_name UNIQUE
(column1,column2,…)

5.1.5.4 Check Constraints
PostgreSQL defines check constraints as part of the CREATE TABLE statement or the ALTER
TABLE statement. A check constraint is defined at the TABLE level and the COLUMN level.

Check constraints can be defined in a CREATE TABLE statement or an ALTER TABLE statement
in DBMaster as well. Multiple check constraints can be defined on a table.

A table-level check constraint can refer to any column in the constrained table. A column can have
only one check constraint. A column-level check constraint can refer to only the constrained
column.

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 33

Table-level check constraints from PostgreSQL databases map one-to-one with DBMaster check
constraints. Furthermore, since DBMaster has the column-level check, migration from PostgreSQL
to DBMaster will have not lost the check constraints or sort of things.

PostgreSQL

DBMaster

CREATE TABLE table_name(
Column1 datatype CHECK
(boolean_expression),
Column2 datatype CHECK
(check_expression),
…);

CREATE TABLE table_name(
Column1 datatype ,
Column2 datatype,…
CONSTRAINT ck_name CHECK
(check_expression1 AND
check_expression2 AND …)
);

CREATE TABLE table_name(
Column1 datatype CHECK boolean_expression,
Column2 datatype CHECK boolean_expression,
…);

CREATE TABLE table_name(
Column1 datatype,
Column2 datatype,
[CONSTRAINT ck_name]
CHECK(boolean_expression1
 AND boolean_expression2
 AND …)
…
);

ALTER TABLE table_name
ADD CHECK (check_expression)

ALTER TABLE table_name
ADD CONSTRAINT ck_name CHECK
(check_expression1 AND
check_expression2,…)

ALTER TABLE table_name MODIFY
 (column1 to column1 datatype
CHECK column1 boolean_expression,…);

5.1.5.5 Object name Limitation
DBMaster Objects names have a maximum length of 128 characters, and may contain numbers,
spaces, letters, underscore characters and the symbols $ and #. The first character can‘t be
numbers.

5.2 Data Types Mapping
This section provides detailed descriptions of the differences in data types used by PostgreSQL
and DBMaster databases.

5.2.1 COMMON DATA TYPE MAPPING

Specifically, this section contains the following information:

 A table shows the base and available PostgreSQL data types and how they are mapped to
DBMaster data types.

 Recommendations based on the information are listed in the table:
PostgreSQL Description DBMaster Comments

Integer types Integer types
SMALLINT The SMALLINT data

type uses 2 bytes
storage with the range
of -32768 to 32767.

SMALLINT
(2 byte)

Two-byte integer, 15 bits,
and a sign. (-32768 to
32767)

INTEGER The INTEGER data
type uses 4 bytes
storage with the range

INTEGER
(4 byte)

The INTEGER data type
uses 4 bytes storage with the
range of –2147483648 to

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 34

of
-2147483648 to
2147483647.

2147483647.

BIGINT The BIGINT data type
uses 8 bytes storage.
with the range of -
922337203685477580
8 to
922337203685477580
7

N/A Users should use DECIMAL
instead and DBMaster
supports in 5.2 version

SERIAL The SERIAL data type
uses 4 bytes storage. It
is auto incrementing
integers with the range
of 1 to 2147483647.

SERIAL The internal value used to
generate a SERIAL number
is actually an integer value;
the SERIAL data type shares
all of the properties of the
INTEGER data type, which
occupies 4 bytes of storage,
The maximum value is
2,147,483,646 and a
minimum value of ¨C2,
147,483,646.

BIGSERIAL The BIGSERIAL data
type uses 8 bytes
storage. It is large auto
incrementing integer
with the range of 1 to
922337203685477580
7

N/A Users should use DECIMAL
instead and DBMaster
supports in 5.2 version

Floating point
data types

 Floating point
data types

DECIMAL/
NUMERIC

The Decimal/Numeric
data type uses variable
storage and user-
specified precision,
exacting with the range
1000.

DECIMAL(p, s)
NUMERIC(p, s)

The default value for
precision is 17 with a
maximum value of 38. Scale
refers to the number of digits
to the right of the decimal
point. The default value for
scale is 6.

REAL The REAL data type
uses 4 bytes storage
with the range of 6
decimal digits
precision.

REAL The REAL data type is an
approximate signed numeric
data type having a mantissa
with a precision of 7. The
REAL data type uses 4 bytes
of storage and has a valid
input range of
3.402823466E38 to –
3.402823466E38. The
smallest valid input values
are 1.175494351E-38 and –
1.175494351E-38.

DOUBLE
PRECISION

The DOUBLE data
type uses 8 bytes
storage with the range
of 15 decimal digits
precision.

DOUBLE
(8 byte)

The DOUBLE data type uses
8 bytes of storage and has a
valid input range of 1.0E308
to –1.0E308.
The smallest valid input
values are 1.0E-308 and –
1.0E-308.

Binary digit
data types

 Binary digit data
types

BYTEA The BYTEA data type BINARY(1-3992) The minimum length of

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 35

(n byte) BINARY columns is 1 byte
and the maximum length is
3992 bytes.

is a variable-length
binary string using 1 or
4 bytes plus the actual
binary string.
The input format of
BYTEA is different from
BLOB (BINARY
LARGE OBJECT), but
the provided functions
and operators are
mostly same.

BLOB(LONG
VARBINARY)

The BLOB data type is a
variable-length data type that
can contain any binary value.
The maximum length of
BLOB columns is 8 TB.

Boolean Type Boolean Type
Boolean Boolean uses 1 byte of

storage. Boolean can
have one of only two
states: “true” or “false”.
A third state,
“unknown”, is
represented by the
SQL null value. Valid
literal values for the
“true” state are:
TRUE,'t', 'true', 'y',
'yes’,’ on’, '1'.
For the “false” state,
the following values
can be used: FALSE,
'f', 'false', 'n', 'no',
‘off’,'0'.

N/A Users should use SMALLINT
/CHAR(1) instead, but in
DBMaster, 1 means “true”, 0
means “false”. Users’
application programs may
need some modification.

Character
data types

 Character data
types

CHARACTER (n),
CHAR (n)
(n byte)
3968 (4KB page size)
8064 (8KB page size)
16256 (16KB page
size)
32640 (32KB page
size)

In DBMaster, CHAR columns
can be a minimum length of
1 character and the
maximum length depends on
DB_PGSIZ (4k, 8k, 16k, and
32k) (NO Unicode).

CHARACTER (n),
CHAR (n)
(n is a positive
integer)

Fixed-length, blank
padded. This type can
store strings up to n
characters (not bytes)
in length. Characters
without length specifier
is equivalent to
character (1).
If n>32640, LONG
VARCHAR should be
used in DBMaster.

NCHAR(n)
(n byte)
1984 (4KB page size)
4032 (8KB page size)
8128 (16KB page
size)
16320 (32KB page
size)

The NCHAR data type is a
fixed-length data type that
can contain any Unicode
character. NCHAR columns
can be a minimum length of
1 character and the
maximum length depends on
DB_PGSIZ (4k, 8k, 16k, and
32k) (Unicode).

CHARACTER
VARYING(n),
VARCHAR(n)

Variable-length with
limit. This type can
store strings up to n
characters (not bytes)
in length. If character
varying is used without
length specifier, the
type accepts strings of
any size.
If n>16320, LONG

VARCHAR
3968 (4KB page size)
8064 (8KB page size)
16256 (16KB page
size)
32640 (32KB page
size)

VARCHAR columns have a
minimum length of 1
character and a maximum
length depending on
DB_PGSIZ (4k, 8k, 16k, and
32k). To fit DBMaster
limitations, only length within
32640 bytes in PostgreSQL
could use VARCHAR type in
DBMaster (NO Unicode).

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2012 CASEMaker Inc. 36

VARCHAR should be
used in DBMaster.

NVARCHAR
1984 (4KB page size)
4032 (8KB page size)
8128 (16KB page
size)
16320 (32KB page
size)

The NVARCHAR data type
is a variable-length data type
that can contain any Unicode
character. NVARCHAR
columns can be a minimum
length of 1 character and the
maximum length depends on
DB_PGSIZ (4k, 8k, 16k, and
32k) (Unicode).

"char" 1 byte, single-byte
internal types

name 64 bytes, internal types
for object names

N/A Users should use CHAR(1) /
CHAR(N) instead.

Text and
image data
types

 BLOB data
types

CLOB
(LONG VARCHAR)

The maximum length of
CLOB columns is 8TB.

TEXT The text type variable
unlimited length, Which
stores strings of any
length.

NCLOB The NCLOB data type is a
variable length data type that
can contain any Unicode
character. The maximum
length for an NCLOB column
is 8 TB.

BYTEA LONG VARBINARY Similar to the BLOB.

N/A File DBMaster provides the
SYSTEM FO and User FO.

Date and Time
types

 Date and Time
types

TIMESTAMP[witho
ut time zone]

Both date and time.
8 bytes

Timestamp[with
time zone]

Both date and time with
time zone.
8 bytes

TIMESTAMP
(11 byte)

In DBMaster, the precision of
TIMESTAMP is one second.
Migration from PostgreSQL
to DBMaster would lose the
precision of data in some
cases.

interval Time intervals12 bytes N/A
Date Date only 4 bytes Date(4 byte) Stored the date (accurate to

day)
Time[without time
zone]

Times of day only 8
bytes.

TIME
(4 byte)

Migration from PostgreSQL
to DBMaster would lose the
precision of data in some
cases.

Time[with time
zone]

Times of day only, with
time zone 12 bytes.

N/A Users should use VARCHAR
(12) instead.

Money data
types

 Money data
types

MONEY Monetary data types, 8
bytes, values range
from -
92233720368547758.0
8 to
+92233720368547758.
07

N/A Users should use DECIMAL
(numeric) or INT to be the
replacement or create
domain replacement.

Geometric
types

Points N/A

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2010 CASEMaker Inc. 37

Line
Lseg
Boxes
Paths
Polygons
Circles
Network
Address Types

Inet
Cidr
macaddr

N/A

Bit String
Types

bit(n)
bit varying(n)

Bit strings are strings of
1's and 0's. They can
be used to store or
visualize bit masks. A
bit string value requires
1 byte for each group
of 8 bits, plus 5 or 8
bytes overhead
depending on the
length of the string

N/A

New data
types

 New data types

N/A Media Types Large object columns may
also be specified as media
types to aid in media process
functions such as full text
search for Microsoft Word
documents. The following
media types are available:
MsWordType, HtmlType,
XmlType, MsPPTType,
MsExcelType, PDFType,
MsWordFileType,
HtmlFileType, XmlFileType,
MsPPTFileType,
MsExcelFileType and
PDFFileType.

5.2.2 DATA TYPES MAPPING CONCERN

This section outlines conversion considerations for Datetime and LARGE OBJECT as examples to
illustrate the factors you should consider:

 DATETIME Data Types

 IMAGE and TEXT Data Types (Binary/Character Large Objects)

5.2.2.1 DATETIME Data Types
The timestamp/time definition and its precision in PostgreSQL differ from the same name of data
types in DBMaster. For example, PostgreSQL also has the TIMESTAMP data type that stores date
and time values accurate to microsecond. But the TIMESTAMP data type is only accurate to
second in DBMaster. Another data types is TIME in PostgreSQL, which has a precision of
microsecond. In DBMaster, TIME has a precision of 1 second. According to the description here,
Migration from PostgreSQL to DBMaster will lose the precision of data in some cases.

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2010 CASEMaker Inc. 38

5.2.2.2 BLOB/CLOB Data Types (IMAGE and TEXT Data Types)
The physical and logical storage methods for IMAGE and TEXT data in DBMaster differ from
PostgreSQL. Given the LONG VARCHAR and LONG VARBINARY data type, DBMaster will
automatically allocate the physical storage. While the BLOB size is less than 3952 bytes（in 4k
page size）, 8048bytes (in 8k page size),16240 bytes(in 16k page size),32624 bytes(in 32 k page
size), the BLOB data could be stored together with normal data. If the data size is greater than 4K
(4k page size for example), a pointer is used to indicate the LONG VARCHAR, LONG
VARBINARY data. But the real BLOB data will be put into so-called “.BB” files. The other
alternative is to use a FILE data type. DBMaster uses FULL PATH link to indicate the FILE data
type. The physical data is stored externally as a file appearance.

This dynamical arrangement allows multiple columns of BLOB data per table and better
performance. Similarity, in PostgreSQL, BINARY data type is bytea. The SQL standard defines a
different binary string type, called BLOB or BINARY LARGE OBJECT. The input format is different
from bytea, but the provided functions and operators are mostly same.

After the version 4.0 of DBMaster, the keyword BLOB and CLOB are applied to LONG
VARBINARY and LONG VARCHAR. In most cases, you don’t have to rewrite the schema. But if
the VARCHAR size is greater than 4K, you should use LONG VARCHAR instead of the original
data type.

5.3 Index Mapping
A database index is a data structure that improves the speed of data retrieval operations on a
database table at the cost of slower writes and increased storage space. Indexes can be created
by using one or more columns of a database table, providing the basis for both rapid random look
ups and efficient access of ordered records. The disk space required to store the index is typically
less than that required by the table (since indexes usually contain only the key-fields according to
which the table is to be arranged, and excludes all the other details in the table), yielding the
possibility to store indexes in memory for a table whose data is too large to store in memory.

PostgreSQL Description DBMaster Comments

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2010 CASEMaker Inc. 39

B*-tree
indexes

B*-tree indexs is the standard type
of indexs available in PostgreSQL,
and it’s very useful for selecting
rows that meet an equivalence
criterion or a range criterion.By
default, the CREATE INDEX
command creates B-tree indexes in
PostgreSQL B-trees can handle
equality and range queries on data
that can be sorted into some
ordering. In particular, the
PostgreSQL query planner will
consider using a B-tree index
whenever an indexed column is
involved in a comparison using one
of these operators: < ,<= ,= ,>= ,>
Constructs equivalent to
combinations of these operators,
such as BETWEEN and IN, can
also be implemented with a B-tree
index search. Indexes are created
via the create index command.

simplified syntax：

CREATE [UNIQUE] INDEX
index_name ON

table_name(column_name[,
column_name ...])

TABLESPACE tab_space;

Index DBMaster supports as many
as indexes per table, having
no limit. But creating an index
on one or more columns up to
a maximum of 32 columns.

DBMaster limits indexes to a
maximum record size of 4000
bytes.

Creating indexes for
frequently used expressions
will improve query
performance.

DBMaster creates a index by
syntax:

CREATE [UNIQUE] INDEX
index-identifier ON base-
table-name ({column-identifier
| expression}
[ASC|DESC]',...)[IN
tablespace-name]

[FILLFACTOR unsigned-
integer]

Hash indexes Hash indexes can only handle
simple equality comparisons. The
query planner will consider using a
hash index whenever an indexed
column is involved in a comparison
using the = operator. (Hash
indexes do not support IS NULL
searches.)

For example: a Hash index

CREATE INDEX idx_name ON
table_name USING HASH
(column);

N/A

GiST indexes GiST indexes are not a single kind
of index, but rather an
infrastructure within which many
different indexing strategies can be
implemented.

N/A

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2010 CASEMaker Inc. 40

GIN indexes GIN indexes are inverted indexes
which can handle values that
contain more than one key, arrays
for example. Like GiST, GIN can
support many different user-defined
indexing strategies and the
particular operators with which a
GIN index can be used vary
depending on the indexing
strategy.

N/A

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2010 CASEMaker Inc. 41

N/A

SIGNATURE
TEXT INDEX

Signature text indexes are
built in the same tablespace
as the column for which the
index is being built.

A text index provides fast
access to rows that contain
one or more words or phrases
in columns containing text.
Text indexes contain a
representation of all the text
found in the text columns they
are based on. The data is
encoded and structured to
make retrieval much faster
than directly from the table.

Typically, text indexes are
created on column by using
Order By clause. Rebuild the
text index if you load data
after creating text indexes.

Text index names must be
unique to each table. Text
index names have a
maximum length of thirty-two
characters, and may contain
numbers, letters, the
underscore character, and the
symbols $ and #. The first
character can not be a
number.

Create syntax:

CREATE SIGNATURE TEXT
INDEX text- index-identifier
ON
table_name(column_name,…
) [TOTAL TEXT SIZE number]
[MB SCALE number]
[ORDER BY column_name
ASC|DESC]

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2010 CASEMaker Inc. 42

IVF TEXT
INDEX

IVF indexes are built in a
separate file and exhibit better
performance for larger
indexes.

An IVF text index can be used
in place of a standard index to
increase the performance of
queries, particularly on
columns that contain more
than 200 MB data.

IVF indexes are sorted in the
operating system’s file
system, and are administered
through the database. The
location where the IVF index
should be stored is specified
when the index is created.
DBMaster manages the
creation of sub-directories
within the IVF index root
directory.

Besides these special
features, others are same as
signatures of text indexs.

Create syntax:

CREATE IVF TEXT INDEX
text-index-identifier ON
table_name(column_name,…
) [STORAGE PATH path]
[TOTAL TEXT SIZE number
MB] [ORDER BY
column_name ASC|DESC]

5.4 Data Manipulation Language (DML)
This section uses tables to compare the syntax and description of Data Manipulation Language
(DML) elements in PostgreSQL and DBMaster. The following topics are present in this section:

 Connecting to the Database

 SELECT Statements

 SELECT with GROUP BY Statement

 INSERT Statements

 UPDATE Statements

 DELETE Statements

 Operators

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2010 CASEMaker Inc. 43

 Comparison Operators

 Arithmetic Operators

 String Operators

 Set Operators

 Bit Operators

 Built-In Functions

 String Functions

 Date Functions

 Mathematical Functions

 Locking Concepts and Data Concurrency Issues

 Locking

 Row-Level Versus Page-Level Locking

 Read Consistency

 Logical Transaction Handling

 Trigger

 Stored Procedure and Stored Function

 User-defined types

 Privileges

5.4.1 CONNECTING TO THE DATABASE
PostgreSQL DBMaster Description
\connect (or \c) [dbname
[username] [host] [port]] Connect to DB_NAME

USER_NAME PASSWORD;

Recommendations:

PostgreSQL can support multiple databases in one Server, and for DBMaster, users can only start
one database on one server.

5.4.2 SELECT STATEMENTS
PostgreSQL DBMaster Description

Select clause Select clause

SELECT [ALL |
DISTINCT]{select_list}
{ [LIMIT { number | ALL }]
[OFFSET number] }

SELECT [ALL | DISTINCT]
{select_list} {LIMIT offset, count}

The ALL keyword means every
record regardless of its duplicate
occurrence. However, using
DISTINCT keyword will eliminate
the duplicate rows.
Users can extract the count rows
from the offset row by using “LIMIT
offset, count” both in DBMaster and
PostgreSQL.

From clause From clause

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2010 CASEMaker Inc. 44

SELECT … [FROM table
[alias] [, ...]]

SELECT … FROM [[db-
name[@server-
name]:]user.]table-name|view]
[ALIAS]

The main difference is DBMaster
must use
DB_NAME@HOST:USERNAME.
TABLE_NAME as its full valid table
name.

Join table Join table

T1 { [INNER] | { LEFT |
RIGHT | FULL } [OUTER] }
JOIN T2 ON
boolean_expression
T1 { [INNER] | { LEFT |
RIGHT | FULL } [OUTER] }
JOIN T2 USING (join
column list)
T1 NATURAL { [INNER] |
{ LEFT | RIGHT | FULL }
[OUTER] } JOIN T2

table-reference [,] { LEFT
OUTER JOIN | LEFT JOIN |
OUTER }
{ table-reference | (table-
reference-list) }

Note that PostgreSQL provides
“FULL OUTER JOIN”, which is not
implemented in DBMaster. Users
should use workaround to generate
the wanted results.

Where,Group
by ,having ,into
clause

Where,Group by,
having ,into
Clause

SELECT…
INTO [new_table]
[FROM] …
[WHERE condition]
[GROUP BY column [, ...]]
[HAVING condition [, ...]]
[UNION [ALL] select]
 [ORDER BY column [ASC
| DESC] [, ...]]

SELECT …FROM …[WHERE]
[GROUP BY (column-identifier [,
column-identifier]…)] [HAVING
search-condition] [ORDER BY
column-identifier [ASC | DESC]
[INTO] [table_identifier]
INSERT INTO <table> SELECT
FROM....

Although both DBMRS support the
INTO CLAUSE, it lies on different
position in the statement.

5.4.3 INSERT STATEMENTS
PostgreSQL DBMaster Description
INSERT INTO table
[(column [, ...])] { VALUES
(expression [, ...]) | SELECT
query }

INSERT INTO remote-table-
name [(column-identifier [,
column-identifier]...)] { VALUES
(insert-value[,insert-value]...) |
DEFAULT VALUES | select-
order-by-statement }

Inserting can only be done on
single table.

Recommendations:

The values supplied in the VALUES clause in either database may contain functions. The
functions specified in PostgreSQL must be replaced with the equivalent ones in DBMaster.

5.4.4 UPDATE STATEMENTS
PostgreSQL DBMaster Description

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2010 CASEMaker Inc. 45

UPDATE table
SET column =
expression [, ...]
[WHERE CURRENT OF
cursor-name] | [WHERE
search-condition]

UPDATE [remote-table-
name@][owner.]{table |
view } [table-option]
SET column-identifier =
{expression | subquery |
NULL} [, column-identifier =
{expression | subquery |
NULL}]...
[WHERE CURRENT OF
cursor-name] | [WHERE
search-condition]

A single subquery may be
used to update a set of
columns. This subquery
must select the same
number of columns (with
compatible data types) used
in the list of columns in the
SET clause.
The CURRENT OF cursor
clause causes the UPDATE
statement to affect only the
single row currently in the
cursor as a result of the last
FETCH.

5.4.5 DELETE STATEMENTS
PostgreSQL DBMaster Description

DELETE FROM table
WHERE condition] |
[WHERE CURRENT OF
cursor-name]

DELETE FROM remote-
table-name [table-option]
[WHERE condition] |
[WHERE CURRENT OF
cursor-name]

5.4.6 OPERATORS

5.4.6.1 Operator comparison
Operator Same in both

Databases
PostgreSQL only DBMaster only

Equal to =
Not equal to !=, <>
Less than <
Greater than >
Less than or equal to <=
Greater than or equal to >=
Greater than or equal to x
and less than or equal to y

BETWEEN x AND y

Pattern Matches LIKE ILIKE (~~*), Similar
to NOT ILIKE (!~*)

Contain, Match,
contains

No value exists IS NULL
A value exists IS NOT NULL
At least one row returned by
query

EXISTS (query)

No rows returned by query NOT EXISTS (query)
Equal to a member of set IN,=ANY/SOME
Not equal to a member of set NOT IN

!= ANY/SOME, <>
ANY/SOME

Less than a member of set < ANY/SOME
Greater than a member of
set

> ANY/SOME

Less than or equal to a
member of set

<= ANY/SOME

Greater than or equal to a
member of set

>= ANY/SOME

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2010 CASEMaker Inc. 46

Equal to every member of
set

=ALL

Not equal to every member
of set

!= ALL, <> ALL, NOT
IN

Less than every member of
set

< ALL

Greater than every member
of set

> ALL

Less than or equal to every
member of set

<= ALL

Greater than or equal to
every member of set

>= ALL

Add +
Subtract -
Multiply *
Divide /
Modulo Mod(x,y) %
Concatenate ||
Distinct row from either
query

UNION

All rows from both queries UNION ALL

5.4.6.2 Search String methods
DBMaster supports “MATCH”, “CONTAIN”, “CONTAINS”, and “LIKE” for pattern search.

Basically, “Like” operators will scan the whole record and seek the pattern as a token. DBMaster
provides another operator “CONTAIN” to seek the word fragment. In addition, users could use
“MATCH” operator to seek the full word. Only the MATCH and CONTAINS operators are applied to
a text index search. You can see the difference in the following case: DBMaster supports “Contain”
and “Match” for pattern search.

Table: Dept

ID Name

01 DBMaster Support
SQL1: select * from Dept where Name like ‘DBMaster S%’(Scan the whole record, 1 result)

SQL2: select * from Dept where Name contain ‘DBM’ (Scan the string with ‘DBM’ letters. Return 1
result)

SQL3: select * from Dept where Name match ‘DBMaster’ (Scan the precise word, 1 result)

SQL4: select * from Dept where Name match ‘DBMaster S’ (Scan the precise word, no result)

5.4.6.3 Special operators recommendation
 No “Intersect” or “Except” operators supported

Both DBMaster and PostgreSQL provide UNION to compose the results to the whole, but only
PostgreSQL support INTERSECT keyword. PostgreSQL provides three methods to handle set of
results, i.e., UNION, INTERSECT and EXCEPT. Currently, DBMaster only supports “UNION”
operators. As to the “Intersect” and “EXCEPT”, users need to rewrite applications to do the further
handling.

 DBMaster supports “Contain” and “Match” for pattern search

Basically, “Like” operator will scan the whole record and seek the pattern as a token. DBMaster
provides another operator “CONTAIN” to seek the word fragment. In addition, users can use
“MATCH” operator to seek the full word.

 PostgreSQL supports “SIMILAR TO” and “substring function” for pattern search

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2010 CASEMaker Inc. 47

There are three separate approaches to pattern matching provided by PostgreSQL: the traditional
SQL LIKE operator, the more recent SIMILAR TO operator), and POSIX-style regular expressions.
Functions are available to extract or replace matching substrings and split a string at matching
locations. The SIMILAR TO operator succeeds only if its pattern matches the entire string, like
LIKE, SIMILAR TO uses _ and % as wildcard characters denoting single characters and strings.

The substring function with three parameters, substring (string, from pattern, for escape-character),
provides extraction of a substring that matches an SQL regular expression pattern. As with
SIMILAR TO, the specified pattern must match the entire data string, or else the function fails and
returns null. To indicate the part of the pattern that should be returned on success, the pattern must
contain two occurrences of the escape character followed by a double quote ("). The text matching
the portion of the pattern between these markers is returned.

5.4.7 BUILT-IN FUNCTIONS

The user who read the following table and functions listed will get surprise that PostgreSQL had so
many common functions as DBMaster. We classify all the functions into four categories:

 Math/Number Functions

 String Functions

 Conversion Functions

 Date Functions

It doesn’t include all PostgreSQL functions. For example, PostgreSQL has some Object-Reference
functions, such as REF, DEREF. This kind of functions is rarely seen in any other RDBMS.
DBMaster, as a pure RDBMS, can’t implement such functions. In addition, some unique functions
to PostgreSQL are not put here for their uniqueness.

In most cases, users would need very little effort to migrate PostgreSQL functions to DBMaster
functions, the PostgreSQL unique functions or Object-Reference functions are not commonly seen
after all.

5.4.7.1 Math/Number Functions:
The numeric function performs calculations. These functions accept an input number, this may
come from a numeric column or any expression that evaluates to a number. A calculation is then
performed and a number is returned.
PostgreSQL DBMaster Description
abs(n) ABS(n) Return the absolute value of n as a double-precision

floating-point number. The return type is same as the
input type.

acos(n) ACOS(n) Return the arc cosine of n in the range 0 to pi as a
double-precision floating-point number.

asin(n) ASIN(n) Return the arc sin of n in the range -pi/2 to pi/2 as a
double-precision floating-point number.

atan(n) ATAN(n) Return the arc tangent of n in the range -pi/2 to pi/2 as
a double-precision floating-point number.

atan2(y, x) ATAN2(x,y) Return the arc tangent of x/y in the range -pi to pi as a
double precision floating-point number.

ceiling(dp or
numeric)

CEILING(n) Return the least integral value greater than or equal to
n as a double-precision floating-point number. The
return type is same as the input type.

cos(n) COS(n) Return the cosine of n as a double-precision floating-
point number. n is expressed in radians.

Cot(n) COT(n) return the cotangent of number, expressed in radians
N/A COSH(n) Return the hyperbolic cosine of x.

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2010 CASEMaker Inc. 48

exp(n) EXP(n) Return the exponential function e**n. The return type is
same as the input type.

floor(n) FLOOR(n) Return the greatest integral value less than or equal to
n. The return type is same as the input type.

ln(n) LOG(n) Return the natural logarithm of n. The return type is
same as the input type.

log(n) LOG10(n) In DBMaster, return the logarithm to base 10. The
return type is same as the input type.

MOD(m,n) MOD(m,n) Return the remainder (modulus) of m divided by n as a
double-precision floating-point number.

POWER(m,n) POW(m,n)
POWER(m,n)

Return m**n as a double-precision floating-point
number.

ROUND(n[,m]) ROUND(n[,m]) Return the closest integer number of the real number
n.

sign(n) SIGN(n) Return the sign of a number codes as +1 for positive, 0
for zero, and -1 for negative.

sin(n) SIN(n) Return the sine of n as a double-precision floating-point
number. N is expressed in radians.

N/A SINH(n) Return the hyperbolic sine of x
sqrt(n) SQRT(n) Return a double-precision floating-point number y

where y*y = n. The return type is same as input type.
tan(n) TAN(n) Return the tangent of n as a double-precision floating-

point number. N is expressed in radians.
N/A TANH(n) Return the hyperbolic tangent of x.
Degrees(n) DEGREES(n) Return the number of degrees in radians as a double

precision floating-point number
Radians(n) RADIANS(n) Return the number of radians in degrees as a double

precision floating-point number.
pi() PI() Return the constant value of p, 3.1415926535897936,

as a decimal number with a precision of 38 and a scale
of 16.

N/A RAND() Return a random Integer value.

5.4.7.2 String Functions:
Character functions accept characters input, which may come from a column in a table or, more
generally, from any expression. This input is processed and a result is returned.
PostgreSQL DBMaster Description
ASCII(string) ASCII(string) Return the ASCII code value of the leftmost

character of string as an integer.
CHR(code) CHAR(code) Convert the decimal code for an ASCII

character to the corresponding character.
These 2 functions between DBMaster and
PostgreSQL are identical.

Position(textsrc in
textdst);

LOCATE(textsrc,
textdst, start)

Locate a string in another string. But the
function in DBMaster can specify the start
position, and the one in PostgreSQL can not.

LENGTH(string) LENGTH(string)
CHAR_LENTTH(strin
g)
CHARACTER_LENT
TH(string)

Compute the length allocated to an expression,
giving the result in bytes. These 2 functions
between DBMaster and PostgreSQL are
identical.

SUBSTR (string,
start, length)

SUBSTRING(string,
start, length)

Return the part of the string.

COALESCE(expre
ssion [,…,n])

COALESCE
(variable, new_value)

If the value of the variable is NULL, the
new_value is returned.

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2010 CASEMaker Inc. 49

CASE WHEN
condition THEN
result
 [WHEN ...]
 [ELSE result]
END

CASE WHEN exp1
THEN result1 WHEN
exp2 THEN result2
ELSE default_value
END

CASE compares expr to each search value
one by one. If expr is equal to a search, then
returns the corresponding result.

REPEAT(string_ex
p, count)

REPEAT(string_exp,
count)

Produce a string with string_exp repeated
‘count’ times.

UPPER(string) UPPER(String),
UCASE(String)

Convert lowercase characters to uppercase
characters. These 3 functions between
DBMaster and PostgreSQL are identical.

LOWER(string) LOWER(string),
LCASE(string)

Convert all upper case characters in string to
lower case. These 3 functions between
DBMaster and PostgreSQL are identical.

LTRIM(string) LTRIM(string) Truncate trailing spaces from the left end of
string. These 2 functions between DBMaster
and PostgreSQL are identical.

RTRIM(string) RTRIM(string) Truncate the trailing spaces from the right end
of string. These 2 functions between DBMaster
and PostgreSQL are identical.

TRIM(string) TRIM(string) Truncate the trailing spaces from both end of
string.

N/A RIGHT(string_exp1,n
)

Return the rightmost count characters in string

N/A LEFT(string_exp1,n) Return the leftmost count characters in string
REPLACE(string1,
string2, string3)

REPLACE(string1,
string2, string3)

Replace all occurrences of string2 in string1
with string3. These 2 functions between
DBMaster and PostgreSQL are identical.

N/A CONCAT(string1,
string2)
||

Return a character string that is the result of
concatenating string2 to string1. The resulting
string is DBMS dependent.

5.4.7.3 Conversion Functions:
Sometimes you need to convert a value from one data type to another. For this purpose, you
should use a conversion function.
PostgreSQL DBMaster Description
CAST(expression as
Data type)
convert(string text,
[src_encoding name,]
dest_encoding name)

CAST(Column as Data
type)

DBMaster and PostgreSQL use CAST
function to cast one data type to
another.

5.4.7.4 Date Functions
PostgreSQL DBMaster Description
N/A ADD_DAYS(DATE

date_val,INT s)
Add the number of days to the date
contained in date_val.

age(timestamp,
timestamp)

DAYS_BETWEEN(DAT
E date1,DATE date2)

Return the number of days between
the given two dates in DBMaster.
But in PostgreSQL it returns as a
format consisting of the year, month
and day.

N/A ADD_MONTHS(DATE
date_val,INT s)

Return a date which is got from
adding s months to date_val. s can be
a negative number.

CURRENT_DATE
CURDATE() Return current date.

NOW() NOW() Return current date and time as a
timestamp value.

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2010 CASEMaker Inc. 50

DATE_PART(TEXT,
TIMESTAMP)

YEAR(date),MONTH(dat
e),WEEK(date),
QUARTER(date),
DAYNAME(date),
DAYOFYEAR(date),
DAYOFMONTH(date),
DAYOFWEEK(date),
DATEPART(date),
TIMEPART(date),
MDY(date), HMS(date),
HOUR(date),
MINUTE(date),
SECOND(date)

Return the specified part of the date
as an integer.

N/A LAST_DAY(dateval) Return the last date of the month
which dateval belongs to.

N/A NEXT_DAY(dateval,wee
kday)

Return the date of the next first
WeekDay.

5.4.8 LOCKING CONCEPTS AND DATA CONCURRENCY ISSUES
PostgreSQL DBMaster

 PostgreSQL supports table-
lock and row-lock.

 DBMaster supports the row-lock, page-lock and
table-lock.

 DBMaster supports the “Dirty Read”, “Read with
shared lock”, and “Read with exclusive lock”

Recommendations:

DBMaster, uses the “select * for update” to prevent other session from updating the locked data.
Basically, the reader of the data is never locked both in PostgreSQL and DBMaster. But users
should be aware of the different manners when a “select” command is submitted on these two
databases and their consequences.
PostgreSQL DBMaster

 PostgreSQL actually treats every SQL
statement as being executed within a
transaction. If you do not issue a BEGIN
command, and then each individual
statement has an implicit BEGIN and (if
successful) COMMIT wrapped around it.

 COMMIT commits the pending changes to
the database.

 ROLLBACK undoes all the transactions
after the last COMMIT WORK statement.

 Savepoints can be set in transactions with
the following command:

 ROLLBACK savepoint_name
 Two-phase commit allows transactions to

be "prepared" on several computers, and
once all computers have successfully
prepared their transactions (none failed),
all transactions can be committed.

 DBMaster transactions are explicit.
 Statements are automatically committed to

the database by default. But users could
change the DB_ATCMT=0 to change this
pattern, or use “set autocommit off” to
achieve the same effect.

 COMMIT WORK commits the pending
changes to the database.

 ROLLBACK undoes all the transactions
after the last COMMIT WORK statement.

 Savepoints can be set in transactions with
the following command:

 SET SAVEPOINT savepoint_name
 The following command rolls back to the

specified SAVEPOINT;
 ROLLBACK <savepoint_name>
 Two-phase commit is automatic and

transparent in DBMaster. Two-phase
commit operations are needed only for
transactions, which modify data on two or
more databases.

Recommendations:

Transactions are not implicit in DBMaster and PostgreSQL. Therefore, applications expect that
every statement they issue is automatically committed after it is executed. In DBMaster, you could
use “DB_ATCMT=1” in dmconfig.ini to change this manner and In PostgreSQL you can use “begin”
before starting a transaction to start a transaction until ‘commit’ to end a transaction.

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2010 CASEMaker Inc. 51

5.4.9 TRIGGER DIFFERENCE

PostgreSQL DBMaster
CREATE TRIGGER name { BEFORE |
AFTER }{ event [OR ...] }ON table FOR
EACH { ROW | STATEMENT }
EXECUTE PROCEDURE funcname
(arguments)

Create Trigger trigger_name {Before|After}
{Insert|Delete|Update[OF column_name]} On
Table_name {FOR EACH ROW|FOR EACH
STATEMENT}[When trigger_condition]
trigger_body

ALTER TRIGGER name ON table RENAME
TO newname

ALTER TRIGGER trigger_name REPLACE
WITH

DROP TRIGGER name ON table DROP TRIGGER Trigger_name FROM
Table_name

Recommendations:

There are much differences in using triggers between PostgreSQL and DBMaster. Before creating
a trigger in PostgreSQL, the trigger action must be defined in a function. But in DBMaster, we
needn’t do like this, because we defined the trigger action when creating a trigger.

5.4.10 STORED PROCEDURES AND STORED FUNCTIONS

PostgreSQL DBMaster
CREATE [OR REPLACE] FUNCTION
 name ([[argmode] [argname] argtype [, ...]])
 [RETURNS rettype]
 { LANGUAGE langname
 | IMMUTABLE | STABLE | VOLATILE
 | CALLED ON NULL INPUT | RETURNS NULL
ON NULL INPUT | STRICT
 | [EXTERNAL] SECURITY INVOKER |
[EXTERNAL] SECURITY DEFINER
 | AS 'definition'
 | AS 'obj_file', 'link_symbol'
 } ...
 [WITH (attribute [, ...])]

CREATE PROCEDURE procedure-name
[(procedure-parameter [, procedure-parameter ...])]
{
[RETURNS STATUS] |
[RETURNS [STATUS,] procedure-result [,procedure-
result ...]]
} |
CREATE PROCEDURE FROM source-file-path

Recommendations:

There are currently four procedural languages available in the standard PostgreSQL distribution:
PL/pgSQL, PL/Tcl, PL/Perl, and PL/Python. Other languages can be defined by users. We can use
these languages to write functions and store procedures. On the other hand, DBMaster uses the
ESQL/C for ESQL/C stored procedure or Java for Java stored procedure to do the coding. This is
the biggest difference between these two databases.

To develop ESQL/C stored procedures, DBMaster has to hook up to the external C-Compiler. This
compiler is usually VC in Windows Platform, GCC in Linux. The normal process to build a C-
Compiler in DBMaster is: compile the stored procedure, put it into the corresponding folder, and
create procedure in dmsqlc with the syntax “create procedure from …”, Coding in Procedural
Language in DBMaster is out of scope in this document. For details, please refer to the ESQL C
Programmer’s Guide.

For Java stored procedures, if you know how to access Database using Java programs, the coding
and creating process is very easy and fast.

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2010 CASEMaker Inc. 52

5.4.11 USER-DEFINED TYPES

PostgreSQL DBMaster
CREATE TYPE name AS
 (attribute_name data_type [, ...])

CREATE TYPE name (
 INPUT = input_function,
 OUTPUT = output_function
 [, RECEIVE = receive_function]
 [, SEND = send_function]
 [, ANALYZE = analyze_function]
 [, INTERNALLENGTH = { internallength |
VARIABLE }]
 [, PASSEDBYVALUE]
 [, ALIGNMENT = alignment]
 [, STORAGE = storage]
 [, DEFAULT = default]
 [, ELEMENT = element]
 [, DELIMITER = delimiter]
)

CREATE DOMAIN domain_name as
data_type
[default {literal | constant | function_name |
NULL}] [CONSTRAINT constraint_name
CHECK Boolean_expression]

There are much differences in creating user_defined types between PostgreSQL and DBMaster.

In PostgreSQL, there are two types of CREATE TYPE to create user_defined types. The first form
of CREATE TYPE creates a composite type. The composite type is specified by a list of attribute
names and data types. This essentially the same as the row type of a table, but using CREATE
TYPE avoid the need to create an actual table when all that is wanted is to define a type, A stand-
alone composite type is useful as the argument or return type of a function. The second form of
CREATE TYPE creates a new base type. The parameters may appear in any order, not only that
illustrated above, and most are optional. Two or more functions (using CREATE FUNCTION)
should be registered before defining the type. The support functions input_function and
output_function are required, while the functions receive_function, send_function and
analyze_function are optional.

In DBMaster, we use command ‘create domain’ to define a user-defined type. A domain is a type of
integrity constraint used to defining a column. Domains specify the data type for the column, and
may specify a default value or a value constraint. When a column is defined with a domain, it
inherits the properties of the domain, (data type, default value, and value constraint), without
requiring the user to specify them.

5.4.12 PRIVILEGES

PostgreSQL DBMastker Description
SELECT SELECT Allow select from any column of the specified table, view,or

sequence.
INSERT INSERT Allow insert of a new row into the specified table.
UPDATE UPDATE Allow update of any column of the specified table.
DELETE DELETE Allow delete of rows from the specified table.
TRUNCATE N/A Allow TRUNCATE on the specified table in PostgreSQL.
REFERENCE
S

REFERENCE To create a foreign key constraint, it is necessary to have this
privilege on both the referencing and referenced tables.

EXECUTE EXECUTE Allow the use of the specified function and any operators that are
implemented on top of the function in PostgreSQL. AND Allow
the use of the COMMAND, PROJECT, and PROCEDURE in
DBMaster.

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2010 CASEMaker Inc. 53

N/A ALTER Allow users to alter the definition of a table in DBMaster.
CREATE N/A Allow new schemas to be created within the database in

PostgreSQL.
CONNECT CONNECT Allow the user to connect to the specified database.
N/A INDEX Allow users to create or drop indexes for a table in DBMaster.
RULE N/A Allow the creation of a rule on the table/view in PostgreSQL.
TRIGGER N/A Allow the creation of a trigger on the specified table in

PostgreSQL.
TEMPORARY N/A Allow temporary tables to be created when using the database in

PostgreSQL.
USAGE N/A In PostgreSQL, allow the use of the specified language for the

creation of functions in that language. This is the only type of
privilege that is applicable to procedural languages.

5.4.13 POSTGRSQL AND DBMASTER IN AP

PostgreSQL DBMaster

Supported driver
JDBC/ODBC,Perl DBI,Hibernate,Nhibernate,OLE
DB,.NET

JDBC/ODBC,DCI, Ruby, Hibernate,
Nhibernate,OLE DB

Connection String
ODBC:
Driver={PostgreSQL};
Server=IP Address;
Port =5432;
Database=DataBase;
Uid=Username;
Pwd=Password;"

ODBC:
"Driver={DBMaster 5.1
Driver};Database=Database
name;uid=Username;Pwd=Password;"

OLE DB:
“Provider = PostgreSQL OLE DB Provider;
 Data Source=LocalHost;
User ID=Username;
Password=;
Location=Database;
Extended Properties=”

OLE DB:
"Provider=DMOLE51;Data Source=
Databasename;User Id= Username;
Password =;"

JDBC:
Class.forName
(“org.postgresql.Driver ”);
Connection conn=
DriverManager.getConnection
("jdbc:postgresql://host:port/database","user","password")
;

JDBC:
Class.forName("dbmaster.sql.JdbcOdbcDrive
r ");
Connection conn=
DriverManager.getConnection
(jdbc: dbmaster:// IP_Address:TCP_Port
/DatabaseName, user, password);

5.5 System Tables
Each database has its system tables. Users may need query these tables to get some information.

We list three of them as followings:

PostgreSQL DBMaster

Check one table exist
select 1 from pg_tables where tablename=
‘XXXXX’;

select 1 from systable where table_name=’
XXXXX’;

Check DB Version from SQL
select substring(version() from 12 for 5); select value from sysinfo where info='VERSION';

 Compare PostgreSQL and DBMaster 5

©Copyright 1995-2010 CASEMaker Inc. 54

Check Procedure exist
select count(*) from pg_proc where proname =’
XXXXXXX’;

SELECT COUNT(*) FROM sysprocinfo WHERE
NAME = ‘XXXXXXX’

 DB Object Migration procedures 6

©Copyright 1995-2010 CASEMaker Inc. 55

6. DB Object Migration procedures

6.1 SCHEMA AND DATE MIGRATION

Please refer to chapter 4 for more information about how to migrate a database from PostgreSQL
to DBMaster.

You should rebuild indexes, constrains, and so on after your migration.

6.2 CONVERT USER-DEFINED TYPES

There are huge differences between PostgreSQL and DBMaster on User-defined types. Please
read the detailed introduction about it in chapter 5 sections 5.4.11

First, we should analyze the User-defined types function in PostgreSQL.

Second, we can rewrite “domain” according to the syntax of DBMaster.

Note: Please spend some time on a careful technical evaluation before using it.

6.3 CONVERT TRIGGER

PostgreSQL is similar to DBMaster in many aspects, both of them only include DML Triggers. This
article will focus on (DML) triggers.

Difference in the Trigger between PostgreSQL and DBMaster has been introduced in chapter 5
section 5.4.9.

First, we should analyze the PostgreSQL Trigger.

Second, we can rewrite trigger according DBMaster syntax.

6.4 CONVERT STORED PROCEDURE

Detailed Recommendations for stored procedures between PostgreSQL and DBMaster have been
introduced in chapter 5.4.10. Stored Procedures and Stored Functions. Here we mainly discuss
how to convert stored produces from PostgreSQL to DBMaster successfully. PostgreSQL stored
procedures use the PL/SQL but DBMaster use the ESQL/C for ESQL/C stored produces or java for
java stored procedures to do coding. PL/SQL includes the commands that can create the logical
store cells. DBMaster can create logical store cells with SQL SP in release 5.2. And in current
DBMaster version, we can develop ESQL/C stored procedures with external C-Complier or Java
stored produces.

Because the difference is so big as above description, we can’t convert them directly. So we
should do following things step by step.

 DB Object Migration procedures 6

©Copyright 1995-2010 CASEMaker Inc. 56

1. First, we have to analyze the purpose of the stored procedures created by PL/SQL in
PostgreSQL.

2. Next, we need to choose one language between ESQL/C and Java for creating stored
procedures.

3. Rewriting the stored produces with suitable syntax for DBMaster and make it having same
action as the old in PostgreSQL.

4. Creating and testing stored procedures in DBMaster.

Note: For more details about creating stored procedures by ESQL/C or JAVA, please refer to
ESQL C Programmer’s Guide or Creating Stored procedures using Java section in DBA.

 AP migration procedures 7

©Copyright 1995-2012 CASEMaker Inc. 57

7. AP migration procedures

It’s very important for us to check application program interfaces first. For example, we should
check whether the interface is supported by DBMaster if we want to migrate from another database.

Next, we must consider how to rewrite the connect strings according to the driver.

Finally, mark the special syntax in PostgreSQL and find the solution for DBMaster.

7.1 AP interface and Connect string
We must make clear what kinds of interfaces are used in application programs and whether these
interfaces are supported by DBMaster.

What types of data providers or divers are used to access data source. JDBC, ODBC or any others,
for example: If data providers changes, we might consider changing drivers.

We can discuss each tier from following aspects.

Finally, you’d better do a quick testing for the application program that has been modified. In order
to make sure it can connect to DBMaster successfully.

7.1.1 AP IN CLIENT

A part of application program codes related to database connection or manipulation may need
some modifying. Such as DSN, CONNECT SRTING, and so on on client.

In addition, if the application need to get some information from SYSTEM Table (or CATALOG).
Please refer to the chapter 5.5 to modify the usage.

7.1.2 MIDDLE-TIER

If use COM+ or implement DB-tier encapsulation implemented with similar technology, users need
to consider modifying connect string and any other parameters of COM components in DB-tier.

7.1.3 AP OR (WEB) SERVER

Regarding AP server, users may need to modify some parameters related to DB Server such as
Server IP address, Port Number, Driver, etc..

7.1.4 AP IN SERVER

Here, users need to check whether there are some schedules or tasks deployments existing on
server separately and whether these programs need modifying.

 AP migration procedures 7

©Copyright 1995-2012 CASEMaker Inc. 58

7.2 PostgreSQL special syntax and feature
On one hand, we must solve connect situation, on the other hand, we must pay a special attention
to special syntax in PostgreSQL. Consider what method is substitute for these special grammars.

There are too many special syntax exists in PostgreSQL. In order to find replacing solutions for an
alternative. We give some simple samples as followings. You must understand this aspect of
knowledge about PostgreSQL and DBMaster before migration. You also can compare with chapter
5 which describes the difference between PostgreSQL and DBMaster. For more information you
can reference PostgreSQL and DBMaster User Guide.

7.2.1 FOR SELECT STATEMENT

In PostgreSQL, select statements don’t need parentheses in the function end sometimes. For
example, you should write “select current_date;” to query time; otherwise, an error will return. but in
DBMaster, you must write “select curdate ();”.

7.2.2 FOR INHERITANCE AND PARTITIONING

 PostgreSQL implements table inheritance, In PostgreSQL, a table can inherit from zero or more
other tables, and a query can reference either all rows of a table or all rows of a table plus all of its
descendant tables. The latter behavior is default.

PostgreSQL also supports partitioning via table inheritance.

Currenty, DBMaster doesn’t support these function temporarily.

7.2.3 FOR NESTED QUERY

Suppose we have a table named tb_nest recording all staff information .If we want to know who is
latest for each department.

In PostgreSQL, we can write following statements
select * from tb_nest t1

where come_date >= (select max(come_date) from tb_nest tb2 where tb2.dept = t1.dept)

In DBMaster, the grammar isn’t supported. In order to achieve the same function in DBMaster, we
adopt temporary table by rewriting statements.
select emp_from, max (come_date) as come_date from tb_nest group by emp_from

into temp;

select * from tb_nest tb1 join temp tb2 on tb1.emp_from =

tb2.emp_from and tb1.come_date=tb2.come_date

 Testing application with new DB 8

©Copyright 1995-2012 CASEMaker Inc. 59

8. Testing application with new DB

Testing applications are required at any moment, at the beginning, in the process or at the end of
migration. It can help us confirm our modifications or adjustments to be befitting.

8.1 How to pre-run for skip any object
In order to find problems timely and get to know where the problems exist on, we must test the
program every time to find out which part has something wrong.

It’s better for us to begin migrating next section after having tested and ensured the part of you just
finished had no problems. This is very helpful for you to migrate all applications programs from
PostgreSQL to DBMaster successfully.

8.2 Test application with DBMaster after migration
A validate testing is required after application programs have been migrated completely from
PostgreSQL to DBMaster. You can ensure the application run normally on new platform with the
validate testing.

 Performance tuning 9

©Copyright 1995-2012 CASEMaker Inc. 60

9. Performance tuning

When you develop an application system with any database, the system performance is an
important thing and you must be concerned about it. We must tune database after migration and
make sure the application program run efficiently. Of cause, performance tuning is about the whole
processes of using database not only after migration .The amount data is growing in database.
You should often pay attention to database performance tuning. If databases’ performance gets
down, we should detect database and adjust timely in use.

Performance tuning is not only until migration finished from PostgreSQL to DBMaster. It’s from the
beginning design and planning the whole db to the end use.

Generally speaking, there are many factors affecting the performance of DBMaster. We can see
them from the following figure.

Query Optimization

Concurrent Process

Application System Architecture
Application System

Database Model Design

(Tablespace, Table, Index, stored command, Stored procedure,
Trigger)

Daemon

(Auto-commit, Checkpoint, Update statistic, Backup server,
Replication)

Memory Allocation Database System

Disk I/O

(Database Data partition)

OS (File system, Raid)

Network

I/O

Memory
Hardware

CPU

 Performance tuning 9

©Copyright 1995-2012 CASEMaker Inc. 61

9.1 Application
It comprises writing queries that limit the use of stored commands or searches for procedures.
Designing a good schema and developing an application with better utilities both can significantly
increase applications performance.

Using indexes can improve the application performance for accessing to database if you built the
index reasonable. For example, if you build some indexes on the required columns in a table.
DBMaster will find the data effectively.

Another attention for Applications is Concurrent Processes. Obviously, minimizing lock contention
and avoiding deadlocks can increase applications’ throughput. In addition, shortening transactions
can promote concurrency, Meanwhile, it is also possible to degrade databases’ performance.

9.2 Database System
It includes Disk I/O, Memory Allocation and Daemon. Make sure there are enough physical
memory for DCCA and few I/O access times.

9.2.1 TUNING MEMORY ALLOCATION

DBMaster stores information temporarily in memory buffers and permanently on disk. Since it takes
much less time to retrieve data from memory than disk, performance will increase if data can be
obtained from the memory buffers. The size of database memory allocation will affect performance
of a database. However, performance will become an issue only if there is not enough memory. So
we must tune the memory usage for a database and it includes how to calculate the required
DCCA size, and how to monitor and allocate enough memory for page buffers, journal buffers and
system control area.

To achieve the best performance, follow the following steps:

1. Tune the operating system.

2. Tune the DCCA memory size.

3. Tune the page buffers.

4. Tune the journal buffers.

5. Tune the SCA.

The memory requirement for DBMaster varies according to the applications in use, tune memory
allocation after tuning application programs and SQL statements.

9.2.1.1 Tuning an Operating System
The operating system should be tuned to reduce memory swapping and ensure that the system
runs smoothly and efficiently.

Memory swapping between the physical memory and virtual memory file on disks takes a
significant amount of time. It is important to have enough physical memory for running processes.
Measure the status of an operating system with the operating system utility. An extremely high
page-swapping rate indicates that the amount of physical memory in a system is not large enough.

In this case, you should remove unnecessary processes or add more physical memory to the
system.

 Performance tuning 9

©Copyright 1995-2012 CASEMaker Inc. 62

9.2.1.2 Tuning DCCA Memory
The Database Communication and Control Area (DCCA) is a group of shared memory allocated by
DBMaster server. When DBMaster is started, it allocates and initializes the DCCA.

The DCCA is the resource most frequently accessed by DBMaster processes. It is important to
ensure there is enough physical memory to prevent the operating system from swapping the
DCCA to disks too often, or it will seriously degrade performance of a database.

Usually a larger number of buffers are better for system performance. However, if the DCCA is too
large to fit physical memory, the system performance will degrade. Therefore, it is important to
allocate enough memory for the DCCA but still fit the DCCA in physical memory.

You can set appropriate parameters DB_NBufs, DB_NJnlB and DB_ScaSz in dmconfig.ini
before starting the database to configure the size of the DCCA components.

The total memory allocation for the DCCA is sum of the size of DB_NBufs, DB_NJnlB and
DB_ScaSz.

9.2.1.3 Tuning Page Buffer Cache
DBMaster uses the shared memory pool for the data page buffer cache. The buffer cache allows
DBMaster to speed up data access and concurrency control. Adjusting the size of the page buffers
will have the greatest effect on performance.

We can improve buffer cache performance in following ways:

1. Update statistics on schema objects

2. Set NOCACHE on large tables

3. Reorganize data in poorly clustered indexes

4. Enlarge cache buffers

5. Reduce the effect of checkpoints

For concrete realization of above methods please reference DBA manual Chapter Performance
Tuning.

9.2.1.4 Tuning Journal Buffers
The journal buffers store the most recently used journal blocks. With enough journal buffers, the
time required to write journal blocks to disks and roll back transactions when updating data and
reading journal blocks from disks is reduced.

You should determine whether there are sufficient journal buffers for the system. The optimum
number of journal buffers is the sum of journal blocks needed by the longest running transactions
at the same time.

There are two ways used to estimate the number of journal buffers, one is measure the number of
used journal blocks and the other is measure the journal buffer flush rate.

More details please reference DBA manual Chapter Performance Tuning.

9.2.1.5 Tuning the SCA
Cache buffers and some control blocks, such as session and transaction information, have a fixed
size, and are pre-allocated from the DCCA when a database is started. However, some

concurrency control blocks are allocated dynamically from the DCCA when the database is running,
their size is specified by DB_ScaSz.

 Performance tuning 9

©Copyright 1995-2012 CASEMaker Inc. 63

If a database application gets the error message “database request shared memory exceeds
database startup setting”, it means that DBMaster cannot dynamically allocate memory from the
SCA area. Usually, this error is due to a long transaction using too many locks. If this situation
happens often, solve it with the methods illustrated below.

1. Avoid Long Transactions

2. Avoid Excessive Locks on Large Tables

3. Increase the SCA size

For details please reference DBA manual Chapter Performance Tuning

9.2.2 QUERY OPTIMIZATION

The query optimizer will make a query of SQL commands much faster and efficient by means of
choosing the best execution method internally.

If performance degrades, we should check the query plan by the command “Set dump plan on”
and the SQL to improve the performance by forcing index scan, rewriting query, etc.. For details
please reference DBA manual Chapter Performance Tuning.

9.3 OS
A suitable OS is important for improving performance of the whole system, so please chose one
special designed OS for supporting the application disposal and the database as possible as you
can.

In addition, about hard disks which support the technical Raid, please chose different Raid Level
for different data types. For example, in DBMaster, you can put data file into Raid 1,3,5, and put
journal file into Raid 0, which can guarantee safeness and a high efficiency.

9.4 Hardware
It is the basic factor not only affects the performance of DBMaster, but also affects the whole PC’s.

 CPU: A faster CPU or multi CPUs can help improving performance.

 Memory: Enough memory can hold more cached data, so I/O access time will be reduced.

 I/O: Faster hard disks can improve the I/O throughput and more hard disks can promote the
I/O concurrency. Network: Speeding up transmission for network can reduce response time
for users. Using only network protocols required will reduce load balancing of the operating
systems.

Obviously, enhancing the hardware can greatly improve the overall database system
performance absolutely.

On the whole, we must rebuild indexes, adjust configuration according to DB, AP, and so on in
order to improve the performance of database application programs. For more contents please
refer to the DBA manual chapter Performance Tuning.

 Appendix – Migration Samples 10

©Copyright 1995-2012 CASEMaker Inc. 64

10. Appendix – Migration Samples

In this chapter, we will provide some real samples for both DBMaster and PostgreSQL. The
content involves samples for not only table schemas and data but also applications with different
program languages. It provides a good demonstration of Migration from PostgreSQL to DBMaster.

The purpose is to help users quickly get to know the difference between DBMaster and
PostgreSQL, and easily catch on the migration steps. It can reduce the migration costs.

In addition, these simple samples can not contain all instances at present. But we will enhance all
features which users care in this document continually.

10.1 Table Schema for all Types
In order to make users to get to know types mapping between PostgreSQL and DBMaster, we give
an example here. Users should create a table with all types in PostgreSQL firstly. Then, modify the
table schema according to the Type-Mapping table for creating table in DBMaster manually, or
export the table from PostgreSQL to DBMaster with JDatatransfer Tool automatically.

In this section, we don’t refer to the migration of DATA, and we will demonstrate the samples for
migration of ordinary types and special type data in next chapter 10.2 Table Schema and Data

10.1.1 CREATE TABLE WITH ALL TYPES IN POSTGRESQL

Some types are equivalent to other types, or they only have the various aliases. And they will be
converted into some same types automatically when creating the table. For example:

TYPE Name Equivalent Alias

Smallint int2

int, int4, serial, serial4 integer

bigint, bigserial, serial8 int8

float, real float4

double precision float8

numeric decimal

bit varying varbit

boolean bool

character char

character varying varchar

create table postgres_all_types(

 Appendix – Migration Samples 10

©Copyright 1995-2012 CASEMaker Inc. 65

 col_smallint int2,

 col_integer int,

 col_bigint int8,

 col_serial serial4,

 col_bigserial serial8,

 col_numeric decimal(13,3),

 col_real float4,

 col_doubleprecision float8,

 col_bit bit(20),

 col_bitvarying varbit(20),

 col_boolean bool,

 col_character char(30),

 col_charactervarying varchar(30),

 col_text text,

 col_bytea bytea,

 col_cidr cidr,

 col_inet inet,

 col_interval interval,

 col_macaddr macaddr,

 col_money money,

 col_point point,

 col_line line,

 col_lseg lseg,

 col_box box,

 col_path path,

 col_polygon polygon,

 col_circle circle,

 col_date date,

 col_time time,

 col_timezone timetz,

 col_timestamp timestamp,

 col_timestampzone timestamptz);

10.1.2 MIGRATE WITH JDATATRANSFER TOOL

The following table schema is produced by JDatatransfer Tool automatically by default, which
need adjusting (Please refer to the right schema in 10.1.3 chapter which has been adjusted by
hand).
create table POSTGRES_ALL_TYPES (

 COL_SMALLINT SMALLINT default null ,

 COL_INTEGER INTEGER default null ,

 COL_BIGINT INTEGER default null ,

 COL_SERIAL INTEGER not null ,

 COL_BIGSERIAL INTEGER not null ,

 COL_NUMERIC DECIMAL(13,3) default null ,

 COL_REAL REAL default null ,

 COL_DOUBLEPRECISION REAL default null ,

 COL_BIT NVARCHAR(254) default null ,

 COL_BITVARYING NVARCHAR(254) default null ,

 COL_BOOLEAN CHAR(1) default null ,

 COL_CHARACTER NCHAR(30) default null ,

 Appendix – Migration Samples 10

©Copyright 1995-2012 CASEMaker Inc. 66

 COL_CHARACTERVARYING NVARCHAR(30) default null ,

 COL_TEXT NCLOB default null ,

 COL_BYTEA BINARY(254) default null ,

 COL_CIDR NVARCHAR(254) default null ,

 COL_INET NVARCHAR(254) default null ,

 COL_INTERVAL NVARCHAR(254) default null ,

 COL_MACADDR NVARCHAR(254) default null ,

 COL_MONEY REAL default null ,

 COL_POINT NVARCHAR(254) default null ,

 COL_LINE NVARCHAR(254) default null ,

 COL_LSEG NVARCHAR(254) default null ,

 COL_BOX NVARCHAR(254) default null ,

 COL_PATH NVARCHAR(254) default null ,

 COL_POLYGON NVARCHAR(254) default null ,

 COL_CIRCLE NVARCHAR(254) default null ,

 COL_DATE DATE default null ,

 COL_TIME TIME default null ,

 COL_TIMEZONE NVARCHAR(254) default null ,

 COL_TIMESTAMP TIMESTAMP default null ,

 COL_TIMESTAMPZONE TIMESTAMP default null)

 in DEFTABLESPACE lock mode row fillfactor 100 ;

10.1.3 MODIFY TABLE SCHEMA MANUALLY

DBMaster doesn’t support the BIGINT and BIGSERIAL types, so we can only replace them with
INTEGER Type (will be supported in Version 5.2).

In addition, DBMaster also doesn’t support box, cidr, inet, interval, macaddr and Geometric Type
(point, line, lseg, box, path, polygon, circle); we don’t plan to getting to the bottom of these types,
so totally replace them with varchar(254).
create table postgres_all_types (

 col_smallint smallint,

 col_integer integer,

 col_bigint integer,

 col_serial integer not null,

 col_bigserial integer not null,

 col_numeric decimal(13, 3),

 col_real real,

 col_doubleprecision real,

 col_bit char(20),

 col_bitvarying varchar(20),

 col_boolean char(1),

 col_character char(30),

 col_charactervarying varchar(30),

 col_text nclob,

 col_bytea binary(254),

 col_cidr varchar(254),

 col_inet varchar(254),

 col_interval varchar(254),

 col_macaddr varchar(254),

 col_money real,

 col_point varchar(254),

 Appendix – Migration Samples 10

©Copyright 1995-2012 CASEMaker Inc. 67

 col_line varchar(254),

 col_lseg varchar(254),

 col_box varchar(254),

 col_path varchar(254),

 col_polygon varchar(254),

 col_circle varchar(254),

 col_date date,

 col_time varchar(16),

 col_timezone varchar(23),

 col_timestamp varchar(27),

 col_timestampzone varchar(34));

Note: Time and Timestamp have the corresponding types in DBMaster, but with different precision.
So we replace them with varchar(x) to avoid losing the accuracy.

10.2 Table Schema and Data
In this section, we will divide all the Data Types into Ordinary Type and Special Type.

The Ordinary Type data is ordinary characters and the numeric data type, which can be imported
from ODBC via JDataTransfer Tool; Or only being exported with TEXT-Format file from
PostgreSQL via the Third-Part tools (PostgreSQL Data Wizard), then imported into DBMaster via
Import from Text in JDataTransfer Tool (or via manual import command).

The Special Type data have different structures for different Databases, which must be converted
by some built-in functions or ODBC Applications (Import from ODBC in JDataTransfer Tool can
work).

10.2.1 ORDINARY CHARACTER AND NUMERIC DATA TYPE
Step 1: Create table ordinary_types in PostgreSQL.
create table ordinary_types(

 col_smallint int2,

 col_integer int,

 col_bigint int8,

 col_serial serial4,

 col_bigserial serial8,

 col_numeric decimal(13,3),

 col_real float4,

 col_doubleprecision float8,

 col_character char(30),

 col_charactervarying varchar(30));

Step 2: Insert Data by some Applications or by hand.

For example:
insert into ordinary_types
values(100,666666,22222222,1234,12345678,3456.123,3456.4,6789.8,'col_character1','col_charactervarying1');

insert into ordinary_types
values(200,777777,33333333,3456,34567890,4567.234,4556.4,5678.5,'col_character2','col_charactervarying2');

insert into ordinary_types
values(300,888888,44444444,6789,56789012,5678.456,5667.4,2344.3,'col_character3','col_charactervarying3');

Step 3 (recommend): Import from ODBC in DBMaster.

 Appendix – Migration Samples 10

©Copyright 1995-2012 CASEMaker Inc. 68

 Please refer to Chapter 4.1 Database transfer tools. Import the table and data by the default
choice.

Check the table and data in dmSQL, JSQL or JDBA tool:

For example:
dmSQL> def table ordinary_types;

dmSQL> select * from ordinary_types;

Optional step (step 3): Create table ordinary_types in DBMaster.

 If you don’t want to import both tables and data from ODBC, you can create table
ordinary_types in DBMaster at first.
create table ordinary_types (

 col_smallint smallint,

 col_integer integer,

 col_bigint integer,

 col_serial integer not null,

 col_bigserial integer not null,

 col_numeric decimal(13, 3),

 col_real real,

 col_doubleprecision real,

 col_character char(30),

 col_charactervarying varchar(30));

Optional step (step 3--1): Export Data separately from PostgreSQL.

Please refer to Section 4.2.1 PostgreSQL Data Wizard and export the Data with TEXT formats
from PostgreSQL.

Optional step (step 3--2): Import Data into DBMaster.

Please import into DBMaster via JDATA Transfer Tool which described in chapter 4.2.1.2 and
you must choose the uniform separator character to export TEXT format data. For example:
Comma (Semicolon or Vertical Bar) for Column Delimiter, {CR}{LF} for Row Delimiter.

In addition, we recommend users to use the IMPORT command in dmSQL tools as following:
dmSQL> import ordinary_types from c:\test\ordinary_types.txt description c:\test\desc.txt;

desc.txt
FORMAT=VARIABLE

COLUMN_DELIMITER='\t'

ROW_TERMINATOR="\r\n"

QUOTATION=DOUBLE_QUOTE

ESCAPE_CHAR=YES

START_WITH_ROW=1

10.2.2 SPECIAL DATA TYPE
Step 1: Create table special_types in PostgreSQL.
create table special_types(

 col_bit bit(20),

 col_bitvarying varbit(20),

 col_boolean bool,

 col_text text,

 col_bytea bytea,

 col_cidr cidr,

 Appendix – Migration Samples 10

©Copyright 1995-2012 CASEMaker Inc. 69

 col_inet inet,

 col_interval interval,

 col_macaddr macaddr,

 col_money money,

 col_point point,

 col_line line,

 col_lseg lseg,

 col_box box,

 col_path path,

 col_polygon polygon,

 col_circle circle,

 col_date date,

 col_time time,

 col_timezone timetz,

 col_timestamp timestamp,

 col_timestampzone timestamptz);

Step 2: Insert Data by some Applications or by hand.

For example:
insert into special_types
values(B'10101010101111100001',B'101010111110001101',false,'col_text1','asdw123414','10.1/16' ,'190.168.70.253','1
235465495','45:00:87:00:40:99','98.58','(12,45)',null,'(12,45),(25,78)','(12,45),(25,78)','(1,1),(1,2),(2,2),(4,5)
','(1,1),(1,2),(2,2),(2,1)','((5,7),9)','1900-05-15','15:26:15.1234567','15:26:15.1234567 +12:15', '2007-05-08
12:35:29.1234567','2007-05-08 12:35:29.1234567+14:58');

insert into special_types
values(B'10101010101111100001',B'101010111110001101',true,'col_text2','erter23543','10.1/16' ,'191.168.70.254','12
35465496','45:00:87:00:40:99','98.58','(12,45)',null,'(12,45),(25,78)','(12,45),(25,78)','(1,1),(1,2),(2,2),(4,5)'
,'(1,1),(1,2),(2,2),(2,1)','((5,7),9)','1981-2-3','15:26:15.1234567','15:26:15.1223567+11:15', '2007-05-08
12:35:29.3453565','2007-05-08 12:35:29.1234567+13:54');

insert into special_types
values(B'10101010101111100001',B'101010111110001101','1','col_text3','fghfg34534','10.1/16' ,'192.168.70.255','123
5465497','45:00:87:00:40:99','98.58','(12,45)',null,'(12,45),(25,78)','(12,45),(25,78)','(1,1),(1,2),(2,2),(4,5)',
'(1,1),(1,2),(2,2),(2,1)','((5,7),9)','2010-05-25','15:26:15.1234567','15:26:15.1233467 +10:13', '2007-05-08
12:35:29.345354','2007-05-08 12:35:29.1234567+12:50');

Step 3: Create Table in DBMaster manually or Export from ODBC.

You can only export table schema from ODBC via JDataTransfer Tool, Please refer to the
Sub_step 4 in 4.1.1.2 Execute steps Import from ODBC and choose Create destination table.

Note: Please modify VARCHAR(10) to CHAR(18) for ROWID Type.

Certainly, you can create table manually with the following table schema.
create table special_types(

 col_bit char(20),

 col_bitvarying varchar(20),

 col_boolean char(1),

 col_text nclob,

 col_bytea binary(254),

 col_cidr varchar(254),

 col_inet varchar(254),

 col_interval varchar(254),

 col_macaddr varchar(254),

 col_money real,

 col_point varchar(254),

 col_line varchar(254),

 col_lseg varchar(254),

 col_box varchar(254),

 col_path varchar(254),

 Appendix – Migration Samples 10

©Copyright 1995-2012 CASEMaker Inc. 70

 col_polygon varchar(254),

 col_circle varchar(254),

 col_date date,

 col_time varchar(16),

 col_timezone varchar(23),

 col_timestamp varchar(27),

 col_timestampzone varchar(34));

Step 4: Import the special type Data into DBMaster.

Please use JDataTransfer Tool in DBMaster and refer to the Chapter 4.1.1.2 Execute steps
Import from ODBC, and modify Transform after choosing Source Table.

(Please refer to the following Steps and Chart)

Step A: Click on the Tab Transformation and input the Select SQL for getting the result from
PostgreSQL.
select col_raw,col_nchar,to_char(col_date,'YYYY/MM/DD HH24:MI:SS'),col_blob,col_clob,col_nclob,col_bfile,col_rowid
from special_types

Step B: Input the Insert SQL for Inserting into DBMaster.
insert into special_types(col_raw,col_nchar,col_date,col_blob,col_clob,col_nclob,col_bfile,col_rowid)
values(?,?,?,?,?,?,?,?)

If Insert SQL includes all the columns, needn’t inputting (as following Chart).

Note: Only DATE Type need being formatted by the built-in function TO_CHAR(), all other
special types can be imported into DBMaster by default steps through Import from ODBC
which are same as ordinary data types.

10.3 Applications (Source Code segment)
We provide some parts of Source Code segments in this section. And the issue is focusing mainly
on the different usage of Connection between DBMaster and PostgreSQL.

In addition, we will demonstrate the different usage of placeholder in JAVA and C# Language
Samples. The placeholder in JAVA is “?” when users pass parameters; The placeholder in C# is
same “?” for DBMaster, and is “:xxxxx” for PostgreSQL (Npgsql .NET Data Provider for
PostgreSQL).

 Appendix – Migration Samples 10

©Copyright 1995-2012 CASEMaker Inc. 71

10.3.1 JAVA LANGUAGE

 PostgreSQL
try{

 Class.forName(“org.postgresql.Driver”).newInstance();

Connection conn =
DriverManager.getConnection("jdbc:postgresql://:localhost:5432:postgres", "postgres",
"postgres");

PreparedStatement pstmt = conn.prepareStatement("insert into ordinary_types(col_varchar,
col_integer, col_float) values(?,?,?)");

 pstmt.setString(1, “varchar-abcbc”);

 pstmt.setInt(2, 1000);

 pstmt.setFloat(3, (float)32322555.3332);

 pstmt.executeUpdate();

......

 }

 }catch(Exception ex){

 ex.printStackTrace();

}

 DBMaster
try{

 Class.forName(“dbmaster.sql.JdbcOdbcDriver”).newInstance();

Connection conn =
DriverManager.getConnection("jdbc:dbmaster://127.0.0.1:2453/DBSAMPLE5","SYSADM","");

PreparedStatement pstmt = conn.prepareStatement("insert into ordinary_types(col_varchar,
col_integer, col_float) values(?,?,?)");

 pstmt.setString(1, “varchar-abcbc”);

 pstmt.setInt(2, 1000);

 pstmt.setFloat(3, (float)32322555.3332);

 pstmt.executeUpdate();

......

 }

 }catch(Exception ex){

 ex.printStackTrace();

}

Note: DBMaster only supports JDBC Type2 at present, users need to install native DLL for JDBC
Driver. In addition, don’t forget to set IP and Port in dmconfig.ini.

10.3.2 C# LANGUAGE

 PostgreSQL(Npgsql .NET data Provider FOR Postgresql)
String strConn = "Server=127.0.0.1;Port=5432;User
Id=postgres;Password=postgres;Database=postgres;";

NpgsqlConnection conn = new NpgsqlConnection(strConn);

NpgsqlCommand cmd = new NpgsqlCommand();

conn.Open();

cmd.Connection = conn;

cmd.CommandText = "insert into ordinary_types(col_integer, col_char, col_float)
values(:p1,:p2,:p3)";

cmd.Parameters .Add (new NpgsqlParameter (":p1",NpgsqlTypes.NpgsqlDbType.Integer));

cmd.Parameters .Add (new NpgsqlParameter (":p2",NpgsqlTypes.NpgsqlDbType.Char ,30));

 Appendix – Migration Samples 10

©Copyright 1995-2010 CASEMaker Inc. 72

cmd.Parameters .Add (new NpgsqlParameter (":p3",NpgsqlTypes.NpgsqlDbType .Numeric));

cmd.Parameters[":p1"].Value = 1001;

cmd.Parameters[":p2"].Value = "Li Ping";

cmd.Parameters[":p3"].Value = 2345.34;

cmd.ExecuteNonQuery();

cmd.Parameters.Clear();

cmd.CommandText = "select col_integer, col_char, col_float from ordinary_types where
col_integer =1001";

NpgsqlDataReader reader = cmd.ExecuteReader();

while(reader.Read()){

for(int i=0;i<reader.FieldCount;i++){

Console.WriteLine(reader [i]);

 }

 }

conn.Close();

 PostgreSQL(PostgreSQL ODBC Driver (psqlODBC))
string connStr = "Driver={PostgreSQL
UNICODE};Server=127.0.0.1;Port=5432;Database=postgres;Uid=postgres;Pwd=postgres;";

 OdbcConnection conn = new OdbcConnection(connStr);

 conn.Open();

 OdbcCommand cmd = new OdbcCommand();

 cmd.Connection = conn;

 cmd.CommandText = "insert into ordinary_types(col_integer, col_char, col_float)
values(?,?,?)";

 cmd.Parameters.Add(new OdbcParameter("p1", OdbcType.Int));

 cmd.Parameters.Add(new OdbcParameter("p2", OdbcType.Char, 30));

 cmd.Parameters.Add(new OdbcParameter("p3", OdbcType.Numeric));

cmd.Parameters[0].Value = 1001;

 cmd.Parameters[1].Value = "Hello CONN!";

 cmd.Parameters[2].Value = 2345.34;

 cmd.ExecuteNonQuery();

 cmd.Parameters.Clear();

 cmd.CommandText = "select col_integer, col_char, col_float from ordinary_types where
col_integer =1001";

 OdbcDataReader reader = cmd.ExecuteReader();

 while (reader.Read())

 {

 for (int i = 0; i < reader.FieldCount; i++)

 {

 Console.WriteLine(reader[i]);

 }

 }

 conn.Close();

 DBMaster (ADO.NET ODBC Provider)
 String connStr = "Driver={DBMaster 5.1 Driver}; Database = DBSAMPLE5;UID = SYSADM;PWD =";

OdbcConnection conn = new OdbcConnection(connStr);

 conn.Open();

 OdbcCommand cmd = new OdbcCommand();

cmd.Connection = conn;

cmd.CommandText = “insert into ordinary_types(col_integer, col_char, col_float) values(?,?,?)”;

cmd.Parameters.Add(new OdbcParameter(“p1”,OdbcType.Int));

cmd.Parameters.Add(new OdbcParameter(“p2”,OdbcType.Char, 30));

 Appendix – Migration Samples 10

©Copyright 1995-2010 CASEMaker Inc. 73

cmd.Parameters.Add(new OdbcParameter(“p3”,OdbcType.Numeric));

cmd.Parameters[0].Value = 1001;

cmd.Parameters[1].Value = “Li Ping”;

cmd.Parameters[2].Value = 2345.34;

cmd.ExecuteNonQuery();

cmd.Parameters.Clear();

 cmd.CommandText = “select col_integer, col_char, col_float from ordinary_types where col_integer =1001”;

 OdbcDataReader reader = cmd.ExecuteReader();

 while(reader.Read()){

 for(int i=0;i<reader.FieldCount;i++){

 Console.WriteLine(reader[i]);

 }

 }

 conn.Close();

Note: We don’t provide .NET Provider at present, so we only can use ADO.NET ODBC Provider
or ADO.NET OLEDB Provider to connect DBMaster (The following Source Code segment is for
ADO.NET OLEDB Provider).
 String connStr = ”Provider=DMOLE51; Data Source = DBSAMPLE5;User Id=SYSADM;Password=;”；

OleDbConnection conn = new OleDbConnection(connStr);

 conn.Open();

 OleDbCommand cmd = new OleDbCommand();

cmd.Connection = conn;

cmd.CommandText = “insert into ordinary_types(col_integer, col_char, col_float) values(?,?,?)”;

cmd.Parameters.Add(new OleDbParameter(“p1”,OleDbType.Integer));

cmd.Parameters.Add(new OleDbParameter(“p2”,OleDbType.Char, 30));

cmd.Parameters.Add(new OleDbParameter(“p3”,OleDbType.Numeric));

cmd.Parameters[0].Value = 1001;

cmd.Parameters[1].Value = “Li Ping”;

cmd.Parameters[2].Value = 2345.34;

cmd.ExecuteNonQuery();

cmd.Parameters.Clear();

 cmd.CommandText = “select col_integer, col_char, col_float from ordinary_types where col_integer =1001”;

 OleDbDataReader reader = cmd.ExecuteReader();

 while(reader.Read()){

 for(int i=0;i<reader.FieldCount;i++){

 Console.WriteLine(reader[i]);

 }

 }

 conn.Close();

10.3.3 PHP LANGUAGE

We demonstrate the PHP PDO samples. If users don’t adopt PDO, please refer to our PHP
samples in Installed Directory which use the PHP ODBC API.

 PostgreSQL
<?php

try{

$dbh = new PDO("pgsql:dbname=postgres;", "postgres", "postgres");

 /*** echo a message saying we have connected ***/

 echo 'Connected to database';

}catch(PDOException $e){

 Appendix – Migration Samples 10

©Copyright 1995-2010 CASEMaker Inc. 74

 echo $e->getMessage();

 }

?>

 DBMaster
<?php

try{

 $dbh = new PDO("odbc:Driver={DBMaster 5.1 Driver};Database= dbsample5", "sysadm", "");

 /*** echo a message saying we have connected ***/

 echo 'Connected to database';

}catch(PDOException $e){

 echo $e->getMessage();

 }

?>

Note: If users don’t use the PDO in PostgreSQL as following:
<?php

$dbconn = pg_connect("host=localhost dbname=postgres user=postgres password=postgres");

if(!$dbconn)

{die('Could not connect: ' . pg_last_error());}

$query = 'SELECT * FROM test';

$result = pg_query($query) or die('Query failed: ' . pg_last_error());

echo "<table>\n";

while ($line = pg_fetch_array($result, null, PGSQL_ASSOC)) {

 echo "\t<tr>\n";

 foreach ($line as $col_value) {

 echo "\t\t<td>$col_value</td>\n";

 }

 echo "\t</tr>\n";

}

echo "</table>\n";

pg_free_result($result);

pg_close($dbconn);?>

Please use PHP ODBC API for DBMaster.
<?php

$conn=odbc_connect("dbsample5","SYSADM","");

if(!$conn)

{exit("Connection Failed:" . $conn);}

$rs_count=odbc_exec($conn,"select count(*) from sysuser");

if(!$rs_count)

{exit("Error in SQL");}

echo "<table><tr>";

echo "<th>count</th></tr>";

$col=odbc_result($rs_count,1);

echo "<tr><td>$col</td></tr>";

odbc_close($conn);

echo"</table>";

?>

	Overview
	Analyze the current system
	Analyze AP system
	Analyze Database Objects

	Setup migration environment
	Methods for migrating table schema and data
	Database transfer tools
	JdataTransfer tool in DBMaster

	Other Third party tools
	PostgreSQL Data Wizard
	SQL Script Builder

	Modify DDL manually
	Write code

	Compare PostgreSQL and DBMaster
	Schema Comparison
	the terminology comparison
	Storage structure comparison
	Process and related term Definition
	Reserved Word Conflict in Database Object
	Database Object Design Concerns

	Data Types Mapping
	Common data type mapping
	Data Types Mapping Concern

	Index Mapping
	Data Manipulation Language (DML)
	Connecting to the Database
	SELECT Statements
	INSERT Statements
	UPDATE Statements
	DELETE Statements
	Operators
	Built-In Functions
	Locking Concepts and Data Concurrency Issues
	Trigger Difference
	Stored Procedures and Stored Functions
	User-defined types
	Privileges
	Postgrsql and DBMaster in AP

	System Tables

	DB Object Migration procedures
	Schema and Date Migration
	Convert User-defined types
	Convert Trigger
	Convert Stored Procedure

	AP migration procedures
	AP interface and Connect string
	AP in Client
	Middle-tier
	AP or (Web) Server
	AP in Server

	PostgreSQL special syntax and feature
	For select statement
	For Inheritance and Partitioning
	For nested query

	Testing application with new DB
	How to pre-run for skip any object
	Test application with DBMaster after migration

	Performance tuning
	Application
	Database System
	Tuning Memory Allocation
	Query Optimization

	OS
	Hardware

	Appendix - Migration Samples
	Table Schema for all Types
	Create Table with All Types in PostgreSQL
	Migrate with JDatatransfer Tool
	Modify Table Schema Manually

	Table Schema and Data
	Ordinary character and Numeric Data Type
	Special Data Type

	Applications (Source Code segment)
	JAVA Language
	C# Language
	PHP Language

