) Database Administrator's Guide

Q\ CASEMaker. ..

CASEMaker Inc./Cotporate Headquarters
1680 Civic Center Drive

Santa Clara, CA 95050, U.S.A.
www.casemaker.com

www.casemaker.com/support

©Copyright 1995-2012 by CASEMaker Inc.
Document No.645049-235008/DBM53-M12302012-DBAG

Publication Date: 2012-12-30

All rights reserved. No part of this manual may be reproduced, stored in a retrieval system, or transmitted in any
form, without the prior written permission of the manufacturer.

For a description of updated functions that do not appear in this manual, read the file named README. TXT
after installing the CASEMaker DBMaker software.

Trademarks

CASEMaker, the CASEMaker logo, and DBMaker are registered trademarks of CASEMaker Inc. Microsoft, MS-
DOS, Windows, and Windows NT are registered trademarks of Microsoft Corp. UNIX is a registered trademark
of The Open Group. ANSI is a registered trademark of American National Standards Institute, Inc.

Other product names mentioned herein may be trademarks of their respective holders and are mentioned only
form information purposes. SQL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

Notices
The software described in this manual is covered by the license agreement supplied with the software.

Contact your dealer for warranty details. Your dealer makes no representations or warranties with respect to the
merchantability or fitness of this computer product for any particular purpose. Your dealer is not responsible for
any damage caused to this computer product by external forces including sudden shock, excess heat, cold, or
humidity, nor for any loss or damage caused by incorrect voltage or incompatible hardware and/or software.

Information in this manual has been carefully checked for reliability; however, no responsibility is assumed for
inaccuracies. This manual is subject to change without notice.

http://www.casemaker.com/
http://www.casemaker.com/support

Contents

Contents

1 Introduction ---------------------------------------1 -1

1.1
1.2
1-3

Other Sources of Informationccceeenunnns 1-2
Technical support EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER 1-3
Document ConventionS.....cccceennnnnsnnnnnnns 14

2 overView --2-1

2.1

2.2

Features SN EEE S S S S SN EEEEEESEE SN NS NN SN EEENEEEENEEEEEEN 2-1

Multimedia SUPPOLt....ciiiiiiiiiiiicii e 2-2
64 Bit SUPPOLt...ciiiiiiiiiiiiiiiiic 2-2
JDBC SUPPOLt..ciiiiiiiiiiiiiiiicicic s 2-3
Microsoft Transaction Server (MTS) Supportccceevevuevcnuennene. 2-3
Open INterface.....ooiviiiiiiiiiiiicc 2-4
Data INtegrity ...ccociiiiiiiiiiiiiiic s 2-4
Data Relability....cccoviuirieiriiiiiieinceeeeeeeeeeeeeeeeeee e 2-5
Storage Management.. ..o 2-5
Security Management. ..o 2-6
Advanced Language Features......ccoooiininiiiniiininiiiniciiciecnenn, 2-7
Database Modesccccccmmiiinnnnnnees 2-7
Single-User Mode.......ccviiiiiiiiiiiiniiiiiiciceccceeceeeenne 2-7
Multiple-Connection Modecceeeeiviiinieininieinciececeeeeeeenen 2-8

©Copyright 1995-2012 CASEMaker Inc. i

Ol Database Administrator’s Guide

ii

2.3

2.4

CHENt/SEIVEL IMIOAE vt e e eeeeeeeeeeseeeeeseesesaeesens 2-8
DBMaker Interface and Tools............... 2-8
Application Program Interface.......ccccoevvviviiiiniiininiicnininciinns 2-9
dmSQL Interactive Query ToOl......ccviviiiveiiiniiieiiicceceenen 2-9
JDBA TOOL .ot 2-9
JServer Manager.......ccoviiiiiiiiiniiiiiiiicecce s 2-9
JConfiguration ToOl.......ccoiviiiniiiiiiiiiiiiiice 2-10
ESQL for C language.........ccccuevuiiiiiiiiiiiiiiiiiicicicicicicieienene 2-10

syntax Diagrams--------------------------------- 2-1 o

svstem Architecture SIS EEEEEEEEEEEEEEEEEEN 3-1

3.1
3.2

3.3
3.4

The DBMaker Process EEEEEEE NN SN NN EEEEEEEEEEEEE 3-1

Database Communication and Control
Area (DCCA).....cccccccrcmnssnsnnsnsnsnnnnnsnsnnnnnns 3= 2

Architecture of the Single-User Model . 3-3
Architecture of the Client/Server Model3-4

Server Program ... 3-6
Client Programi......ccccoeeiiiiiiniiiiiiiiiciiccceecscseseescnecsnene 3-6
Client LADIALY cveeuiriiriiriirierieeeceeeerest ettt 3-7

BaSic Database Administration--------- 4-1

4-1

4.2

Configuration File - dmconfig.ini 4-1

dmconfig.ini LoCatioN......ccciviiiiiiiiiiiiiiiiieccccecce 4-2
dmconfig.ini FOrmatoccvvieiiiniiiiiiiinceiceeeeeceeceene 4-3
Some Important dmconfig.ini Keywords.........ccocevvviviiiniiinnnnnne. 4-5
Default Values....ccceiiiiieiiiiieiiiciinccccncceeeeeesiesesvesvese e 4-6
Support Environment variables ..., 4-6
Sample dmeconfig.ini file.....ccoceiveoiriiiiiinieiiicec 4-7
Creating a Databaseccccucsiccnscnnnnnnns 4-8
Naming the Databaseccccoveviiiniiiniiiiiicceeeeceee 4-10
Schema Object Name Case Sensitivitycccceevveivcniieiniiiinncnne. 4-10
Setting Storage Parameters.......ccoveiviiiniiinininiiinccn 4-11

©Copyright 1995-2012 CASEMaker Inc.

Contents

4-3

4.4

4-5

Turning On the Log System.......cccocuiviiiiiiiiiiiiiiiiiiiiiicieie 4-17
RAW DIEVICES ettt 4-20
Enabling Client/Server Database......c.cccocceevvnieiccccicninnnccnaes 422
Default User and Passwordccoeeeviieeiiiieciieeciieeeieeceiee e 4-23
Changing Language Code Order......ccoeiviviiiniiiininiiinicinienns 4-23
The Data Communications and Control Afrea........ccouveeeveeene... 4-26
Starting a Database....ccccccccmicnnnnnnnnnnnas 4=27
SINGlEe-USET oot 4-28
CLLENT/ SCIVETL c.eeeeeeee ettt e et e et e et e e et e eeeaeeestesesaeesenseeeeneeans 4-28
SEALE IMOAE cuviiieiieieiee ettt ettt etae e e e e re e e eraeeebeeeans 4-30
Forced Startupcccovciiiiiiniiiiiiiicicccc s 4-31
Email Error Report Systemccociviiiiiiiiiiiiiiiiiiiiiiiciciciciee 4-31
Connecting to a Databasecccucueenenns 4-31
Client/Servetr DatabDasEe cuuee e eereeeeseesans 4-32
Connection TIMeE-O Utcccouiiiieeiriieeeeeeeeeeereee e e eeaeeee e 4-32
LOCK TIME-OULuuiiiiiiiiciieciieeciieeetee ettt e creeesveeeevreeeveeeevee s 4-33
Compressing Data.......ccooviviiiiiiiiiiiiiiiiii 4-33

Shutting Down a Databaseccccccieee 4-33

storage Architecture -------------------------5-1

5.1
5.2

5.3

Architecture SN EEESEEEE SN EEEEEEEE NSNS SN NS EEEEEEEEEEEEE 5-1
File Types SIS S EEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER 5-3

User Data FIles ... 5-3
User BLOB FIlES ..o 5-4
Journal Files......coooiiiiiiiiiiiiiiii 5-5
TaDlESPACES vt 5-7
Managing Tablespaces and Files........ 5-10
Initial Setting of System Files and Tablespacecccccecceveueneeens 5-11
Initial Setting of Default User Files and Tablespace.................. 5-12
Creating Tablespaces ... 5-12
Expanding a Regular Tablespace.......cccccoveveiniininiiincnicnncnnne. 5-14
Adding Files to Tablespaces......cccoeevevieinirininicinieeceeeeennn 5-15
Adding Pages to Files in Tablespaces.......cccccoviviiiiiiiiiniiinnns 5-16

©Copyright 1995-2012 CASEMaker Inc. il

Ol Database Administrator’s Guide

Changing Regular to Autoextend Tablespaces.......cccocevvuenncnne. 5-16
Changing Autoextend Tablespaces to Regular Tablespaces.....5-17
Shrinking Tablespaces and Files ..o, 5-17
Dropping Tablespaces ... 5-21
Dropping Files From a Tablespace.......cccceecvviviiininiiinicnnncnnne 5-22
Read Only Tablespace ... 5-23
Getting Information about Tablespaces and Files 5-23
Checking File and Tablespace ConsiStencycceeeeevuevrucnene. 5-24

6 Managing Schema and Schema Objects6-1
6.1 Managing Schemac.cccccecnsncsnsnsnnnnnes 6=2

INFORMATION SCHEMA........ccccoiiiiiiiiiiiiiicncicene 6-3
6.2 Managing TableS......cccaicsctnssnsnsnsnsnnnnns 6=5
Creating Tables ... 6-5
Browsing Table Schemaccceoiviiiiniininiiiiiiiiccce 6-11
Altering Tablesc.iviiiiiiiiieiicieeceeeeeeeeeee e 6-12
Locking Tables.....ccooiiiiiiiiiiiiiieicicceeeeeee e 6-16
Dropping Tables.......ooiiiiiiiiiciicccc s 6-16
6.3 Managing VieWwsS.....cccemecmsnsnssnsnnsnsnssnnes 6=17
CreatiNg VIEWS .ot 6-17
Browsing View Schema......cccccviiviniiiniiiiiniiiiiiciccciecee 6-18
D1opping VIEWS...ccociiiiiiiiiiiiiiiiiiccnccsieccsicie e 6-18
6.4 Managing Synonymsccccecssmsnssnsnsnnsas 6=19
Creating SYNONYMS...c.ciiiiiiiiiiiiiiecicscncc e 6-19
Dropping SYNONYMS c..ccuevuiviiriiriiiiiiniiciineeesesesieseesiese e 6-19
6.5 Managing IndeXeS..iimmmmmmnnmnnsnsnnnnannnanns 6=-20
Creating INdEXes ..o 6-21
Creating Expression Indexes.......ccoeviviiiinincincncncicne, 6-22
Creating Indexes on XML column.......ccccceviviiiniininiincnccnnne. 6-23
Dropping INAeXes ..ccccvvueeiiiriiiniiiiiiceececeeeee e 6-24
Rebuilding Indexes......ccoiiiiniiiiiniiiiiiicccc 6-24
6.6 Managing Text IndeXesS ..ccumsnsnnnnnnnnanns 6=-25
Creating Signature Text Indexes......cccovvvvinieiniinininncncnennnn 6-25

iv ©Copyright 1995-2012 CASEMaker Inc.

Contents

Creating Inverted-File IVF) Text Indexes.......cccooevvirinieinncnnns 6-27
Creating Text Indexes on Multiple Columnsccccevevveveennnens 6-30
Creating Text Indexes on Media Types.....cccevevevevercrencncnncnne. 6-31
Dropping Text INdexesccccviviviviiiiiiiiniiiiciiicccenes 6-35
Rebuilding Text INdexes ..o, 6-35
Boolean Text Search ..., 6-37
Fuzzy Search ... 6-38
Near logic full-text search.......cccoceviiviiiiiniiiiniiine, 6-39
Fuzzy/Near Logic Matching Rulescccccccccvennninerercccncnennnnnns 6-39
User-Defined StOpword.......ccoeeveinieineniiincineceneeeceeeeenes 6-40
6.7 Managing Memory TablesS....cccccceiennna. 6-42
Hash Index Management.......cocceeeeeiruenieeneenineneeeneeenieseeesneeenes 6-43
6.8 Managing Data Integrityccccciciinana. 6-43
INOE NUIL .. 6-44
Unique INdeXes ..o 6-44
Unique CONSTIAINES .oeiviiiiiieieiiieeeieetce s 6-44
Check CONSIAMNLES c.voviiiiiiiiiiiiiieieieceeeee e 6-44
Primary Keys ..o 6-46
Foreign Keys (Referential Integrity).....ccccecveieiiiiiieiiiiciinienenene. 6-47
6.9 Managing Serial NumbersS.....czumuunnnnnnns 6-49
Creating Serial Colummns.......ccceviviviiiiiiiiniiniiniiiiccccccee 6-50
Generating Serial Numberscccoeiviviiiniiiniiiiiiciicee 6-50
Retrieving Serial Numbers ..o 6-51
Resetting Serial NUMDErs.....coovevviviiiniciiiciceeeeeeeeen 6-51
6.10 Managing Domains.....cccccusscsnsnsnnsnnnnnas 6=-51
Creating Domains ... 6-52
Dropping Domains.......cccoiiviiiiiiniiiiiiiiiiiccccceecns 6-53
6.11 Unloading and Loading Objects.......... 6-53
Unloading ODbjJects ... 6-54
Loading ODbBJECtscccviviiiiiiiiiiiiicicccceenes 6-57

6.12Browsing System Catalogs................. 6-60
6.13 Calculating the Space Required......... 6-61

©Copyright 1995-2012 CASEMaker Inc. v

Ol Database Administrator’s Guide

How to Estimate the Size of a Tablecccocevevveniiviniininieeee, 6-61
6.14 Checking Database Consistency........ 6-66
Checking INdexescoeviiiviiiiiniiiriiiiicicccceeeee 6-67
Checking Tables. ..o 6-67
Checking Catalo@sccceciiieiiiiiiiiiiiinineceeeeeeeee e 6-67
Checking Databases ..o 6-68

6.15 Updating Statistics for Schema Objects6-68

7 Large Object Management......ccucevennen 7-1
7.1 Managing BLOBS.....cictssssmsnsnssssssnsnsnnnnnan 7=2

Customizing BLOB Space ... 7-3
Generating BLOBS.......cooiiiii, 7-8
Updating BLOBS.......cccoiiiiiiiiiiiiiiicicccccccceae 7-9
Predicate Operations on BLOB Columnsc.cccevevveeerinneennennne 7-9
7.2 Managing File Objectscccciciiciccnnene. 7=-10
Customizing the System File Object Path........ccccocoiinn 7-11
Generating File ODbjJects ... 7-13
System File Object Extension Namesccccccoceviiveniiniiiinennnn. 7-14
Updating File ODbJECts....cccviviiiriiiiniiiniiiiiiciniciecicceeeeeeeens 7-15
Renaming File ODbJects ..o 7-16
Retrieving the Length of File Objectsccccocvviiiiviiiiiniiinnnne 7-17
Predicate Operations on File Objects......cccocociviviiiviciiiniiinncnne. 7-17
File Object UNC NamES....cccoeiriiiiniiiiiiiinicicinreeeeeeceneseenenns 7-18
File Object Path Default AIases......ccccoveeeveneineceneneinceeene. 7-19
FO and AppliCatiONS......ccueeuiieieniiiiiiiiieeieicreeeteereee e 7-19
7.3 Journal of Large ObjectS ..cccuuvnnnnnnnnnnnn 7-20
BLOB Journal Loggingcceeiviiiiiniiiniiiiiniinciccccecenes 7-20
File Object Journal LOggINgGccccceueviiiriiiiiniiiiiiiiiiccnciecnes 7-23

7.4 Large Objects and SELECT INTO

command SEER 7-24
SET DFO DUPMODE....coooiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeveeeeeeeeens 7-24
TIMIEATIONS tettteiiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeaeaeeeesanasansssssnnnnnnsnnnsnnnssnnnnnnnnnnnnn 7-25

vi ©Copyright 1995-2012 CASEMaker Inc.

Contents

10

Security Management.......cccuesnnnnnnnna 8=1

8-1
8.2

8.3

8-4

security Policies----I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I 8-1
Database AuthorityIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 8-1

Managing USELScviiiiiiiiiiiiiiiiicciccicicrcctcsrc st 8-3
Managing (GrOUPS......covviviiiiiiiitiiicc e 8-7
Checking IP Addresses. ... 8-9
Object Privileges ...ccccecciicicnnsncsnnnnnes 8=11
Granting Object Privilegesccoviiiiiiiiniiiiniiiiiiicicieceenns 8-11
Revoking Object Privile@es.......coviveireinenieineieeieeneeeeeenes 8-14

Security System Catalog ...cccccrcvnnnnnnne. 8-15

Concurrency Control......ccucucicicncncnn e 9=1

9-1

9.3

9-4

Transactions--- 9-1

THANSACHON STATES cuvveieieeiiiieceieie ettt ettt e et e e et e e e eeare e e e nneas 9-1
Managing a TransaCtionccceeviriiiiiiininiiciencncsescse s 9-3
UsSINg 2 SAVEPOINT....iiiiiiiiiiiiiiiiiiciciricecec s 9-3
Transaction Isolation Levels.....c..ccuueie 9-5
Transactions Concurrency ISSUes......ccocevveciiiiiiiiciiiiiniiciiniicicne. 9-5
The Four Transaction Isolation Levelsccoooceveevveeiiiiineeeeeennen. 9-7
Set Transaction Isolation levels in DBMakerccceeevvveeenveene... 9-7
Multi-User Environmentccccicviccnnnnnes 9-9
SESSIONS cuttiiieitiiececitee e et e ee ettt e e e e ete e e eeebaeeeeettaeeeeeataeeeseraeeeeenrraeennns 9-9
The Necessity of Concurrency Control.........ccevvviiiiiiiiinincnnn, 9-9
LOCKScccnunnnnnnnnnnnnnnnnnnnnnannanannannnnnnanns =12
Lock CONCEPL..iiiiiiiiiiiiiiiiiic e 9-12
Lock Granularityccoceeivirinininiiiiineseceeeeeee e 9-14
LOCK TYPES vttt 9-15
Dealing with Deadlock.......ccccviiiiniiiiiiniiiiiiiiiiiiiicccce, 9-16

Triggers EEEEEE S E S E S E S E S NS EEEEEEEEEEEEEEEEEEEEEEEEEES 1 0-1
10.1 Trigger Componentsccicviceccncncnnneas 10-2

Trigger NAMIE c..ooviiiiiiiiiiic e 10-2

©Copyright 1995-2012 CASEMaker Inc. vil

Ol Database Administrator’s Guide

11

viil

Trigger Action TIMEcceiviiiiiiiiiniiiiiiiierceee e
Trigger EVENt ..o
Trigger Table ...
Trig@er ACHON c.cuviuiiiiiiiiiiicct e
THIGEET TYPE cvvvviiiiiiiiiiiiciic e
REFERENCING Clause......ccccvuiiiniiiiiiiiciiiciiceieccnnes

10-2 Trigger operation SN EEEEEEEEESEEEEEEEENEEEEEEEEE 10-4
10-3 creating Triggers-------------------------------- 10-4

Basic Requirementscccceciiiiiiiiiiiiiiiciiccccccccccn 10-5
Security Privile@es ..o 10-5
CREATE TRIGGER Syntax......ccoccocoiviiiininiciniiicinicciieceas 10-5
Specifying the Trigger Action Timeccccoevviiviiiininiiniiicnne. 10-6
FOR EACH ROW / FOR EACH STATEMENT Clause.... 10-8
Using the Referencing Clause.......ccocevveviviinicniiniiniicncncncicne, 10-10
Using the WHEN Condition ..., 10-11
Specifying the Trigger ACtON......cccvviiiiiiiiviiiiiiiicccee 10-13
10.4 Modifying a Trigger....cccacccemmnsnnsnsnnnnss 10=-14
Replacing a Trigger ACtONcocivueviiiiiiiiiiiiciccccne 10-16
10.5 Dropping a Trigger.....cccaccsrmsnsnnsnsnnnnss 10=16
Dropping the Trgger......ccociviiviiiiiiiiiiiiiiciccce, 10-17
10.6 Using Triggers ...cccccrcmmnnnnnnnsnsnnnnsnnnnas 10=17
Stored Procedures in Action Bodyccccecvevieiiniinicniiniinicnncnne. 10-18
Trigger Execution Ofrder.....ccoiviiiviiiiiniiiniiiiiicincicccieee 10-18
Security and THGZELS...ccceiviiiriiieiieieeeceeeeeeeee e 10-19
Cursors and TrIGZErS . ..cciviviririiriiieceeeeeeee e 10-19
Cascading TTIGEErS ...cciviiiviiiiiiiiiiiciccccc s 10-20

10.7 Enabling and Disabling Triggers....... 10-20
10.8 Create Trigger PrivilegesS...ccaumunnnnnnnas 10-21

Stored Commandscccuunnnnnnnnnnnnnnnas 1

1-1

11.1 Creating Stored Commands....c.ccccuueeae 11-1
11.2 Executing a Stored Command 11-3

©Copyright 1995-2012 CASEMaker Inc.

Contents

12

1 1-3 RebUilding a stored command EEEEEEEEEEE 1 1-3
11.4 Dropping a Stored Command.............. 11-3

11.5 Stored Command Security.....cceevveeee. 114
Granting Execute Privilege......cccoviiviiiiiniiiiniiiiiiiiicens 11-5
Revoking Execute Privile@es ..o, 11-5

11.6 Lifecycle of a Stored Command.......... 11-6
11.7 Getting Information for Stored Commands11-6

stored Procedures -------IIIIIIIIIIIIIIIIIIII12-1
12.1 ESQL Stored Procedures ...cceusnnnnnnnnnnss 12=-1

Create Procedure Syntax......ccocecieieieiieieiiiiiiiicieeeeeeeeeeeeae 12-2
UsIng Parameters ..o 12-4
Return Select Statementccovvveviviiiiiniiiniin 12-5
Module NAMES....ccvviiiiiieiieieeeee et 12-5
Variable Declarationc.cccccoeieviiiiiniiniiniiniiiciieicccceeeeeene 12-6
Code SECHON ...ooviiiiiiiiicicic s 12-6
Configuration Settings for Stored Proceduresccccceevvinncns 12-6
Creating a New Stored Procedure from Fileccccceviniininecn. 12-7
Executing Stored Procedutes........cccoueviiviiiiiiiiiiniiniiniiniiiiciciene 12-8
12.2JAVA Stored Procedureszeuesnnnnen 12-11
Executing Java Stored Procedures ..o, 12-14
Input/Output ALGUMENT ...vviiiiiiiiiiciieiieisiicceieeenesee e 12-16
12.3 SQL Stored Procedurescc..... 12-18
ALCHIEECTULE ...ttt 12-18
Create SQL Stored Procedure Syntax.....c.cocceceeereeenencnenennens 12-19
Using Parameters......occooiiiiiiiiiiiiiiiiiiiiciccceeceeees 12-21
Variable Declarationccccceeeivinininininininincccncncecceeeene 12-21
CULSOTS ittt 12-21
Assignment StateMENTS ...oveuevuiiiuireeiiiieireieeeceeseeee s 12-21
Control FIow Statementscccceeeviviiiiiniiiiiiiiiiiecccecccnes 12-22
Returning Result Sets......ccccviiiiiiiiiniiiiiciicccccccceccce, 12-23
Return status of SQL stored procedurecccccevveviiiniiinnninnnn. 12-23

©Copyright 1995-2012 CASEMaker Inc. ix

Ol Database Administrator’s Guide

13

Executing SQL Stored Procedures........ccccccvvuiiiiniiiiiniicncnnne. 12-24
12.4 Dropping a Stored Procedure 12-24
12.5 Getting Procedure Information......... 12-25
12.6 Security .ccccinininnnnnnnnnsnnsnnnsnsnsnsnnnnnnnnnns 1 2=-25

Coding User-Defined Functions....... 13-1
13.1 UDF Interface ...ccccceumncnnnnnnnnnnnnsnsnnnnnnnns 13=1

EXamMPLE .o 13-2
Including libudf.h ..o 13-3
Passing Parameters ... 13-3
Allocating MemoOry SPACEccueuevveiiuiiiiiniiiiiiieinieieeeeesneeenenene 13-5
Returning Results ..o 13-6
13.2 Building UDF Dynamic-Link Library 13-7
DIL in Microsoft Windows Environment.......ccceeeeecvvecvennnenen. 13-7
UDF s0 File in UNIX ...cciiiiiiiiceeeeeeeeee ettt e 13-8
13.3 Creating, Using, and Dropping UDF 13-9
Creating a UDF....ccocoiiiiiiiiceeeeeeeeeeeeeeeeeeee e 13-9
Querying a UDF ... 13-9
Dropping a UDF ... 13-9
EXample ..o 13-10
13.4 Create XML Validate UDF................. 13-12
FLEXML oottt ettt et et 13-12
DBMaker DTD Validation UDF Generator.....cocveeeevveeecveeennns 13-14
Default Validator ...ciiiciieceiieccieecieeeeveeceteeeree et 13-15
13.5 UDF BLOB Common Interface........... 13-15
BLOB Common Interface Functions.......ccceeeevveeecieeceveeeneeennee. 13-15
Example ..o 13-18
Troubleshooting Efrors ... 13-20
13.6 UDF related dmconfig.ini keywords.. 13-21
D) ST 5 o 7/ 13-21

©Copyright 1995-2012 CASEMaker Inc.

Contents

14 Database Recovery, Backup, and
Restoration IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII14-1
14.1 Types of Database Failurescccauueea. 14-1

System Failuresccueoveieiiiiiiiiiiiiicieccccceeeeee e 14-2
Media Failurescooviiiiniiiniiiiiicicecceceeeceeeenes 14-2
14.2 Recovery from Database Failures....... 14-2
Journal FIles......coviiiiiiiiiiiii 14-3
Checkpoint Events......cciiiiiiiiiiiiicicicciccciccce 14-3
ReCOVEry Steps..cciiiiiiiiiiiiciccic 14-4
Forcing Database Startupcccoceveiiiviiiniiiiiniiiniicincenns 14-5
14.3 Types of Backups .c.ccccercncnnsnsnnsnsnssnnas 14=6
Full Backups ..o 14-6
Differential Backupsccoceciiiiiiiniiiiiiiiiiiiiiiciciccccccees 14-7
Incremental Backupsccccoovviiiiiiiiiiiiiiiiiiiiiiicc 14-8
Offline Backups....ccecviciiiiiiiiiciiicicicieceeeceens 14-9
Online Backupsccooiiviiiiiniiiiiiiiiiicc 14-10
Online Incremental to Current Backups......ccccceeviiiniciiinnnene 14-10
14.4 Backup Modescccucvntnmnsnnnnnnnnnnnnnnnnes 14=11
NONBACKUP Mode......oooiiiiiiiiiiiiiiiiciiiccisicceccseenens 14-11
BACKUP-DATA Mode ... 14-12
BACKUP-DATA-AND-BLOB Mode.......cccccoouniiiniininnnncnns 14-12
Tablespace BLOB Backup Mode ..o, 14-12
Backup File Object Mode......occovviviiiiiiiiiiiiiiciicinciccnene 14-13
Compressing Backup Files.......cccooiiiiiniinnniii, 14-15
Setting the Backup Mode........cccocvvieiiiiiniiiiiiiiiiicccccces 14-15

14-5 offline Full Backups SESSSESSEESSEEEEEEEEEEEEEEEER 14-19
14-6 Backup server SIS S ESEESESEEESEEEEEEEEEEEEEEEEEEES 14-20

Starting Backup Server ... 14-21
Differential Backup Filename Format........ccccoeeviininininnnnnne. 14-24
Incremental Backup Filename Format........ccccovviiiiniinininn. 14-24
Backup DIfeCtorycivuiiviiiiiiiiiiiiiiicieecceeceae 14-27
Setting Multiple Backup Paths ..o 14-29

©Copyright 1995-2012 CASEMaker Inc. xi

Ol Database Administrator’s Guide

15

xii

Setting the Old DIrectory.....ooooviiviiiiiniiiniiiiiicicicceece 14-30
Differential Backup Settings........ccccocevivivinininiiiiinciiiccne 14-31
Incremental Backup Settings.......cccocvivivinincnininincncicncne, 14-33
Journal Trigger Value Settings.........ccoevvviviiininiiiniiciciiiienen 14-36
Compact Backup Mode Settings.........ccevevueiviiiineininiiinenne. 14-37
Full Backup Schedule.......cccoiiiiiniiiiiiiicceeeceeene 14-39
Backup Mode of File Objectscccoeiviiiviiiiniiiiciiiicince, 14-41
Inactivate Backup Server.......ccoiiiiiiiiniiiiniiiiiiicicne, 14-44
14.7 Backup History Filesccccicvisicncinena. 14-45
Locating the Backup History File.......cccccoiiiiniiniiiiniinne. 14-46
Understanding the Backup History File.......cccccviviiiniininne. 14-46
Using the Backup History File ... 14-46
Understanding the File Object Backup History File................ 14-47

14.8 Backup on Replication Databases.... 14-47
14-9 Recovery options EEEEEEEEEEEEEEEEEEEEEEEEEEEER 14-49

Analyzing Recovery Options......ccceiveeeinieinicrieeneineneeeeneeens 14-49
Preparing for Restoration.......coccoevevenieniinicnicnicnicnienieniccicene 14-49
Performing a Restoration........ccccceevviiviiiiiniiiniiniiiinccne, 14-50
Restoring database by Rollover.........ccocoiviiiiniiininininiincnne. 14-51

Distributed Databases .ccccccceeccnnnnas 15-1
15.1 Introduction to Distributed Databases 15-1
15.2Distributed Database Structure.......... 15-3
15.3 Distributed Database Environment..... 15-5
15.4 Distributed Database Objects 15-9

Remote Database Connections-Using Namesccoccceeeveennee. 15-10
Remote Database Connections-Using Links........cccocoevinnnne. 15-10
Database Object Mappingcccccveviiiviiininiiiniiienieincneennes 15-13
Closing LINKS....cccooiiiiiiiiiiiiiiiiciciciccicce 15-15
Link System Catalog Tables.......cccoccoeiriiiiniiineirereeeceeeenes 15-16
15.5 Distributed Transaction Control....... 15-16
TWO-Phase COMMUIL ...iiiiviiiciiiecieeceieeeieeecieeesreeeteeesreessnreeeeneens 15-17

©Copyright 1995-2012 CASEMaker Inc.

Contents

Distributed Transaction ReCOVery......coovinininineninenencnennenne. 15-17
Heuristic End Global Ttansactionceveeeeeeeeeeeeereeeeveeennen. 15-18

16 Data Replication IIIIIIIIIIIIIIIIIIIIIIIIIIIIII16-1
16.1 Table Replicationccccccviciccccscssnnnes 16-1

What is Table Replication?ccccecivueieiniecineneeineeeeeceeeeenenn 16-1
Differences between Database and Table Replication 16-2
Two Types of Table Replicationccccceviviininiiiniincniicnnne, 16-2
Term DefInitioNns .c.ccivuiiiiiiiieiiiiciicrecereee e 16-3
Creating Table Replicationcccoeeeeeveeineniienicinerecneceneeenne 16-4
Table Replication Rules........ccccoviiiiiiiiiiiiiiiiiiicce, 16-6
Drop Replication......c.ccciviiiiiiiiiiiiiiiiciciciceccnenen 16-7
Alter Replication.....c.couciiuiiiiiiiiiiiiiniciciieccccceeeece e 16-8
16.2Synchronous Table Replication.......... 16-9
Synchronous Table Replication Setupccccceveeveinieniiinicinnenns 16-9
16.3 Asynchronous Table Replication...... 16-10
Enabling Asynchronous Table Replicationcccocceveivuienee 16-11
Schedule (Creating and D1ropping)......ccccceeeeeeeeeeerenereneeennennnn 16-13
Creating Asynchronous Table Replicationcccceeeeieiiienees 16-14
Error Handling ..o 16-16
Schedule (Suspending and Resuming)cceceevveviiiicniicnnennne 16-17
Synchronizing a Replicationccceceviiiviiiiininiicniicicncans 16-18
Altering Schedule.........ccooiiiiiiiiiiiiiiiie 16-19
Heterogeneous Asynchronous Table Replication 16-20
Express Asynchronous Table Replicationcccceveeveevuinnene 16-21
Express Replication Setupcccccvviviviiiniiiiiniiiiiiiicccccnns 16-22
16.4 Database Replicationccceicvieeeeees 16-24
Database Replication Basicscccceveiricinineincnicincinceeceeaes 16-24
Database Replication Setupccceevevininininininincccncneeeee, 16-25
JServer Manager Environment Settingscccoevvevvivienicnuennne 16-35
Database Configuration File.......cocccvviviiinininiiniiniiiiniiniinne 16-36
Database Replication Limitations......c.ceeevevereeerueeeeneeennernenenen. 16-38

©Copyright 1995-2012 CASEMaker Inc. xiil

Ol Database Administrator’s Guide

17

18

Xiv

Performance Tuning...ccusssssnssnsnssnsnas 17-1
17.1 The Tuning Process ...ccccccmrcmnsnnsnnnnsnnnas 17=1
17.2Monitoring a Database...civummmmnsnsnannnns 17-2

The Monitor Tablescociviriirerieinieeeeeeeeeeeeeee et 17-2
Killing CONNECHONS ..ooviiiiiiiiiiiiiiiicieciecrce e 17-3
17.3Tuning /O ...ccccccciccccsnsssnsnnsnsnsnnnnnsnnnnnns 174
Determining Data Partitionsccccoevivivininininiiiiiicncccicns 17-4
Determining Journal File Partitionsccccceevvviiviiiiiiiiiiiiiiiiinns 17-5
Separating Journal Files and Data Filescccocevvevinccninicncnne. 17-5
Using Raw DEVICES ...cuvvuiruiiiiiiiiiiicieieen 17-5
Pre-Allocating Autoextend Tablespaces.......ccocccvviviiiniiiiinnnnnne. 17-6
I/0 and Checkpoint Daemons.......ccoeeueeeenenenninieecreccceenenenenns 17-6
17.4 Tuning Memory Allocation......c..ccucvueeee 17-7
Tuning an Operating SYySteM.....ccccvvviviiiiiniininiieneeneenes 17-8
Tuning DCCA MEMOLY ..cuevuiiiiiiiieiiieeeieieeeeeeeeeeee e 17-8
Tuning Page Buffer Cache.......ccocoviiiiiiiiiiii, 17-11
Tuning Journal Buffers........cccovinininiiniiiiiie, 17-20
Tuning the System Control Area (SCA).....ccccevvvuvciviviininnenne 17-22
Tuning the Catalog Cache........ccocooiviiiiiiiiiiiniiiiniiicie, 17-23
17.5 Tuning Concurrent Processing......... 17-23
Reducing Lock Contention........cceeeeereeeeenieeneieeneeneeeennenes 17-23
Limiting the Number of Processes.........cccccvvviniviiiiiniiincnne. 17-24
Setting CPU AfINity ...ccccovviiiiiiiiiiiiiiicicccccne 17-26
Setting JOb PrOLItY ...couiiiiiiiiiiiiiiiciciicicceecne 17-28

Querv optimization EEEEEEEEEEEEEEEEEEEEEEEEN 18-1
18.1 What is Query Optimization................ 18-2
18.2How Does the Optimizer Operate 18-3

Input of OptimIZer.....cccueviiiiiieiiieiciicccc s 18-4
FFACTOLS 1ttt 18-5
JoIn SeqUeNCe ... 18-6
Nested Join and Merge JOIn ..., 18-7

©Copyright 1995-2012 CASEMaker Inc.

Contents

Table Scan and INdexX SCAN ..ocvveveieevieciiecieceeeeceee e, 18-7
SO ettt ettt saeen 18-8
18.3 Time Cost of a Query.....cccccvccvnnsnnnnnnna: 18-8
CPU COSturitriiiiieieiieeiiieecteesieessteeestreesteesssseessseesseesssesssssesssseesnns 18-8
T/ COSt ittt ettt st bt ae s s 18-9
Cost Of Table SCAN wovuiieiieieeeeeeee e 18-10
Cost Of ITNAEX SCAN.ccuviiieiieiieieeeeeee e 18-10
(@3 Ao SN T SE U 18-11
Cost of Nested JOIN ..o 18-11
Cost of Merge JOIN .o 18-11
18.4 Statistics ...ccenmmimcniscciissccsec e eeee e 18=11
Types Of StatiSTICS .cviuiviiiiiiiiicicc s 18-11
UPDATE STATISTICS SYNtax ...cccccceeeverenenenenenenenensensennes 18-13
Auto Update Statistics Daemonccccceeevecinineinennincceenne, 18-14
Load and Unload StatiStiCS ..ccueeeeueeeiiieeiieeecieeeiie e eve e 18-19
18.5 Accelerating Execution of Query...... 18-21
I B 2212 LY Lo Yo <! F SRR 18-21
QUETY PlaN ittt 18-21
INAEX CRECK ittt et 18-22
| S O @e) 15 T's s Vo LI USSR 18-22
Query ResultS.c.eviriiiiniiieiiiiicicicctceeeecceeeeeenne 18-23
Temporary Tables ... 18-23
18.6 Syntax-Based Query Optimizer......... 18-23
Forced TNdex SCans.....cccievieiieeiieiieceeeeceesee e 18-24
Forced Index Scan and “AlIas”......ccceecveeeeeieecreeceeeieeereeereeeenens 18-25
Forced Index Scan and “Synonym™........cccccevevininincncncnennens 18-25
Forced Index Scan and “VIiew”ccceecveeieevienceecieeeeeeeeeeeneens 18-25
Forced Text INAexX SCANS ..vicvieciieciieieeceeeeeeeeee e 18-26
Forced Loop Join (Nested JOIN) c.coecveerreinenerenieireieeneeenenen 18-27
Forced Merge JOoIN. ..o 18-27
Forced Join Sequence ... 18-28
Forced Group by Method........cccccviiiiniininiiiniiiiicicice, 18-28

©Copyright 1995-2012 CASEMaker Inc. XV

Ol Database Administrator’s Guide

xvi

18.7 How to Read a Dump Planccueeee 18-29

TaABlE SCAN ...t 18-30
TOAEX SCAN et n 18-31
EqUal JOIN ceviiiiiiciciciiitine ettt 18-33
Keywords in dmconfig.ini ..cccceeeennnnnas A=1
A.1 General Concept....ccccciirimmmmmmmmsmmsmsssnssnsnnnnsss A-1
A.2 dmconfig.ini File Formatccccceemeeeiennnnnes A=2
SeCtion INAIMIES c.uivniiiieiie et e et e e e e eeans A-2
KeyWords ...eeeeeiiiiiiiieccceeee s A-3
COIMUMIEIITS teuetniineineiieeieeeee et et erteeteetesnerteesernernessnesnernesneens A-3
A.3 Search Path for dmconfig.ini...cccceeeeeennnnnnnnes A-4
A.4 Default Values for Keywordscccueemmennnnnne: A4
A.5 Creating dmconfig.ini ccccceeesrsnnnnnnssssssnnnnnnnas A=5
A.6 Keyword Referenceccccccrrrirmssmsssssssssnnnsnnsss A-5
DB _ AtCmt=<valties ..ovniieiieiiee e A-5
DB _AtrMd=<values ...coueeeeieeeeeeee e A-5
DB_BbFil=<String>cooiiiiiiiiiiiiiieiiniieeeeeeeec e A-6
DB _ BfrSz=<values ..ouueeeeeeeeeeeeeee e A-6
DB_BKDIir=<string>ccccoceviiiiiiiiiiiiiniiieeeeiieeeeeeeieeeee s A-6
DB _BREFOM=<Valties .. ceneeeeeeeeee e A-7
DB BREIM=cValtie™ i ee e e e e eaeeaeeens A-8
DB _BKFUl=<vValUes conneeneeeeeeeeee e, A-9
DB_BKItv=<String>ocoeiiiiiiiiiiiiiiieiiiiieeeeeieeec e A-9
DB BRChK=<valties ..o A-9
DB_BkCmp=<value>cccooiiiiiiiiiiiiiiiiiiciiiiiecceeeen A-10
DB_BkOdr=<string>ccccccceveiieiniieiioiieiniieeeieeeeeee e A-11
DB _ BEKRTS=<values oneeneeieeeeeeee e A-11
DB_BRSVI=<valties oneeeeee e A-12
DB_BKTim=<String>....ccccerriuiiiiiniiieeinieeeeeeiieeeeeeieeeeens A-12
DB_BKZIP=<String>cccecveereiieeniiieeiiieeniiee e eeieee e A-13
DB_BMode=<valies ..ccucoiuiieeiiiiiieeeeeee et A-13

©Copyright 1995-2012 CASEMaker Inc.

Contents

DB Brows=<valtie ™ oo A-14
DB CBMoOd=<valtie™...cooitteeeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeeee e e A-14
DB _CmChe=<value™coovriririiiieieeeeeeeeeeee e A-14
DB_CLILCODE=<SrING™ooiiiviiiiniiiciiciccieecieeeecenenenes A-15
DB_CTImOT=<value ™ooooriieieeeeee ettt A-17
DB_CTBLM=<ValUE™ooiioeiieteeeeee e e A-17
DB _DaiFmM=<<value™cccooimiiiiieeeeeeeeeeeeeee e A-17
DB DaoFmM=<value™ ..o A-18
DB_DDbDIir=<String>ccccceveriririiiriiiiiiiinieiienieeseeceeseeesnens A-18
DB_DDbFI=<StrNg™ ..o A-20
DB _DbKMmMX=<valUe™ccoovieiiiieie e A-20
DB_DDbEKtv=<SHAE™ oot A-21
DB_DifCOT<VAIUES ..ottt e e A-21
DB _ DSCMT=VAUEC it eeeeeeeeeeeeeeeeeas A-21
DB _DtCIH=Svalue™ ittt A-22
DB_ERMRV=<SEING™ Lo A-23
DB_ERMSV=<SINE™ oot A-23
DB_ERRLCODE=<StrNZ™ ..o A-24
DB Bttt Pt=Svaltie™ e A-25
DB_ExtNp=<wvalue>ccccccviviriniiniiiiiiiniincncces A-26
DB_FBKTmM=<StrING™ ...cccoiiiiiriiiiiieieieeinececsnec e A-26
DB_FBKTVE<SEINE™ oot A-27
DB_FItDDb=<StrNg™ ...cccviiiiiiiiiiiiiiiicciicceeecssieceeeeans A-27
DB_FoDir=<String>cccceiviriniiniiiiniiincnccieeeeeeencnenes A-27
DB ForcS=<Cvaltie™ oo A-28
DB FOorUX = <ualtie™ ..ottt eeeeeeeeeeeeeeens A-28
DB _FoOSUDT=<VAIUE™ ..ot A-29
DB_FoTyp=<value>.......cccccceviiniininiiniiiniiicicicnees A-29
DB GeChR=<<valtie ™ oo A-30
DB GeMXWESVAIUE™ oottt eeeeeaeeeeeeeeeeas A-30
DB_GeWtmM=<value™ ...ocoooviieiiiieeeeeeeteeeeeeeeeeeeeeeee e A-31
DB _ IEMemM=<VAalUC oo A-31
DB_IDCap=<value>ccccccviririniiiriniiniiiicireeceeecenene A-32
DB IOSVEEVAIUC ™ oot eee e eeeeeeeas A-33

©Copyright 1995-2012 CASEMaker Inc. xvil

Ol Database Administrator’s Guide

xviil

DB IS0l v=Svaltie™ oo
DB ITTImMO=<value™ .iiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeveveveeeees
DB_JnFil=<String™.....ccccvviiiiiiiiiiiiinciiciciccsesnecseseesnenes
DB_JnlSz=<value>......cccecivininiiiiniiininc
DB_LbDIir=<StrNg™ ...ociviiieiiieiereieirieeeeseeeseeeereseeeseeeeseseeneas
DB _LCDECE=<VAIUE™ ...ttt
1B ST I e e (=0 7] L 1<
DB L et T o CValue ™ e e
DB LetRPaEVaAlUE et eeeeeeeeeee s
DB L GD A Y S VAlUCT e eeeeeeeeeeeeeeeas
DB_LGDIR=<StrING™ ..oiiiiiiiiiiicicicicicciccceeieeeenes
DB LLGERR VAU et
DB L GESZ T C0alie™ oottt eeeeeeeeeeeeeeeeeas
DB_LGENOZ=<VAIUE™ ...ttt
10 S I B O SR L T
DB LG PN CVAIUECT e e eeeaas
DB LGPARTTVAIUECT oottt eeeeeeeeeneas
DB _LGSTM=<ValUE™ ...ttt
DB_LGSQLZ<VAIUE™ ..ottt
DB LGSVREVAIUC et
DB LGS Y ST IVAUEC et e e e e e e e e eeeeeas
DB _LGZIP=<VAlUE ..ttt
DB _ LTImMOTVALUE ettt eeeeeeeeeeeeeeaeaeaeas
DB MaxCoO=<Svaltie™ oo eeeeveenas
DB MTIMOTVAIUET e eeeeeseeeeeeeeeas
DB_MXCmMA=<valUe™couviiiiiiiiiiieiieiieeeeee ettt
DB INBUTST=VAIUCT ettt eeeeeeeeeeeeeeaeeaaeas
DB NetECT VAU et
DB NET ZCT<TalUE ettt e eeeeeeeeeeeeeneas
DB_NJnIB=<value>......cccccccevvininiiniiiiiiincniicnccceene
DB_Order=<String>cccccevimiiriniiiniiiiiniiinieiicsieinessesneneas
DB_PasWd=<String>cccccevimiiniriiiiiiieniiieieeseeesessenesneneas
10 ST L] WG v] L T
DB _PtNUM=<ValUE ...t

©Copyright 1995-2012 CASEMaker Inc.

Contents

DB_ResWd=<valie™ ... A-49
DB RMPAA= VAt et A-49
DB_RSTSNZ=<VAIUE™ ..ttt A-49
DB_RTIMeE=<SEHNZ™ ..ot A-50
DB SCaSZ= VAl et ee e A-50
DB _SMode=<valtie™ ...t A-51
DB_SQLSt=<value™cccccvviriririiicirieicenceeeeneeeeeseseee s A-52
DB_SPDir=<String™cccceciiiviiiriiiiiiiiieinieeeeseeesseeeneseeeenens A-52
DB_SPINC=<SING™ ..ooiiiiiiiiieiiieieicieeeeeeeeeeeeeeee e A-53
DB_SPLOZ=<StIINE™ ..c.oiiiiiiiiiiiiiciciciceeeeeeeeeeeee e A-53
DB _StACL=<VAIUE S oottt A-54
DB_STMODTZ<vAlUE™ocooviieteeeeteeeeteeeeteeeeeee et e et A-54
DB_StpWd=<String™cccceeiviiiiiiiiiiniiiiicccees A-54
DB StrOP=<valUe ™. oottt A-56
DB _ StrSz=<<value ..ot A-56
DB_ ST SSP=<value™ ...ttt et et e A-56
DB_STSTM=<StING™ ..ooviiiiiieieicieireieeseeeeneeeesne e A-57
DB_STSTV=<StINEG™ ..ot A-57
DB_StSvI=<SvVAaltie™ oot A-57
DB_SvAdr=<Sstring>......cccccevrvimiiininiiicincccccneeececnes A-58
DB SVLOQg =<value> ..., A-58
DB_TmiFm=<String>ccccccecevirimriiriiiiniiiinieineneeeceneens A-59
DB_TmoFmM=<String™ccccceeririririnieirineineeeeeeeeeeeeeneene A-59
DB_TpFil=<String™ccccoiiiiiiiiiiiiiiiiiieieeeceeeeeeeeeeee A-60
DB _Tutbo=<<value =cccooimmiiiiiieieeeeeeeeieeeeeeeeeeeeeiate e A-60
DB_TMPDIir=<StING>.....ocooiieieieeeeeeeee e A-60
DB_UstBb=<String>ccccceceviiiviiiniiiiiiinciciccnccccienennes A-61
DB_UstDb=<StrNng>c.ccceceviiimiiniiiiniiinicicneineeeenecenenes A-61
DB_UstFO=<StINE™ .o A-62
DB_UstId=<String>ccccceviriiriiiiiiiiiiieieieceeeeeeeeeeeenee A-62
DB_WSORT=<VAIUES ..ottt A-63
DD_CTImO=<value™ooooviieeeeeeeeeeee ettt et A-63
DD _DDBMA=<valtle>ccocteerrreereeeeeeeeeeeeeeeeeeeree e eeeeeeeneeen A-63
DD _GTTtv=<StrNg™ ..o A-64

©Copyright 1995-2012 CASEMaker Inc. Xix

Ol Database Administrator’s Guide

DD _GTSVRE<VAIUC oot A-64
DD _LTIMOZ=<VAIUES ..oiiiiiiiieieeieeeeeeeeeeeiittee e eeeeeaaaaeeeee e A-64
DM_DIifEN=<vValUe™ ...ttt A-65
LG_NPFun=<String>ccccecuririiiniiiiniiineniiinenseneeessesenenes A-65
LG_Path=<String™ccocviiiiiiiiiiiiiiciecceecseeeenns A-65
LG_PTFun=<StriNg> ...ccccieiirieirriieineeeeeneeeseeeeneseeneseeeeneeenens A-66
LG _ TIme=<valUe™ ..ot A-66
LG T a0 CVAIUC et e e e e e e e e e e e e e e e e e e eeaeaens A-67
) R S 0 05 o V=0 v~ 1 L T A-67
RP_Cleatm=<Svalie™ oot A-67
RP_LgDir=<String™cccccceviriiiiiniiiiiiiiiniccinceiseeeeeee s A-68
) R S B v v] LS T A-68
RP_Primy=<StriNg>cccceciriririrriiiriiiinieiieiecnesesnesseesneeenens A-68
RP_ PtENUMT<VAIUE oot A-69
RP R ESEtTCVAIUCT oot e e e e e e eeeeaaas A-69
RP_ReTry=<value>ccccocimirininininininieencccetecseeeeeeneenene A-70
RP_SIAAI=<StING™ ...t A-70
User-defined filename=<physical filename> <pages>............ A-71

B System Catalog Reference................ B-1
B.1 The System Catalog ..cccccccuciccncsncnnnnnea: B=1
B.2 DBMaker System Catalog Tables B-2

SYSACL .ot B-4
SYSAUTHCOL ..ottt B-4
SYSAUTHEXE ..o B-5
SYSAUTHGROUP ... B-6
SYSAUTHMEMBER.......cccoiiiiiiiiceicccetcieetcreeevee B-6
SYSAUTHTABLEccciiiiiiiiiteieteeeeteeeeeteeeeeeeeeeeeeeaees B-6
SYSAUTHUSER......coiiiiieereerteereeseneseeese e B-8
SYSCMDINEFO ..ottt B-9
SYSCOLUMN ..ottt B-9
SYSCONFEIG ..ottt B-10
SYSCONINTO ..o B-11
SYSDBLINK ...ttt B-11
SYSDOMAIN ..ottt sae e B-12

©Copyright 1995-2012 CASEMaker Inc.

Contents

S} 6] 5115 2 B-12
6] 5185121 F B-13
SYSFOREIGNKEY ...oooooooeeeoeeeeeeeeeeeeeeeeeeeoeeeesneseeeenene B-13
SYSGLBTRANXoooooeooeeeeeeeeeeeeeeeeeeeeooeoosooesesoseesssssssssseeeeeeeeee B-14
SYSINDIEX ..o eeeeeeeeseeeeseseeseesseeseeeeeee B-15
)) 801570 J B-16
)) 01 B-25
SYSOPENLINKooooooooeeeeeeeeeeeeeeeeeeeceseeoomoooooososeessssesessseeeeeeeeee B-26
SYSPENDTRANXooooieieeeeeeeeeeeeseesoomoomoeooeoeseseesessseeseeeeeee B-27
SYSPROCINFOooooooeoeeeeeeeeeeeeeeeoeeeeeeeeesneesseneeee B-27
SYSPROCPARAMcooooeieeeeeeeeeeeeeeeeeeeeseessesneeeeseeeee B-28
SYSPROJECT weeeeeeeeeeeoeeeeeeeeeeeeeeeeeesmemmesessesenosssssseeseeeeeee B-29
SYSPUBLISH ...oooooooooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesneeeneeeeee B-30
SYSSCHEMA ...oooooooooeesoeoeeeeeeeeeeeeeeeeeeeseeeeeeeeeeessneeseeeeeee B-30
SYSSUBSCRIBEooooooooo oo eeeeeeeeeeeeoesoeeeseeeeesneeeeeeeee B-31
SYSSYNONYM..eeeeeeeeeeceeoeommeomessemsesesssssseeeeesseeeeeeeeee B-31
S} VN =) 5 B-32
SYSTABLESPACEoiiiiiiieioeeeoeeoceoooeoeeseeeeeeseesessseeseeeeeee B-34
SYSTEXTINDEX oo ceeeeeeeceeoooeseeeeseseeseesseeseeeeee B-35
SYSTRIGGER ...ooooooeeoeeoeeeeeeeeeeeeeeeeeeeeoeooeesesossoneeseesneeeeeeeeee B-36
SYSTRPDEST c.ooooooe oo eeeeeeeeeeeeeeeeeeeeeseeoeeeneeeeesseeseeeeeee B-37
SYSTRPJOB ..o oeoeoeeeeeeeeeeeeeeeeeeeeeoseseeeesesesssssseeseeeeee B-37
SYSTRPPOS ..o oeoeeeeeeeeeeeeeeoeeeeeeeeseseesseeesessseeeeeeeeee B-38
S} D) 21 B-38
SYSUSERFUNC ... eeeeeeoeeeeeeeeeneeesssneeeeeeeeee B-40
SYSVIEWDATA cooooooeooeoeeeeeeeeeeeeeeeeeeeeeoeeeeeoeeeseessssseeseeeeeee B-40
R L 22N 1 A B-41
SYSJARFILE ...ooooooooeeeeeeeeeeeeeeeeeeeeeeeeeeoooesssosssnessessseeeeeeeeee B-41
SYSTAVAARGU w.ooooeooeeeeeeeeeeeeeeeeeneeeeesneeeeneeeee B-41
SYSPROCTAVA ..oooooooeoeoeeeeeeeeeeeeeeeeeeseeeeeenesesssseeseeseeee B-42

c svstem Limitations ESEEEEEEEEEEEEEEEEEEEEEEEEN c-1
C.1 Naming Limitationsccccccvecicicccnnnnnns C=1
C.2 Storage Limitationscccavcvcicicccnnnennns C=3

©Copyright 1995-2012 CASEMaker Inc. xxi

Ol Database Administrator’s Guide

C.3 Processing Limitations.........cccvceieeee. C=5

xxil ©Copyright 1995-2012 CASEMaker Inc.

Introduction 1

Introduction

Welcome to the DBMaker Database Administrator’s Guide. DBMaker is a powerful
and flexible SQL Database Management System (DBMS) that supports an interactive
Structured Query Language (SQL), a Microsoft Open Database Connectivity
(ODBC) compatible interface, and Embedded SQL for C (ESQL/C). DBMaker also
supports a Java Database Connectivity (JDBC) compliant interface and DBMaker
COBOL interface (DCI). The open architecture and native ODBC interface give the
user freedom to build custom applications using a wide variety of programming tools,

or query a database using existing ODBC, JDBC, or DCI compliant applications.

DBMaker is easily scalable from personal single-user databases to distributed
enterprise-wide databases. The advanced security, integrity, and reliability features of
DBMaker ensure the safety of critical data for all database configurations. Extensive
cross-platform support leverages existing hardware, and enables expansion and

upgrading to more powerful hardware as needs grow.

DBMaker provides superior multimedia-handling capabilities, providing storage,
searching, retrieval, and manipulation of all multimedia data types. Binary Large
Objects (BLOBs) by take full advantage of the advanced security and crash recovery
mechanisms in DBMaker for ensuring the integrity of multimedia data. File Objects
(FOs) provide multimedia data management while maintaining the capability to edit

individual files in a source application.

This guide book is for database administrators who are not familiar with the concepts
and principles of the DBMaker DBMS or the syntax and grammar of the DBMaker

query language (SQL). However, this resource is most successfully used when you

©Copyright 1995-2012 CASEMaker Inc. 1-1

O\ Database Administrator’s Guide

1.1

1-2

already posses a general working knowledge of computers and are comfortable using
the operating system that you are using for hosting DBMaker. Information about the
operating system is beyond the scope of this manual; please consult your operating

system documentation when necessary.

This guide book contains general information about the concepts and principles that a
database administrator must understand when using the DBMaker DBMS. An
overview of the DBMaker SQL commands for creating, maintaining, and optimizing
databases are introduced and demonstrated. Throughout the manual, examples and

illustrations are provided To help present the information more clearly.

The implementation of a DBMS can greatly affect the performance of database
operations. Many database performance decisions about database optimization and
tuning are required, including: data storage location and access, index configuration,
and data protection. This manual provides a background to help database
administrators and application developers make careful choices based on their
understanding . SQL commands are used to illustrate most of DBMaker’s supported

functions. References to other database administration tools are also provided.

Most of the concepts, commands, and examples herein are presented in dmSQL, the
command-line tool provided with DBMaker. In a few cases, database administration
functions can only be performed using one of the other DBMaker application tools or
utilities. For more information about using the application tools and udilities provided

with DBMaker, please refer to section 1.1, Other Sources of Information.

Other Sources of Information

DBMaker provides many other user's guides and reference manuals in addition to this

reference.
For more information on a particular subject, consult one of these books:

¢ The SQL Command and Function Reference provides more information about the
SQL language implemented by DBMaker.

©Copyright 1995-2012 CASEMaker Inc.

Introduction 1

1.2

¢ The ESQL/C Programmer’s Guide is an excellent resource on the ESQL/C
language implemented by DBMaker.

¢ The dmSQL User's Guide offers detailed information on using dmSQL.

¢ The Error and Message Reference provides detailed information about error and

Waming messages.

¢ The /DBA Tool User’s Guide, JServer Manager User’s Guide, and JConfiguration
Tool Reference each offer information on configuring and managing databases
using DBMaker’s JTools.

¢ The DBMaker SQL Stored Procedure User’s Guide provides detailed information
about the SQL stored procedure language implemented in DBMaker.

¢ The ODBC Programmer’s Guide and JDBC Programmer’s Guide provides detailed
information about the native ODBC API and JDBC API.

Technical Support

CASEMaker provides thirty days of complimentary email and phone support during
the evaluation period. When software is registered, the support period is extending an
additional thirty days for a total of sixty days. However, CASEMaker will continue to
provide email support (free of charges) for bugs reported after the complimentary

support or registered support expires.

For most products, support is available beyond sixty days and may be purchased for
twenty percent of the retail price of the product. Please contact sales@casemaker.com

for details and prices.

CASEMaker support contact information, by post mail, phone, or email, for your area
() is at: www.casemaker.com/support. We recommend searching the most current
database of FAQ’s before contacting CASEMaker support staff.

Please have the following information available when phoning support for a

troubleshooting enquiry or include this information in your correspondence:

¢ Product’s name and version number

©Copyright 1995-2012 CASEMaker Inc. 1-3

mailto:sales@casemaker.com
http://www.casemaker.com/support

O\ Database Administrator’s Guide

¢ Registration number

¢ Registered customer’s name and address

¢ Supplier/distributor where the product was purchased
¢ Platform and computer system configuration

¢ Specific action(s) performed before error(s) occurred
¢ Error message and number, if any

¢ Any additional information deemed pertinent

1.3 Document Conventions

This guide book uses a standard set of typographical conventions for clarity and ease
of use. The NOTE, Procedure, Example, and Command Line conventions also have a

second setting used with indentation.

1-4 ©Copyright 1995-2012 CASEMaker Inc.

Introduction 1

Table 1-1 Document Conventions

©Copyright 1995-2012 CASEMaker Inc. 1-5

O\ Database Administrator’s Guide

1-6 ©Copyright 1995-2012 CASEMaker Inc.

Overview 2

2.1

Overview

The physical organization of data spanning the files that comprise a database can

become quite complex. A DBMS, such as DBMaker, isolates a view of the data from
the database’s implementation on a computer. The database is viewed as a collection
of two-dimensional tables containing rows and columns of data values . These tables

are easy to visualize and provide flexibility for data modeling.

DBMaker provides many methods for retrieving data from tables. The interactive
dmSQL line command tool is useful for daily transaction processing or ad-hoc
queries, and the DBMaker application programming interface (API) is ideally suited for
developing applications quickly and easily. DBMaker also includes easy-to-use

graphical-based tools that are consistent across platforms.

Features

As an SQL database management system, DBMaker has all of the features
traditionally found in a relational database management system. DBMaker is also
enhanced with many powerful and advanced features. These enhanced features
increase performance and provide DBMaker with capabilities not normally found in
traditional database management systems, especially in the area of multimedia

support.

©Copyright 1995-2012 CASEMaker Inc. 2-1

O\ Database Administrator’s Guide

Multimedia Support

Powerful multimedia management capabilities built into the database engine provide
efficient storage and manipulation of large amounts of multimedia data including
graphics, audio, video, animation, and text. These multimedia management
capabilities provide significant flexibility, allowing multimedia data to be stored in

different ways to best satisfy the needs of the user.
Multimedia features include:

+ Binary Large Objects (BLOBs) and File Objects (FOs).
¢ Muldiple BLOB and FO columns in a table.

¢ Edit File Objects with existing multimedia tools.

¢ Built-in full-text search engine.

Multimedia data can be stored directly in the database as Binary Large Objects
(BLOBs). This data is fully protected by the same security, reliability, and integrity
features used for conventional data types. In addition, multimedia data can be stored
as file objects. The file objects provide full access to third-party multimedia tools while

the multimedia data remains under database control.

64 Bit Support

DBMaker supports 64 bit porting for the Windows x64 and Linux x64 operating
systems. Users must install the appropriate DBMaker 64 bit version on an x86-64
architecture CPU with a 64 bit Windows or Linux OS environment.

The 64 bit version has the following limitations:

¢ The 64/32 bit database server cannot start databases created with the 32/64 bit
database server. Additionally, stored procedures and user defined functions are

incompatible between the two versions.

¢ User must migrate their database if they want to use in different OS architecture.

However, 32/64 bit client can connect to 64/32 bit’s database server.

©Copyright 1995-2012 CASEMaker Inc.

Overview 2

¢ User must use 64bit C compiler to compile and build UDF, ESQL/C and Stored
procedure as 64bit. For .NET application, user must use VS2005 or above to
compile and link as 64bit application program. For JDBC or java sp, user must
use 64bit JVM to compile the java program.

¢ DBMaker’s shared memory size is 2G pages (2G x PAGE SIZE bytes) for 64 bit

environments. For 32 bit environments shared memory size is 2G bytes.

JDBC Support

DBMaker supports features of JDBC 3.0 and Java Transaction API (JTA) functions.
JDBC JTA facilitates connections to popular Java AP servers such as BEA
WebLogic .

To learn about implementing JDBC and JDBA, please refer to the product
documentation. Information about the JDBC specification is available at:

http://java.sun.com/products/ijdbc/.

Information about the JTA specification is available at

http://java.sun.com/products/jta/.

Microsoft Transaction Server (MTS) Support

Microsoft Transaction Server (MTYS) is an integral part of Windows NT, and is
installed by default as part of the Windows operating system. MTS evolved as a
Transaction Processing (TP) system given Windows NT the same kinds of features
available on other platforms like CICS and Tuxedo. These are specifically designed for

creating stable environments for data sources.
DBMaker supports transactional operations via MTS.
The following are required to use DBMaker with MTS:

¢ Microsoft Data Access Components (MDAC) version 2.6 or higher to run with
MTS. The latest version of MDAC is available for downloading from

heep://www.microsoft.com/data.

©Copyright 1995-2012 CASEMaker Inc. 2-3

http://java.sun.com/products/jdbc/
http://java.sun.com/products/jta/

O\ Database Administrator’s Guide

¢ When using MDAC 2.5, the DM_DifEn = 0 option must be added to the
DM_COMMON_OPTION section of the dmconfig.ini file.

¢ In the dmconfig.ini file, set DB_DifCo = 1 (default setting) in the database
sections that will run with MTS.

Open Interface

High-performance applications are quickly created using ODBC 3.0’s native
compatible interface and ANSI SQL-99 support. Applications can be built using a
wide variety of popular development tools, including Visual C++, Visual Basic,
Delphi, and AcuBench. DBMaker does not restrict developers to a proprietary
development environment. Developer and administrators are free to use their existing

tools.

Open interface features include:

¢ ANSI-99 entry-level compliance
¢+ ODBC 3.0 support

¢ ESQL/C preprocessor

¢+ JDBC 2.0 support

The included ESQL/C preprocessor simplifies the development process for programs
written using a traditional C development environments. Database applications
written using the powerful high-level Embedded SQL query language are
automatically translate it to the appropriate ODBC function calls by the DBMaker

preprocessor.

Data Integrity

DBMaker provides a full range of traditional data integrity features. Primary and
foreign keys ensure data integrity, with full support for referential actions. User-
defined data types, together with domain, column, and table constraints ensure only

valid values are entered in each field.

©Copyright 1995-2012 CASEMaker Inc.

Overview 2

Data integrity features include:

*

*

Primary and foreign key integrity checking
Referential actions fully supported

Table and column constraints
User-defined data types

Default column values

Data Reliability

Advanced data protection features keep your data safe, always. Features include:

automatic crash recovery, database consistency checking, and automatic backups.

These features ensure data consistency and safety in the event of operating system or

disk failures.

Data reliability features include:

*

*

Online transaction processing

Online full, differential backupand incremental backups
Automatic crash recovery

Automatic incremental backups

Automatic statistic updates

Database consistency checking

Multiple journal files

Optional BLOB backup

Storage Management

DBMaker’s modern storage management facilities provide flexible data storage with

simple management and configuration. There is no practical limit on the number of

rows in a table, or on the number of tables in a database. A table may even span

©Copyright 1995-2012 CASEMaker Inc. 2-5

O\ Database Administrator’s Guide

2-6

multiple disks. DBMaker also enhances the development of applications that can

dynamically adjust to the user’s needs with its support of online table schema editing.
Storage management features include:

¢ Autoextend and regular tablespaces

¢ Raw device support on UNIX platforms

¢ Maximum database size of 256 PB (petabytes: 1 PB = 1,024 TB)

¢ Unlimited number of tables

¢ Unlimited number of records

¢ Online table schema redefinition/editing

DBMaker dynamically extends database storage space up to the available disk space.
Storage space may also be fixed then manually adjusted. On UNIX platforms,
DBMaker supports raw devices. These achieve maximum performance by bypassing

the file system and writing data directly to the raw device.

Security Management

The centralized and multi-user nature of a DBMS requires various forms of security
control. This is necessary for preventing unauthorized access and limiting the access of
authorized users. User- and group-level authority is used for implementing these
database security controls. Privilege management on tables and individual columns

further controls individual user access.

Security management features include:

¢ User- and group-level security

¢ Nested groups

¢ Privilege management on tables and individual columns

¢ Privilege management on stored commands and stored procedures

¢ Encrypted network links

©Copyright 1995-2012 CASEMaker Inc.

Overview 2

2.2

Advanced Language Features

Advanced language features complement traditional database functions. Easily extend
and customize the capabilities of DBMaker using stored commands, stored
procedures, Triggers, and user-defined functions. Business logic can be written directly
into the database engine, centralizing the logic in the database so it is easier to manage

and maintain.

Advanced language features include:
¢ Built-in functions

¢ User-defined functions

¢ Stored commands

¢ Stored procedures

¢ Triggers

Database Modes

The database administrator may start a database in one of several different database
modes. Each mode provides different options for connecting to and accessing a
database. This offers the ability to scale databases from simple single-user systems on

one computer to large multi-user systems distributed across several computers.

The database modes available vary according to the database server’s platform and
network connection. DBMaker’s three database modes are: single-user, multiple-

connection, and client/server.

Single-User Mode

Single-user mode is only available on the UNIX and Linux platforms. This is a
simplified version of DBMaker for non-sharable databases. Single user databases don’t

require locks, security, or network support. As a result, this mode benefits from,

©Copyright 1995-2012 CASEMaker Inc. 2-7

O\ Database Administrator’s Guide

2-3

2-8

smaller application sizes and sports faster execution speeds for most database

operations.

This mode is limited in that since only one single connection can exist to the database,
the database cannot run extra servers or daemons (e.g., backup server, replication
server, or global transaction server), and the database is not available over the network

and must be accessed only from the host machine.

Multiple-Connection Mode

Multiple-connection mode is only available on the Windows platform. In this mode
multiple simultaneous connections to a database are supported, with the full range of
security and reliability features of DBMaker available. However, the database is not

available over the network and must be accessed from the host machine.

In this mode the database does not support extra servers or daemons, such as backup

server, replication server, or global transaction server.

Client/Server Mode

Client/server mode is available on all platforms. This mode permits multiple
simultaneous connections to a database from any computer connected to the host
computer via a TCP/IP network. The full range of security, reliability, and
concurrency control features of DBMaker are available In addition, data sent across
the network can be encrypted for additional security. This mode supports all of the
extra servers and daemons, such as backup server, replication server, and global

transaction server.

NOTE one connection cannot support multi statement execution at the same time.

DBMaker Interface and Tools

DBMaker comes complete with an application programming interface (API) and
many tools and utilities for database management. These include a command-line

based interactive SQL query tool and a graphical interface-based tool for managing

©Copyright 1995-2012 CASEMaker Inc.

Overview 2

multiple servers. Novice database users can enjoy the simple management features and

graphical tools that are consistent across platforms.

Application Program Interface

The API is a library of low-level routines that operate directly on the database engine.
The API is used when creating software applications with a general-purpose
programming languages such as C++ or Visual Basic. DBMaker provides an ODBC
3.0 compatible interface that supports all core-level functions and most of the

extended-level functions.

dmSAQL Interactive Query Tool

dmSQL has a character-based interactive interface that directly utilizes the full power
and functionality of DBMaker. dmSQL manipulates databases, performs ad-hoc
queries, and displays result sets immediately. dmSQL is often the only method for
exploiting the full power of a database without creating programs using a conventional

programming language.

JDBA Tool

JDBA Tool has an interactive graphical interface for maintaining and monitoring
databases. JDBA Tool hides the complexity of the DBMS and query language behind
an intuitive, easy to understand, and convenient interface. This allows casual users the
ability to access the database without learning the query language, and it allows
advanced users to quickly manage and manipulate the database without the trouble of
entering formal commands using SQL. JDBA Tool also provides statistical data and

information on who is using a database with its monitoring functions.

JServer Manager

JServer Manager has an intuitive graphical interface for creating, starting, stopping,
backing up, and restoring databases. JServer Manager provides one central location for

creating and managing all database servers simultaneously.

©Copyright 1995-2012 CASEMaker Inc. 2-9

O\ Database Administrator’s Guide

2.4

2-10

JConfiguration Tool

JConfiguration Tool has a graphical interface for managing database configuration
parameters. It provides a simple and direct method for modifying keywords in the
DBMaker configuration files. Each configuration parameters is clearly defined within
the user interface. This eliminates the need to cross reference the documentation or

memorize the definition of keywords.

ESQL for C language

ESQL for C has a graphical interactive for editing and preprocess Embedded SQL/C
programs. It provides an easy-to-use interface for managing, editing, and
preprocessing multiple ESQL/C programs. Examining any warnings or errors

generated during preprocessing is a simple mouse click operation.

Syntax Diagrams

Syntax diagrams show the syntax for all SQL commands. These diagrams provide
assistance when constructing a statement on the command line. An example syntax

diagram is shown in Figure 2-1.

To use the syntax diagram, simply follow the line from start to finish. Any element of
the command that cannot be bypassed is required. Any elements that can be bypassed
are command options, and provide additional functionality for the command at the

user’s discretion.

«— ALTER TABLE — table_name — PRIMARY KEY — (<) —
column_name

Figure 2-1 Syntax of the ALTER TABLE Statement

Any words that appear in italics are placeholders for the actual names used in a
database. The actual names should be substituted for these placeholders. In Figure

2-1, replace the <table_name> placeholder with the name of a table in the database.

©Copyright 1995-2012 CASEMaker Inc.

Overview 2

For example, in the tutorial database, replace <table_name> with Customers to

execute this command on the Customers table.

Please note the arrow direction. Sometimes it is possible to have a list of items in a
command. This is shown in the syntax diagram as a circular arrow path. Both column
name fields in Figure 2-1 can include a list of column names, separated by commas, as

indicated by the circular path of the arrows.

©Copyright 1995-2012 CASEMaker Inc. 2-11

O\ Database Administrator’s Guide

2-12 ©Copyright 1995-2012 CASEMaker Inc.

System Architecture 3

3-1

System Architecture

This chapter introduces in detail DBMaker’s two architectural models . We will first
look at the DBMaker process and the Database Communication and Control Area
(DCCA), which store all necessary information for each started database, and then the

architecture of both models is explained.

The DBMaker Process

A DBMaker process handles storage and retrieval of data according to user commands
and other database functions. A DBMaker process consists of several layers as shown

in Figure 3-1.

Figure 3-1 illustrates the user applications communicating with DBMaker through an
Application Programming Interface (API). The API passes user commands (i.e., SQL
commands) or function calls to the SQL Engine. The SQL Engine is responsible for
analyzing and translating the SQL commands into sequences of function calls that are
acceptable to the Database Engine. Next, the SQL Engine passes these calls to the
Database Engine, which executes these function calls to store data in tables or retrieve

data from tables.

©Copyright 1995-2012 CASEMaker Inc. 3-1

O\ Database Administrator’s Guide

3-2

Application

API

SQL Engine

DB Engine

Figure 3-1: A DBMaker Process

The SQL Engine and the Database Engine have different roles. The SQL Engine
handles SQL parsing and query optimization. The Database Engine handles
space/buffer management, concurrency control, crash recovery, and other related
tasks. All modules cooperate to maintain data consistency throughout the entire

database. Most performance tuning parameters are related to the Database Engine.

The API and SQL Engines are identical in the single-user and client/server modes.
However, the Database Engines in the single-user and client/server modes are
different. The single-user mode can handle only one user while the client/server mode

can handle multiple users.

In the client/server mode the application and API are tied together and run on client
machines while the SQL Engine and the Database Engine are tied together and run
on server machines. In this manner, the API can communicate with the SQL engine

via network protocols.

Database Communication and
Control Area (DCCA)

When started, DBMaker first allocates a large block of memory for storing database
related information such as buffer pools and various types of control information. This
memory block is called the Database Communication and Control Area (DCCA). It

contains three types of data: page buffers, journal buffers, and the System Control Area
(SCA).

©Copyright 1995-2012 CASEMaker Inc.

System Architecture 3

3.3

The DCCA is very important to DBMaker’s operation, especially when run in
client/server mode. The DCCA is allocated from the private heap for Microsoft
Windows and UNIX single-user environments. In a UNIX client/server environment,
the DCCA must be shared among all DBMaker processes that access the same
database, so it cannot be allocated from the private heap. Instead, the UNIX shared
memory mechanism is used to allocate the DCCA. All DBMaker processes that run in

client/server mode communicate with each other via the DCCA.

The size and usage of the DCCA are easily tuned in DBMaker. This will greatly affect
the overall performance of DBMaker. The DCCA is described in more detail in
Chapter 17, Performance Tuning.

Architecture of the Single-User
Model

The DBMaker single-user mode is a DBMS that supports only one user or
application. It is smaller and faster than other modes, in part, because concurrency
control is unnecessary. DBMaker’s single-user mode is a good choice when one user or
application owns a database. Figure 3-2 illustrates the system architecture of

DBMaker’s single-user mode.

Since only one user or application can simultaneously connect to a single-user
DBMaker database, the DCCA is obtained from the private heap and is not sharable.
Please note, DBMaker does not support a locking mechanism when in single-user
mode. The DBMaker engine increases performance by maintaining all database data
in memory while running, and writes the modified pages back to disk files, including
data files and journal files, at the proper points in time. The dmconfig.ini file text file

defines many parameters required for DBMaker configuration.

©Copyright 1995-2012 CASEMaker Inc. 33

O\ Database Administrator’s Guide

DCCA (in local memory)

s Ty
System Control
Area .]'nrna] Buffers Journal Files
Z /
7
Page Buffers
k 7
ji Data Files
DEMaker
Process

dmC onfig.ini

L]

Figure 3-2: System architecture of the DBMaker single-user model

3.4 Architecture of the
Client/Server Model

DBMaker also supports a client/server mode. In this mode, two processes comprise
the application program: the client application process and the database server process
(also called the server process). Typically, the client process resides on a front-end PC
or workstation and uses DBMaker’s API library routines to communicate with the

server process. The server process is located elsewhere as part of a local area network.

34 ©Copyright 1995-2012 CASEMaker Inc.

System Architecture 3

Please note, in a client/server configuration, all of the computers involved, including

the servers and the clients, can be different platform types.

DBMaker’s client/server version includes a network management module. This must
be installed for both the client and the server. Network managers are responsible for
sending data between the clients and the database servers. The network
communications protocol is important in the client/server model. DBMaker currently
supports only TCP/IP (Transmission Control Protocol/Internet Protocol). When the
client/server version of DBMaker is run on a system that does not normally support
TCP/IP, it is necessary to install TCP/IP network software before running DBMaker.
If the client application is run on UNIX or Windows, additional TCP/IP software is
not required since these operating systems include built-in TCP/IP support. In
Windows simply specify TCP/IP as one of the network protocols and install it on the
system. Figure 3-3 shows the system architecture of DBMaker in the client/server

mode.

On UNIX systems, when a client process connects to a database server, DBMaker’s
network server forks another server process to handle the subsequent queries. The
original network server process continues waiting for connections from other clients.
Windows NT is a multithreaded operating system. The NT version of the DBMaker

network server (dmserver.exe) is a multithreaded program.

Therefore, when a client process connects to a server process running on an NT
system, the DBMaker server process creates another thread in its process space to
handle the subsequent queries. The DCCA is allocated from local memory, not shared
memory. There is always only one DBMaker server process per database in Windows
NT. As more operating systems add multithreading support, DBMaker will
incorporate multithreading over process forking when possible. Current research

indicates that multithreaded programs are more efficient than multi-process programs.

There are three components associated with DBMaker when used in the client/server
mode. These components are: the server program, the client program, and the client

library.

©Copyright 1995-2012 CASEMaker Inc. 3-5

O\ Database Administrator’s Guide

3-6

Server Program

The DBMaker server program is named dmServer. This program includes a network
manager that handles network communication, and a database engine that handles
data access. This program must be started first so that client programs can connect to

the database server.

Client Program

The DBMaker SQL client program is named dmsglc. This program is used to connect

a client to a database and then issue SQL commands for data processing.

©Copyright 1995-2012 CASEMaker Inc.

System Architecture 3

DCCA (in shared memory)

d System Control
Area J

~

ournal Buffers Journal Files

22

N

Page Buffers
[
A
@ Data Files
DEMaker
Server
Processes @
| moachdre &
| dmConfiz.ini
jﬁ Fork() on connechion s
SefwEl Elde
Local ares network TCRAFP ‘)
j; @cﬁm sida
O lisnit m achine B Client m achine ©
Processes | \ Processes

Figure 3-3: System architecture of the DBMaker client/server model

Client Library

The DBMaker client library is named libdmapic.a in UNIX, or dmapi<version

number> lib on Microsoft Windows systems. Users who plan to develop their own

©Copyright 1995-2012 CASEMaker Inc. 3-7

O\ Database Administrator’s Guide

3-8

client programs must link these with the client library. For example, developers can
use various development tools from many vendors to write their front-end
applications. When building the applications, they must link those programs with the
client library so that their custom applications can communicate with the server

program.

©Copyright 1995-2012 CASEMaker Inc.

Basic Database Administration 4

4.1

Basic Database
Administration

This chapter describes basic database administration, including creating a database,
starting a database, connecting to a database, and shutting down a database. To
perform the operations described in this chapter, database administrators can choose
to use the command-line based dmSQL tool and edit the dmconfig.ini file, or use the

JConfiguration Tool and JServer Manager udility.

The following sections describe configuration parameters and commands that are
essential for basic database administration. The first section outlines the role and
format of the configuration file. Subsequent sections describe the function of specific

settings and how those settings affect a database’s performance.

Configuration File -
dmconfig.ini

The operation of DBMaker requires many configuration parameters. The DBMaker
engine uses configuration parameters to specify how a database runs. File storage
locations, runtime memory allocation, and network connections are just a few of the
characteristics of a database that are set using configuration parameters. These
parameters are stored as configuration variables in the dmconfig.ini file. A
configuration variable is a keyword that accepts a value (please refer to Format later in

this section). Users can customize the database by setting parameters in the

©Copyright 1995-2012 CASEMaker Inc. 4-1

O\ Database Administrator’s Guide

dmconfig.ini file or using the JConfiguration Tool. The JConfiguration Tool’s
graphical user interface simplifies management of configuration parameters. More
information about JConfiguration Tool may be found in the /Configuration Tool
Reference. Certain parameters (i.e., keywords) must be set before a database is created
while others need only be set before the database is started. In addition, certain
configuration parameters should not be changed after database creation or an error
will be returned. The following sections describe how to manage settings by directly
editing the keywords in the dmconfig.ini configuration file. See Keywords in

dmconfig.ini for a complete reference of dmconfig.ini options.

dmconfig.ini Location

DBMaker searches for the dmconfig.ini in following three locations, in the order

listed, when running on UNIX platforms:

¢ Current directory

¢ Directory specified by the DBMAKER environment variable
¢ DBMaker’s installation directory: ~dbmaker/ Version

If the relevant database section is not found in the dmconfig.ini file of one location,

DBMaker searches in the next location.

However, for Microsoft Windows systems, the rule is different. DBMaker will only

search for the dmconfig.ini file in following two locations:
¢ Directory specified by the DBMAKER environment variable

¢ DBMaker’s installation directory. In a typical Windows installation, this is
C:\DBMaker\ Version

When DBMaker requires the value of a configuration parameter for a particular
database, it scans the above three directories (or the installation directory on Microsoft
Windows systems) to find a dmconfig.ini which contains a section having the same
section name as the database. Use any text editor to edit this file and add or modify
the parameter values in dmconfig.ini so that DBMaker will use them when it is

running.

©Copyright 1995-2012 CASEMaker Inc.

Basic Database Administration 4

=

When a corresponding section cannot be found in any dmconfig.ini files, DBMaker
creates a new section for the database, using default values, in the first dmconfig.ini
file found or in a new dmconfig.ini file in the local directory (or the installation

directory on Microsoft Windows systems).

When a database is started DBMaker will return an error unless the corresponding
section in dmconfig.ini is found. Although various sections may be put in different
dmconfig.ini files and different dmconfig.ini files may be put in different directories,
this is not recommended. A single global dmconfig.ini file will make maintenance

easier.

JConfiguration Tool displays all database sections listed in the dmconfig.ini file. On
UNIX systems, the JConfiguration tool displays all sections of all dmconfig.ini files

shown in the locations listed earlier.

dmconfig.ini Format

The dmconfig.ini file is divided into sections. The first section lists the definitions of
the most commonly used keywords. Subsequent sections begin with a header name
corresponding to the name of a database. The keywords under each section define the
configuration of that database. Any string following a semi-colon is considered a

comment.

Example

Generalized format of a dmconfig.ini file:

[Section namel]

<key wordl> = <valuel>

<key word2> = <value2> <value3>; this is a comment

; this is a comment

[Section name?2]
<key word3> = <value4d> <value5>

<key word4d> = <value6t>

©Copyright 1995-2012 CASEMaker Inc. 4-3

O\ Database Administrator’s Guide

FILE NAME AND SIZE

A dartabase consists of operating system files, These files are defined in the
dmconfig.ini file using keywords. The <filename> parameter is used in place of the

<value> parameter. The <filename> parameter can be a simple file name like
firstdb.sdb, a relative path like mydb/firstdb.sdb, or a full path like
/disk1/mydb/firstdb.sdb (“/” for UNIX and “\” for Microsoft Windows).

The <np> parameter represents a number of pages. The default page size is 8 KB
unless otherwise specified by the DB_PGSiz keyword.

In addition to using a number of pages, user can specify M (megabytes) or G
(gigabytes) as the unit. If M or G is not used, the unit is page. When M or G are
used, the actual size is one page less than the specified value. For example, if the page
size is 16 KB and the file size is set to 8 MB, the size will be 8,176 KB rather than
8,192 KB.

Example

Generalized format for indicating file names and sizes:
[Section namel]

<key wordl> = <filename>

<key word2> = <filename> <filename>

<key wordl> = <np>

FILE LOCATIONS

A database can be accessed by users who are running DBMaker from different
directories. As a result, the current directory is different for each user. In this case, all

of the file names in dmconfig.ini should be full paths.

Alternatively, the DB_DbDir configuration parameter can be utilized. This keyword
indicates the home directory (i.e., database directory) of a database.

Example 1

The following sets the name of the database directory to db, instead of the default
DBI1 as indicated by the section header. Furthermore, other database files are placed in

alternative locations and on other disks.

©Copyright 1995-2012 CASEMaker Inc.

Basic Database Administration 4

[DB1]
DB DbDir = /diskl/db
DB DbFil = mydbl
DB JnFil = /disk2/usr/DBl.JNL

The resulting physical file names are:

DB DbFil -- /diskl/db/mydbl

DB JnFil -- /disk2/usr/DB1.JNL
DB BbFil -- /diskl/db/DB1.SBB (using default file name)
Example 2

Using the DB_DbFil keyword:
[DB2]

DB DbFil = mydb2

DB JnFil = /disk2/usr/DB2.JNL

The resulting physical file names are:

DB DbFil -- mydb2 (in current directory)
DB JnFil -- /disk2/usr/DB2.JNL
DB BbFil -- DB2.SBB (in current directory)

NOTE The rule also applies to user-defined files.

Some Important dmconfig.ini Keywords

The following list introduces some of the most important keywords. Keywords
essential for database creation and startup are given in subsequent sections of this
chapter. A complete list of keywords appears in Keywords in dmconfig.ini chapter.
Examples of valid keywords that can appear in dmconfig.ini:

¢ DB_DbDir = <filename> — specifies the directory that the database files reside

in
¢ DB_DbFil = <filename> —file name for the system database file as <filename>
¢+ DB_PGSIZ = <4, 8, 16, 32> —page size (4 KB, 8 KB, 16 KB or 32 KB)

¢ DB_]nFil = <filename> —file name for the system journal file as <filename>

©Copyright 1995-2012 CASEMaker Inc. 4-5

O\ Database Administrator’s Guide

DB_]nlSz=<np> —size of the system journal file in <7p> (number of pages)

<logical file> = <filename> <np> — specifies that the user-defined file with the
name </logical file> will be mapped to <filename> with <np> pages. In other

words, <filename> is the physical file name for <logical_file>
DB_NBufs = <#p> —runtime data buffer size in <mp> (number of pages)

DB_SvAdr = <IP address> or <host name> —database server's IP address or its

host name. In a client/server system, this option must be set on the client side.

DB_PtNum = <port number> —TCP/IP port number used to communicate

between the database client and database server

DB_MaxCo = <number> —maximum number of connections that the database

can handle.

NOTE A/ pattern matching is case insensitive except for <logical_file>.

Default Values

Some of the options have default values. Therefore, if a keyword does not appear in

dmconfig.ini, its default value is used. See Keywords in dmconfig.ini for a more detailed

description of the keywords and their default values.

Support Environment variables

For Read-Only Database is stored on CD-ROM, it's difficult for user to specify the
path in dmconfig.ini file. It will be easier for user if DBMaker can support the default
environment variable $APP_HOME and $APP_DRIVE.

*

$APP_HOME: DBMaker home installation directory. it always gets DBMaker
HOME information from register. Such as DBMaker which is installed in the
D:|dbmaker5.3 directory, DBMaker will automatically replace $APP_HOME
with "D:ldbmaker|5.3” when reading the dmconfig.ini file.

$APP_DRIVE: This variable returns an empty string on the Linux operating

system, and returns a home installation directory where the drive letter on the

©Copyright 1995-2012 CASEMaker Inc.

Basic Database Administration 4

Windows operating system. Such as DBMaker installed in the D:ldbmaker|5.3
directory, DBMaker will return the driver letter "D:"and automatically replace
“D:ldbmaker|5.3” with "D: "when reading the dmconfig.ini file.

DBMaker also supports the system environment variables, such as $TEMP =
“C:\TEMP” which defined in the operating system environment variables. DBMaker
will automatically replace the $TEMP with "C :| TEMP"when reading the

dmconfig.ini file.

If the default environment variable $APP_HOME or $APP_DRIVE is defined in
the system environment variables, DBMaker will not find the defined value of the
system environment variables when reading the dmconfig.ini file, but priority using

the default environment variable value.

Example

If user has a CD-ROM, user can put the DBMaker software and database on the CD-
ROM with the following setting:

dmconfig.ini

[DBSAMPLES]

DB DBDIR=$APP DRIVE\database

DB FODIR=$APP DRIVE\database\fo

DB TPFIL=$TEMP\DBSAMPLES . tmp

DB_SMODE=6

Sample dmconfig.ini file

In the following example, two sections are defined in the dmconfig.ini file, one for the
Personnel database and the other for the LIBRARY database.

Example

A typical dmconfig.ini file:

[Personnel]

DB DbFil = /diskl/bin/PERSONNEL.DB
DB JnFil = /diskl/bin/PERSONNEL.JNL
fl.os = /diskl/bin/PERSONNEL.OS 100

©Copyright 1995-2012 CASEMaker Inc. 4-7

O\ Database Administrator’s Guide

f1.blob = /diskl/bin/PERSONNEL.BLOB 1000

DB UMode = 1 ; multi-user mode

DB NBufs = 0 ; auto-configure number of data buffers
DB NJnlB = 100 ; number of journal buffers

DB MaxCo = 100 ; maximum number of connections

DB JnlSz = 2000 ; size of journal file (pages)

DB RTime = 0 ; restoration target time

DB SvAdr = 192.72.116.130 ; server’s IP address

DB PtNum = 21000 ; and port number

[LIBRARY]

DB DbFil=/disk3/usr/lib/library.db
DB JnFil=/disk3/usr/lib/library.jnl
DB SvAdr = 192.72.116.137

DB PtNum = 26999

DB JnlSz = 2000

4.2 Creating a Database

Creating a new database requires some planning. There are a number of configuration
parameters that must be considered before creating a new database, some of these
parameters cannot be changed after the database is created. Parameters that must be

set during database creation are:
¢ Database name
¢ Database security (whether the database has different user authority levels)

¢ Case sensitivity (determines case sensitivity of certain schema objects within the

database)
¢ BLOB frame size (the amount of disk space allocated for each BLOB frame)
¢ Language setting (determines the character set to be used- ASCII, Big5, etc.)

¢ Language code order (the pattern used to sort character type data)

4-8 ©Copyright 1995-2012 CASEMaker Inc.

Basic Database Administration 4

All other configuration parameters can be changed after the database is created,

however, it is important to consider other database parameters before database

creation. These parameters include:

*

*

*

Tablespace name, location, size, and extensibility

Number of journal files

Journal file name, size, and location

System data and BLOB files names, sizes, and locations
Default user data and BLOB files names, sizes, and locations
System temporary file name and location

User-defined file names, sizes, and locations

DBMaker log file locations

Backup directory location

Table replication log directory location

Allow for user file objects

Enable use of raw devices (for UNIX platform only)

Enable client/server database

Database IP address and port number (for client/server databases)
Default user ID and password

Memory allocation

DBMaker provides an easy to use wizard for creating databases in the JServer Manager

tool. A database administrator can easily create a database by editing the dmconfig.ini

file and using dmSQL. The following subsections outline the process for creating a

database. The subsections also approximately follow the sequence of steps used in the

JServer Manager create database wizard.

©Copyright 1995-2012 CASEMaker Inc. 4-9

O\ Database Administrator’s Guide

=

Naming the Database

Before naming a database, be aware of the following naming rules:
¢ Database names can contain at most 128 characters

¢ Database names can contain any alphanumeric characters, including the

underscore
¢ Character may be in any position
¢ Database names are not case-sensitive

¢ Database names must be unique among all computers that will connect to the

database
Databases may be named from the create database wizard of the JServer Manager, or
using dmSQL.
Example

To create a database using dmSQL:
dmSQL> create db <database name>;
dmSQL> terminate db;

dmSQL> quit;

Schema Object Name Case Sensitivity

The case sensitivity of all identifiers in a database can be specified. Under the case
insensitive mode, all identifiers appear in uppercase when defined. Once a database
has been created, this setting cannot be changed. Setting the keyword equal to zero
makes the database case sensitive. The keyword is set equal to one by default, so a
database created without changing this setting will be case insensitive. The following

dmconfig.ini variable specifies database case sensitivity:

DB_IDCap = <value> (default value = 1)

©Copyright 1995-2012 CASEMaker Inc.

Basic Database Administration 4

Setting Storage Parameters

There are ten types of operating system files associated with a database: system data
and BLOB files, default user data and BLOB files, system journal files, a system
temporary file, user-defined files, DBMaker log files, backup files, and a table
replication log file. When a database is first created, the user may assign names and
locations for each file, or DBMaker will assign default values to them. It is important
before creating a database to have a good understanding of the function these files

serve within a database.

Many of the parameters discussed in this section may be modified from the Storage
page of the JConfiguration Tool. To learn more about how to use JConfiguration
Tool to change database parameters see the /Configuration Tool Reference. More

information about managing files is available in section 3.2 File Types.

When creating a database, DBMaker creates the system database file, the journal file,
and the system BLOB file according to the related settings in the dmconfig.ini file. If
no DB_DbFil, DB_]nFil, or DB_BbFil settings are defined, the default setting are

used.

The default values are:

DB_DDbFil -- database name + '.SDB’
DB_]JnFil -- database name + "JNL'

DB_BbFil -- database name + '.SBB'

SPECIFYING THE DATABASE DIRECTORY

The database directory is the default location where files associated with a database are
created and stored. If the defined file is specified with a full path name, DBMaker uses
that name to reference it. If a file name without a full path is used, DBMaker searches
for the database directory. If it is not found, DBMaker uses the file name and assumes

it is located in the current directory.

When creating a new database in Windows, DBMaker assigns a default database
directory of (DBMaker Installation Directory)/bin. It is necessary to create a new

©Copyright 1995-2012 CASEMaker Inc. 4-11

O\ Database Administrator’s Guide

directory for the database files to reside in. Multiple databases must not be created in
the same database directory. The following dmconfig.ini keyword specifies the
database directory:

DB_DbDir = <pathname> (detault: <DBMaker installation directory>/bin/<Database
Name>)

S Example
To set the database directory to /disk1/db:

[DB1]
DB DbDir = /diskl/db

CREATING THE SYSTEM TABLESPACE

DBMaker databases are composed of several logical divisions known as tablespaces.
With tablespaces, the database can be divided into manageable areas. In the logical
view, a tablespace contains one or more tables and indexes. In the physical view, a

tablespace is the physical storage that consists of one or more files. A newly created

database has two tablespaces, the system tablespace, and the default user tablespace.

The system tablespace consists of a system data file and a system BLOB file. The system
tablespace records the system catalog for the entire database. The database
administrator may specify the initial location of system data and BLOB files in the

system tablespace.

The system tablespace cannot be dropped (i.e., deleted), although other user
tablespaces can be. The initial size of the system database file is 200 pages (200 x
DB_PGSIZ KB). The following dmconfig.ini keywords define the system tablespace:

System data file: DB_DbFil = <filename> (default: <Database Name>.SDB)
System BLOB file: DB_BbFil = <filename> (default: <Database Name>.SBB)

The <filename> parameter can be a simple file name like firstdb.sdb, a relative path

like mydb/firstdb.sdb, or a full path like /disk1/mydb/firstdb.sdb (“/” for UNIX and
“\” for Microsoft Windows).

4-12 ©Copyright 1995-2012 CASEMaker Inc.

Basic Database Administration 4

S Example

Entering the following lines into the dmconfig.ini file results in the system tablespace
files being stored in the /disk1/mydb/ directory.

DB DbFil = /diskl/mydb/firstdb.sdb

DB BbFil = /diskl/mydb/firstdb.sbb

CREATING THE USER DEFAULT TABLESPACE

The default user tablespace initially contains one data file and one BLOB file. User data
is stored in these files. The database administrator may specify the initial size and
location of data and BLOB files in the user default tablespace. Data file size is
specified in pages (a page can be 4 K, 8 K, 16 K or 32 K). BLOB file size is specified
in frames. Frame size can be defined by the user and is discussed in “Specifying the
BLOB Frame Size” later in this chapter. By default, the user default tablespace is
autoextend. This means that if the tablespace is full of data, DBMaker will enlarge the
files (and therefore the tablespace) automatically. However, it is more flexible and

efficient to create additional tablespaces to store user tables.

JDBA Tool can help to create new tablespaces and manage existing ones. If data or
BLOB files are added to a tablespace without specifying a full path, the file is created
in the database directory. The user default tablespace cannot be dropped (i.e., deleted),

although other user tablespaces can be. The following dmconfig.ini keywords define
the default user data and BLOB files:

User data file: DB_UsrDb = <filename> (default: <Database Name>.DB)
User BLOB file: DB_UstBb = <filename> (default: <Database Name>.BB)

The <filename> parameter can be a simple file name like firstdb.sdb, a relative path
like mydb/firstdb.sdb, or a full path like /disk1/mydb/firstdb.sdb (“/” for UNIX and
“\” for Microsoft Windows).

CREATING JOURNAL FILES

Journal files provide a real-time, historical record of all changes made to a database,
and the status of each change. Up to eight journal files can be created. Each journal

file has a fixed size. When all journal files are filled by active transactions (i.e.

©Copyright 1995-2012 CASEMaker Inc. 4-13

O\ Database Administrator’s Guide

=

transactions are not committed, and their occupied journal blocks cannot be freed),
the current transaction is aborted because no space is available; this is called journal
full. Make sure that the longest transaction will not use all journal records in all the
journal files. If journal files are created without specifying a full path, then they are
created in the database directory. Journal files may not be modified after the database
is started. To reduce the number of journal files, add more journal files, or change
journal file size, restart the database in new journal mode. More information about
new journal mode is available in section 4.4, Starting a Database. Also, refer to section
5.2, File Types for more information on journal files. The following dmconfig.ini

keywords define journal file names, locations, and sizes:
Journal file name(s): DB_]nFil = <filename> (default: "<Darabase Name>.JNL")

Journal file size (pages) DB_]JnlSz = <size> where size = 100 pages through 8G

Example

The following lines in the dmconfig.ini file tell DBMaker to create two 500 page
journal files on two separate disks in the /mydb directory

DB JnFil = /diskl/mydb/firstdbl.jnl /disk2/mydb/firstdb2.jnl

DB JnlSz = 500

CREATING SYSTEM TEMPORARY FILES

System temporary files are used by DBMaker to store information about the database,
such as sorting results, while the database is active. These files are generated when
necessary and deleted when the database is shut down. If temporary files are created
without specifying a full path, then they are created in the database directory. Up to
eight system temporary files may be specified. Each temporary file may hold up to 2
GB. Temporary files may be located on different disks for improved disk I/O
performance. Users should reserve enough space on disk for an entire temporary file
(maximum of 2 GB for a single file), or errors may result. System temporary files may
be specified using JConfiguration Tool or editing dmconfig.ini before starting the
database. The following dmconfig.ini keyword defines system temporary file names

and locations:

DB_TpFil = <filename><filenames...] (default: <Database Name>. TMP)

©Copyright 1995-2012 CASEMaker Inc.

Basic Database Administration 4

SPECIFYING THE BLOB FRAME SIZE

A BLOB frame is the smallest unit of storage used by BLOB files, which are used to
store large object data such as LONG VARCHAR or LONG VARBINARY. BLOB
frame size cannot be changed after creating the database. The minimum frame size is
8KB and the maximum frame size is 256 KB. Determining the frame size is a trade-off
between disk utilization and performance. If entire BLOBs are frequently retrieved,
adjusting the frame size to contain an entire BLOB provides better performance
because only one disk access is required. However, there may be large variations in the
size of the BLOB data. If the frame size is large enough to contain the largest BLOB, it
could waste disk space, as other frames that contain smaller BLOBs will contain
unused disk space. Alternatively, if frames are only large enough to contain the
smallest BLOBs, performance degrades when fetching larger BLOBS stored in
multiple frames. The following dmconfig.ini keyword specifies BLOB frame size:

DB_BFrSz = <nk>. The < nk > parameter is the frame size in kilobytes. The size of the
system BLOB file is (page size + (number of frames — 1) x nk). Refer to Chapter 7,

Large Object Management for more detailed information.

Example
To set the BLOB frame size to 10 KB:

DB BFrSz = 10

SETTING THE NUMBER OF PAGES TO EXTEND AN AUTOEXTEND
TABLESPACE

When all pages in the data file or BLOB file of an autoextend tablespace are full,
DBMaker allows the tablespace to grow by automatically extending the number of
pages or frames in the file. This setting tells DBMaker how many pages or frames to
add to the full file in the event that it is filled. If the Database Administrator expects
that the database will grow very quickly, then a higher number should be selected to
lessen the frequency at which the file is appended. This number can be adjusted before
starting a database by using JConfiguration Tool, or by editing the dmconfig.ini file.
The following dmconfig.ini keyword specifies the number of pages/frames to extend

an autoextend tablespace:

©Copyright 1995-2012 CASEMaker Inc. 4-15

O\ Database Administrator’s Guide

4-16

DB_ExtNp = <np>, where <np> is the number of pages to extend (default: 20 pages /

frames)

ENABLING USER FILE OBJECTS

FILE type data can be stored as user file objects or system file objects. User file objects
are external files that are accessed through the machine where the database resides. In
other words, a user file object is only a link to an external file outside the database.
Enabling user file objects allows a FILE type column to link to the external files,
which will be accessed by the database server. It may be disabled and enabled as
needed. Inserted user file objects can be accessed even if the setting is turned off. User
file objects may be enabled through the storage page of the JConfiguration Tool
before starting the database. The keyword value may be modified before starting the
database. Setting the keyword equal to 0 prevents file objects from being inserted.
Setting the keyword equal to 1 allows file objects to be inserted. The following
dmconfig.ini variable toggles file object capability:

DB_UsrFo = <value> (default: 0 / disabled)

CREATING A DIRECTORY FOR SYSTEM FILE OBJECTS

System file objects are created, deleted, and managed by DBMaker. All system file
objects are placed in subdirectories of the system file object directory. Changing the
system file object directory does not change the location where previously inserted
system file objects reside. The system file object name and location may be set from
the storage page of the JConfiguration Tool before starting the database, or during
runtime with JServer Manager or JDBA Tool Run Time settings. The keyword value
may be modified before starting the database. The following dmconfig.ini variable sets

the name and location of system file objects:

DB_FoDir = <pathname> (default: \<database directory>\fo)

CREATING A DIRECTORY FOR USER-DEFINED FUNCTION DLL
FILES

The database administrator may specify the directory where the dynamic link libraries
(DLL) of user-defined functions (UDF) are placed. UDFs are compiled functions

©Copyright 1995-2012 CASEMaker Inc.

Basic Database Administration 4

stored in a dynamic link library (DLL for Windows operating system, or .so for
UNIX operating systems) that the user wants to use in DBMaker. The DLLs stored in
the Directory of User-defined Function DLL files are accessible to DBMaker and can
be used in SQL statements or ODBC applications. UDFs should be loaded when the
database starts. The following keyword specifies the location of UDF DLL files:

DB_LbDir = <filename> (default: current working directory)

Turning On the Log System

DBMaker provides a log system to record useful information including connections,
users, execution times and SQL commands. The system can be used to record
additional database information and is very useful for resolving errors generated by the

run time environment.

The log format will be text CSV format, so user can use excel viewer to check it after
rename the .Jog to .csv file. The following table lists all of the columns in log file, and

a brief description of what is contained in each column.

CoLUMN NAME DESCRIPTION

LOG_TIME The time for writing log

BEG_TIME The command starting time

STATE There are four state: _, O, X, S, according to " _, O, X,

S" to judge it's unknown, ok, error, or slow, the check
sequence is check rc first, and then check execution

time.
RETCODE Returned code: 0 or error code
EXE_TIME Execution time
SV_FUNC Execute which server function at present
CONNECT_ID Connection ID
USERNAME User’s name
LOGIN_TIME Login time
LOGIN_ADDR Login IP address
STMT_ID Statement ID

©Copyright 1995-2012 CASEMaker Inc. 4-17

O\ Database Administrator’s Guide

4-18

ERROR_ARG Error argument

OTHER_INFO If turn on other LGXXX setting (ex: LGPLN), these
information will be recorded in LOGNAME.TXT, user
can mark [INFO_XXX] to .TXT to check

SQL_CMD The most recently executed SQL command

The Log System can be activated by setting the keyword DB_LGSVR in the
dmconfig.ini file before starting the database or by calling the stored procedure
SETSYSTEMOPTION() at run time.

Log information is divided by level. What operations are logged and when can be
specified individual for each level. When the log is on, DBMaker records the server’s
operation according to the logging options and stores the log in the directory which
specified by DB_LGDIR. DBMaker assigns the log name according to DBNAME
and log index number. Since server log can include current date in the log filename, so
the log filename would be unique and won’t be overwritten. User can specify the
number of days who wants to keep the log files available. The expired log file would
be removed by the daemon service. This setting specified by DB_LGDAY keyword in
the dmconfig.ini file. But the number of log files might grow, packing/zipping the
earlier closed log files would be necessary in order to save some storage. This setting
corresponds to the DB_LGZIP keyword in the dmconfig.ini file. Some system
information is logged to DBNAME.LOG and the log information is logged to
DBNAME_ currentdate_1.LOG when the log is initially started. When the log’s file
size reaches the default 100 MB or the size specified by DB_LGFSZ, subsequent
information is stored in DBNAME_ currentdate_2.LOG, Ex:
DBNAME_20080706_2.LOG, DBNAME_20080708_3.LOG, ...,
DBNAME_currentdate _n.LOG; where n is 20 by default unless otherwise specified
by DB_LADAY and DB_LGENO.

Any additional log information generated when DB_LGPLN, DB_LGPAR or
DB_LGLCK, DB_LGDAY, DB_LGZIP are started or when DMERROR.LOG
contains information is logged to DBNAME _ currentdate_n. TXT. Regarding default
file size and the rolling log feature, DBNAME_ currentdate_n. TXT operates
identically to DBNAME_ currentdate_n.LOG just described. The additional
information is recorded as INFO_connection_id_number in the OTHER_INFO

©Copyright 1995-2012 CASEMaker Inc.

Basic Database Administration 4

field in the DBNAME_ currentdate_n.LOG and is also recorded in the DBNAME_
currentdate_n.TXT log file. The connection_id_number can be used to trace the
source of the additional log information. Please note, the naming of the DBNAME_
currentdate_n.LOG and DBNAME _ currentdate_n. TXT are kept in lock-step so
information is always logged to the respective log file having equal n values. This is
handled by summing the file size of DBNAME _ currentdate_n.LOG and
DBNAME_ currentdate_n. TXT. When this sum reaches the maximum log file size,
both logs are considered full and subsequent information is immediately logged to
DBNAME_ currentdate_n + 1.LOG and DBNAME_ currentdate_n + 1.TXT.

Additional system information is logged when DB_LGSYS is activated.
The following dmconfig.ini keywords affect the setting of the log system:
DB_LGDIR = <pathame> (default: DBDIR/lgdir)

DB_LGSVR = <value> (default value = 0/ disabled)

DB_LGERR = <value> (default value = 3)

DB_LGSTM = <value> (default value = 5 seconds)

DB_LGFSZ = <value> (default value =100 MB)

DB_LGFNO = <value> (default value = 20)

DB_LGPLN = <value> (default value = 0 / disabled)

DB_LGSYS = <value> (default value = 0)

DB_LGSQL = <value> (default value = 0 / disabled)

DB_LGPAR = <value> (default value = 0 / disabled)

DB_LGLCK = <value> (default value = 0 / disabled)
DB_LGDAY=<value> (default value = 30)

DB_LGZIP= <value> (default value = 1 / enabled)

©Copyright 1995-2012 CASEMaker Inc. 4-19

O\ Database Administrator’s Guide

4-20

S Example

To log slow queries taking over 10 seconds having an error code > 10000, and to keep
log files for five days and pack closed log files, set the dmconfig.ini as follows before
starting the database:

[DBNAME]

DB LGERR=2;
DB LGSTM=10;
DB LGDAY=5;
DB LGZIP=1;

Alternatively, the same result is achieved by calling SETSYSTEMOPTION:
dmSQL> call SETSYSTEMOPTION (‘LGSVR’, ‘3');

dmSQL> call SETSYSTEMOPTION (‘LGERR’, ‘2');

dmSQL> call SETSYSTEMOPTION (‘LGSTM’, ‘107);

dmSQL> call SETSYSTEMOPTION (‘LGDAY’, ‘5');

dmSQL> call SETSYSTEMOPTION (‘LGZIP’, ‘1’);

The log system is used on the server side, so the client or network error will not be
recorded. Server performance is affected when logging is enabled. This is especially
evident when the log level is high. There must be sufficient disk space to store the

server log or log information will be lost.

Raw Devices

The DBMaker physical storage system is very flexible. In a UNIX system, DBMaker
allows users to create a database with UNIX files only, with raw device files only, or
with files from both file systems. In dmconfig.ini, if a file name begins with /dev/,

that file will be treated as a raw device.

I/O operations on raw devices will be faster than on regular UNIX files, so database
administrators are encouraged to use raw devices as database files. To use raw devices

as database files, the system manager must create raw devices before creating any

©Copyright 1995-2012 CASEMaker Inc.

Basic Database Administration 4

databases. Please refer to the UNIX system manual for the procedure to create raw

devices.

Multiple files can be put on a raw device without partitioning the raw device. To put

multiple files on a raw device you must consider the following constraints:
¢ Multiple autoextend files cannot be set on a single raw device

¢ The file size cannot be changed after the initial set up when setting multiple files

on a raw device
¢ The total size of all files in a single raw device is restricted to 8 TB or less

¢ Ifan autoextend file is placed on a raw device no other files can be put on the
device. Other than the files you set as autoextend, the DB_DBFIL, DB_BBFIL,
DB_USRDB, DB_USRBB, and DB_TPFIL files are all autoextend files

¢+ If DB_DBFIL, DB_BBFIL, DB_USRDB, DB_USRBB, and DB_TPFIL are set
to a raw device, they can have only one parameter; number of pages. You cannot
set an offset to them. Because these files are autoexted files, they can only occupy
a raw device that can not shared with other files, and don't need an offset.

For example:

DB DBFIL = /dev/sda 500 ; Creating a file with 500 pages

This is valid too, but it will create a file with 30 pages. The parameter 500 is ignored.
DB BBFIL = /dev/sdb 30 500 ;

NOTE Microsoft Windows does not support raw devices.

Example 1

[MYDB]

fl = /dev/sda 0 500
f£2 /dev/sda 500 200
£3 /dev/sdb 300

To create a regular tablespace, tS_raw, containing the above raw device files:
DmSQL>CREATE TABLESPACE ts raw DATAFILE f1, f2, £3
TYPE=DATA

©Copyright 1995-2012 CASEMaker Inc. 4-21

O\ Database Administrator’s Guide

4-22

Then you will create three files in the raw devices. Suppose you had selected 4 K
for the page size, then the first file has the size 500 x 4 K =2000 K starting at
address 0 in /dev/sda, and the second has the size 200x 4 K = 800 K starting at
address 500% 4 K = 2000 K in /dev/sda. The third has the size 300x 4 K = 1200 K
starting at address 0.

Example 2

[MYDB2]

DB JnlSz = 1000

DB JnFil = J.1 /dev/sda 1000 /dev/sda 2000 J.2jnl

Also suppose you had selected 4 K for the page size, then you will create two

normal journal files J1.jnl, J2.jnl and two raw device journal files that one starts at the
address 4,000 K of the /dev/sda and the other at the address 8,000 K of the /dev/sda.

Enabling Client/Server Database

Any database can be started as a single-user database or a multi-user database. Before
creating the database, determine what the primary function of the database is and
which user mode is more suitable. If the database is to be primarily a multi-user
database, configure the database to use an IP address or DNS name that is appropriate
for the network that the DBMaker server will be running on. Also, specify the TCP/IP
port number that the database server will use. The client side database will also use this
information to connect to the database. This setting can be changed any time before
starting the database, but we highly recommend setting these parameters before
database creation to ensure smooth operation. Clients will be unable to connect to an
improperly configured server database. If both settings are disabled, the database will
start in single-user mode. These parameters can be altered from the connections page

of the JConfiguration Tool, or by editing the following dmconfig.ini keywords:

IP address/Server name: DB_SvAdr = <IP_address> or <host name> (default: local
host name or 127.0.0.1)

Port number: DB_PtNum = <port number> (default: 2,300, 1,024 through 65,535)

©Copyright 1995-2012 CASEMaker Inc.

Basic Database Administration 4

Default User and Password

The default user name and password must already exist in the database. These two
keywords are not examined when starting a database, but are checked when

connecting to a database instead.

Example

To specify a default user name and password to use when connecting to a database:
DB Usrld = <user name>

DB PasWd = <****x>

Changing Language Code Order

DBMaker provide various word sort order for data as defined by the keyword
DB_WSORT. For example, DB_WSORT can set the case sensitive of the sort order.
The default is binary order sort order.

DBMaker supports different character sets (language codes), such as US-ASCII for
English, BIGS5 for traditional Chinese, GBK for simplified Chinese, and JIS for
Japanese. The keyword DB_LCode in dmconfig.ini file specifies which character set

DBMaker will use. For each character set, there may be several sort orders.

In traditional Chinese for example, the sort order may be according to code sequence,
stroke count, or phonetic equivalent. The default sort order for DBMaker is binary
sequence. While creating a new database, the user-defined order definition file
specified by the keyword DB_Order could change the behavior of the sort order. The
language code parameter may also be set from the Create Database page of the

JConfiguration Tool.

SETTING THE SORTING ORDER

A sort order is a set of rules that specifies how DBMaker presents data in response to
database queries and DBMaker statements involving GROUP BY, ORDER BY, and
DISTINCT clauses. The sort order also determines how certain queries are resolved,
such as those involving WHERE and DISTINCT clauses.

©Copyright 1995-2012 CASEMaker Inc. 4-23

O\ Database Administrator’s Guide

4-24

You can specified the dmconfig.ini keyword DB_WSORT to set the word sort order.
DBMaker considers character values that differ in case only as equal when a case-
insensitive sort order is specified (e.g., 'John' = 'john). it is often necessary to obtain

query results with case-sensitivity considered when using a case insensitive sort order.
The following dmconfig.ini variable specifies the word sorting order case sensitivity:

DB_WSORT = <value> (default: 0 / binary sort order)

1 is case-insensitive sort order

2 is case-sensitive sort order

The following example shows how to set the local language and the sort order file

before a new database is created.

Example

To set the language type to traditional Chinese, use BIG5:

[MY DB]

DB LCode =1 ; BIGS5 for traditional Chinese

DB Order = big5 stroke.ord ; order definition file

The keyword DB_Order indicates the user-defined order definition file named
big5_stroke.ord, which should be placed in the shared/codeorder subdirectory of the
DBMaker installation directory. The order definition file is a pure text file, which
affects the sorting result in DBMaker. The keyword is used when the database is
created and then it is recorded in the database and not used. Without this keyword,
while creating the database, the sorting sequence would be in a binary sequence. Once

a definition file has been specified, it must always exist or the database will fail to start.

USER-DEFINED ORDER DEFINITION FILE

The order definition is a user-defined pure text file. The order definition file arranges
the sequence of valid characters. An example of the naming scheme looks like
codename_ordertype.ord, where codename is the name of language code and ordertype is

the type of ordering e.g., big5_stroke.ord.

©Copyright 1995-2012 CASEMaker Inc.

Basic Database Administration 4

S Example

An order definition file:

Comment: Write information here.

[BEGIN] // begin to arrange the character sequence
© // ASCII 0x63

0x62 // Character 'b'

a // ASCII Ox61

[SINGLE] // Single-Byte Character Default Order
[DOUBLE] // Double-Byte Character Default Order
0xA440 // one of Chinese characters

0xA441 // one of Chinese characters

0xA442 // one of Chinese characters

All lines before the [BEGIN] keyword are regarded as comments. All words after // or
/* are also comments. After the [BEGIN], each line represents one character and
should occupy the first position of the line followed by at least one space or a new line

of characters. In the above example the character c is less than b and b is less than a.

If the text editor cannot be used to edit some characters, represent them with
hexadecimal. For example, character a can be written as a or its code value 0x61. It is

also very useful for invisible characters.

The creator of the sort order may only be interested in some characters and let others
be sorted by defaul, i.e., binary. The keywords [SINGLE] and [DOUBLE] can be
used to represent the single character set and double character set, both of which are
not specified in the definition file. If there is not a [SINGLE], the absent single-byte
characters will come before all characters in the definition file. If the [DOUBLE] is
absent, the absent double-byte characters will come after characters in the definition

file.

©Copyright 1995-2012 CASEMaker Inc. 4-25

O\ Database Administrator’s Guide

4-26

DBMaker ignores errors found in the definition file. For example, if [BEGIN] is lost,
DBMaker uses the default sorting order for all characters. If the same character
appears two or more times, only the first is processed; subsequent characters are
ignored. After creating a database, database administrators should check the sort order

behavior carefully to ensure it is correct.

In distributed database environments, all databases should use the same sort order
definition file. When copying or moving a database to another machine, do not forget

to copy any existing sort order definition files.

The Data Communications and Control Area

The Data Communications and Control Area (DCCA) is a memory block in which
almost all information and data is placed. For multi-user databases, the DCCA is
allocated from shared memory and is used to do inter-process communications. When
a database starts, it will allocate a DCCA to hold all information about that database.
The DCCA can be divided into three parts—page buffers, journal buffers, and the

system control area.
There are several keywords in dmconfig.ini related to the usage of the DCCA:
¢ DB_NBufs = <n#p> —number of page buffers which DBMaker will use. The

default value is 0 (automatically configure).

¢ DB_NJnlB = <#p> —number of journal buffers which DBMaker will use. The
default value is 64

¢ DB_ScaSz = <np> —number of pages in the system control area. The default
value is 200

¢ DB_MaxCo = <number> —maximum number of concurrent transactions that
the database can handle. DB_MaxCo is also used for formatting the journal file

when the database is created or started with a new journal.

The size of the DCCA can be estimated by adding the size of the page buffers, the
journal buffers, and the system control area. When the specified size of the DCCA is

not large enough, DBMaker will automatically allocate the minimum necessary space

©Copyright 1995-2012 CASEMaker Inc.

Basic Database Administration 4

4-3

to hold the information required to the DCCA instead of the default size used in the

calculation above.

The size of the DCCA cannot exceed the allowable shared memory size of the system
in a multi-user environment in UNIX, because in such a case the DCCA is allocated
from shared memory. Users can refer to their UNIX manuals for instructions on how
to increase the size of shared memory, which generally requires a rebuild of the kernel.

DBMaker will run more smoothly with more buffers and a larger system control area.

The relationship between the DCCA, page bulffers, journal buffers, and the system

control area is explained in more detail in Chapter 17, Performance Tuning.

DCCA parameters may also be set from the Cache and Control page of the
JConfiguration Tool. For details, refer to the /Configuration Tool Reference.

Starting a Database

The purpose of starting a database is to allocate the required resources from the
operating system, initialize them, and wait for users to connect. The settings of certain
configuration parameters must be considered before starting a database. These

parameters include:

¢ Database startup mode

¢ Enable client/server database

¢ Database IP address and port number (for client/server databases)
¢ Default user ID and password

¢ Memory allocation

¢ Method for reporting errors

A database may be started using dmSQL or JServer Manager. For more information
on starting a database using dmSQL, refer to the following sections. To find out how

to use JServer Manager to start a database, refer to the [Server Manager User’s Guide.

©Copyright 1995-2012 CASEMaker Inc. 4-27

O\ Database Administrator’s Guide

Single-User

A user must start a single-user database every time they want to connect, and

terminate the database when they finish using it.

& Example

To start a single-user database using dmSQL.:

dmSQL> START DB <database name> <user name> <password>;
< do DML here >

dmSQL> TERMINATE DB;

NOTE Only users with DBA privilege can start a database. For information about database
privileges, refer to Chapter 9, Security Management. If a database is started in

single-user mode, only one user can access the database at a time.

Client/Server

The DBA must start the client/server database on the server machine so that all clients
on remote machines (or on the same machine) can connect to the server database via
the network. Two configuration variables must be set on the server before the database

is started.

Starting a client/server database is a little more complicated than starting a single-user
database. First, we need to know the server machine's IP address. The only ID to
distinguish each machine on a network is the IP address. The dmconfig.ini keyword
DB_SvAdr specifies the server’s IP address.

The second item is the port number. The server program will bind to a given port
number, specified by DB_PtNum in dmconfig.ini, to wait for connections. All client
programs must connect to that port number in order to communicate with the

database server.

4-28 ©Copyright 1995-2012 CASEMaker Inc.

Basic Database Administration 4

S Example 1

To specify the Server IP address and the Server and Client port numbers:

DB SvAdr = <server IP address> (on client side)

DB PtNum = <port number> (on both server and client sides)

S Example 2

To start a client/server database on the server machine using dmServer:

UNIX> dmserver <database name>
9 Example 3

Enter the user name and password. dmServer will start the database and wait for

clients to connect:

UNIX> dmserver [-f] [-t port number] [-u username [-p password]]

database name

Description of UNIX switches:

¢ f— run server program in foreground mode. dmServer normally runs in

background mode.
¢ t— use this port rather than the port defined by dmconfig.ini.
¢ u—login user name
¢ p —password for the given login user name

If a username and password are not specified on the command line, dmServer will
search for the DB_Usrld and DB_PasWd in dmconfig.ini. If not found, dmServer

will prompt users to enter a username and password.

Start Mode

Specify the start mode of a database by using the DB_SMode keyword in
dmconfig.ini. The DB_SMode keyword may have six values, corresponding to six

start-up modes:

©Copyright 1995-2012 CASEMaker Inc. 4-29

O\ Database Administrator’s Guide

¢ 1 — Normal start starts up a system normally. If the database crashed in the last
session, DBMaker will perform crash recovery automatically to bring the database

to a consistent and stable state.

¢ 2 — New Journal. The database should be set to start in new journal mode if
new journal file names and/or locations have been set in the dmconfig.ini file.
New journal file names and locations may also be specified on the Storage page of
the JConfiguration Tool. All old records will be overwritten if the previous
journal file names are kept. This setting must be selected if the user wants to
change the journal file size, add more journal files, or change the journal file

name. We recommend performing a backup before selecting this option.

¢ 3 — Restore Backup Database uses the backed up database files (including the
journal file) to start the database. DBMaker will use the incremental backup files
to roll over the operations up to the point in time specified by DB_RTime. If no
value is specified or the date specified is later than the time of the last incremental
backup, DB_RTime will revert to its default value. Refer to Chapter 14, Database

Recovery, Backup, and Restoration for more detailed information on rollover.

¢ 4 — Source for Target Database is used for database replication. Starting up a
system in this mode makes it a primary (source) database. For more information

on database replication, refer to Chapter 16, Data Replication.

¢ 5 — Target of Database Replication is used for database replication. Starting up a
system in this mode makes it a slave database. For more information on database

replication, refer to Chapter 16, Data Replication.

¢ 6 — Darabase is Read Only starts up a system normally, but the database is read-
only or only provides read privilege to all users. Starting a primary database in

read-only mode prohibits users from modifying it.

Start mode may also be specified on the Start Database page in JConfiguration Tool

or the Start Database Advanced Settings window in JServer Manager.

4-30 ©Copyright 1995-2012 CASEMaker Inc.

Basic Database Administration 4

4.4

Forced Startup

When attempting to start a damaged database, it is possible that an error message will
always be returned. The only solution is to use “Forced Startup” provided by
DBMaker. Set the configuration variable DB_ForcS to one and DBMaker will force
the database to start up. Refer to Chapter 14, Database Recovery, Backup and

Restoration for more detailed information.

Email Error Report System

Typically all error messages are stored in the dmerror.log file. Unless the database
administrator consistently checks the dmerror.log file, certain database errors may pass
unnoticed. DBMaker provides an email error report system to ensure that database

administrators are made aware of errors in the system.

The error report system may be activated either by setting two configuration file
keywords, with the JConfiguration Tool, or during database startup with the JServer
Manager. The keywords that govern the behavior of the e-mail report system are
DB_ERMRv and DB_ERMSv. Use DB_ERMRYy to specify the recipient addresses
for error report email, and use DB_ERMSv to set the address of an SMTP server to
route email through. For more information on setting the email error report system
with JConfiguration Tool or JServer Manager, refer to the /Configuration Tool
Reference and the JServer Manger User’s Guide, respectively.

Connecting to a Database

This section discusses how to connect to a running client/server database. A user must
first connect to a database before performing DML operations. After disconnecting, a
client/server database is still active. Users can continue to make connections until the

database is shut down.

©Copyright 1995-2012 CASEMaker Inc. 4-31

O\ Database Administrator’s Guide

Certain parameters exist for client/server connections, including port number, server
address, connection time-out interval, and lock time-out interval. Connection
parameters are set by changing keyword values in the dmconfig.ini file or by using the

JConlfiguration Tool.

A single-user database only allows a single user connection, every time a user is going
to use the database they must start it, they do not need to make a connection. See

Starting a Database for more information.

Client/Server Database

The DB_SvAdr and DB_PtNum keywords must be set in the dmconfig.ini file. If the
DB_Usrld and DB_PasWd keywords are defined in dmconfig.ini, the <username>
and <password> options in the CONNECT command can be ignored.

S Example

To connect to and disconnect from a client/server database with dmsgle:

dmSQL> CONNECT TO <database name> <username> <password>;
< do DML here >

dmSQL> DISCONNECT;
dmSQL> QUIT;

Connection Time-Out

In a client/server model database, sometimes a client cannot connect to the server
because the server machine is powered off or the IP address of the server machine is
wrong. In these cases, users must wait for the connection to be established. To set the
connection time-out value, users can set the DB_CTimO parameter (in seconds). The

default value for this keyword is five seconds.

4-32 ©Copyright 1995-2012 CASEMaker Inc.

Basic Database Administration 4

4-5

Lock Time-Out

Locks are required for concurrency control between multiple transactions on the same
database objects. For more information on transactions and concurrency control, refer
to Chapter 9, Concurrency Control. When connecting to a database a lock time-out
keyword, DB_LTimO, should be defined in the dmconfig.ini file to indicate how

long (in seconds) a user will wait for a lock that cannot be acquired.

For example, if DB_LTimO = 10, DBMaker will return a “lock time-out” error if the
user waits for a lock for more than 10 seconds. DB_LTimO can be set to zero
indicating that user does not want to wait at all. Setting DB_LTimO to -1 will turn
off this feature. In this case, a user will wait for a lock until the lock is released. Each
user can have a DB_LTimO value.

Compressing Data

Accessing database content (i.e., data) is the primary cause of network traffic.
Compressing the data prior to network delivery reduces the amount that is actually

transmitted resulting in a performance increase.

Set keyword DB_NETZC before connecting to a database to enable the network
compression function. When active, this function compresses data transmitted from

the server and decompresses the data when it is received by the client.

Example

Set dmconfig.ini before connecting to a database to activate network compression:
[DBNAME]
DB NETZC = 1;

Shutting Down a Database

A database should be shut down after all operations are finished. DBMaker will free all
resources, such as the DCCA, for the operating system. If there are still active

transactions in the database engine, DBMaker will abort them.

©Copyright 1995-2012 CASEMaker Inc. 4-33

O\ Database Administrator’s Guide

4-34

=

However, if there are still active connections to the database engine, DBMaker will
shut down the database without killing the processes for those connections. In this
case, the database administrator should manually kill the processes; otherwise, the
error message “Cannot lock file transaction rollback” will occur when starting the

database the next time.

Therefore, database administrators (DBA users) should ensure that all users are logged
off before shutting down the database. To shut down a database, a DBA has to
connect first and then issue the proper command. Only a DBA has the privilege to

shut down a database.

Example

To shut down single-user or client/server databases, use dmSQL:
dmSQL> CONNECT TO <database name> <DBA username> <password>;
dmSQL> TERMINATE DB;

dmSQL> QUIT;

©Copyright 1995-2012 CASEMaker Inc.

Storage Architecture 5

5.1

Storage Architecture

This chapter introduces the storage architecture of DBMaker. The storage architecture
of DBMaker includes the logical level and the physical level.

The logical level is the view that is presented to users, and organizes data in the
database in a way which is easy to understand. The physical level consists of operating
system files which correspond to information in the tablespaces, but which are
managed by DBMaker and hidden from the user.

This chapter also explains how to control the storage allocation of a database by using

tablespaces and files.

Architecture

A DBMaker database is composed of one or more logical divisions known as
tablespaces. Tablespaces are the primary logical storage structure in DBMaker. In the
logical view, a tablespace contains one or more tables and indexes as shown in Figure
5-1. In the physical view, a tablespace is the logical storage that consists of one or

more operating system files as shown in Figure 5-2.

©Copyright 1995-2012 CASEMaker Inc. 5-1

O\ Database Administrator’s Guide
Database
Tablespace 1
Journal
Table 1 Index 1 Space

Tablespace 2

Table 2 ‘@ Table 3

Figure 5-1: DBMaker database storage components in the logical view

Database

< =

< =

Tablespace 1 I

Tablespace 2)

File 1 File3 File 4
File 2
L Journal File
Hard Disk 1 Hard Disk 2

Figure 5-2: DBMaker database storage components in the physical view

5-2 ©Copyright 1995-2012 CASEMaker Inc.

Storage Architecture 5

5.2

File Types

Ten different operating system file types are used in DBMaker to store different
aspects of a database: system data and system BLOB files, user data and user BLOB
files, system journal files, a system temporary file, user-defined files, DBMaker log
files, backup files, and a table replication log file. The system data file, the system
BLOB file, user data files, and user BLOB files are of primary concern regarding
database storage architecture and tablespaces. Journal files play an important role in
storing records of transactions performed on the database, and are vital to database

backup and recovery.

To increase database performance, DBMaker places data into two different types of
files—data files and Binary Large Object (BLOB) files. BLOB data consists of large
data objects in the form of image, voice, or large text, which cannot be packed into a
page. DBMaker stores the BLOB data in BLOB files and stores the data rows and
index keys in the data files. In order to achieve high performance, DBMaker manages

these two file types in different ways.

User Data Files

Data files are comprised of pages, while BLOB files are comprised of frames. The
maximum size of both data and BLOB files is 8 TB. However, there are two major

differences between frames and pages:

¢ The size of a page can be 4 KB, 8 KB, 16 KB or 32 KB as defined by the
dmconfig.ini keyword DB_PGSIZ when creating a database

¢ A page can contain more than one tuple, but a frame only contains a single
BLOB data item

A data page is the smallest unit of storage used by data files. The data page format is
similar regardless of whether the data page stores table or index data. A data page

contains four sections: the page header, row data, free space, and the row directory.

©Copyright 1995-2012 CASEMaker Inc. 5-3

O\ Database Administrator’s Guide

Page Header

Row Data

Free Space

Row Directory

Figure 5-3: Format of a data page

The page header contains general page information for the DBMaker system. The row
data area contains the actual table or index data that is displayed as rows and columns
when looking in a table or index, and the row directory contains information about
the rows in the page. Free space is the available space on that page that has not yet

been used to store data.

User BLOB Files

A BLOB frame is the smallest unit of storage used by BLOB files. The size of the
BLOB frame can only be set to a value other than the default before creating a
database. The minimum frame size is 8 KB and the maximum frame size is 256 KB. A
BLOB frame contains three sections: the frame header, BLOB data, and free space.
For more information about BLOB files, refer to Chapter 7, Large Object

Management.

5-4 ©Copyright 1995-2012 CASEMaker Inc.

Storage Architecture 5

Frame Header

BLOB Data

Free Space

Figure 5-4: Format of a frame

Like the page header, the frame header contains general frame information for the
DBMaker system. The BLOB data area contains the BLOB data, and each frame can
only contain a single BLOB item. However, BLOB data that is larger than the frame
size can be spread over several frames. Free space is the available space on that page
that has not been used to store BLOB data.

Journal Files

DBMaker's journal is composed of one or several physical journal files. Internally, a
journal file is composed of blocks, where each block is 512 bytes. Every action that
causes a change in the database system is recorded by a journal record. Journal records
are the logical elements in the journal, and several journal records may be packed into
a journal block or a single journal record may span several blocks. A journal record

owned by an active transaction cannot be reused.

All journal files form a ring of journal records; journal records are written to sequential
journal blocks from the beginning of the file to the end. If the database has been
configured to have more than one journal file, DBMaker automatically switches to a
new journal file when the current file fills. Otherwise, journal records will be written
over journal blocks at the beginning of the journal file. When all journal files are filled

by active transactions, the current transaction will be aborted because no blocks are

available; this is called journal full.

©Copyright 1995-2012 CASEMaker Inc. 5-5

O\ Database Administrator’s Guide

5-6

In addition to journal records, a journal file contains some blocks to record the journal
status, called journal status blocks. These are used when recovering or restoring the

database. Recovery and restoration will be described in later sections.

DBMaker maintains journal block buffers in memory to speed up file access. Before
the actual modified data is written to disk, the journal record is written to disk using
the Write-Abead-Log (WAL) protocol. When the journal buffer is full or a transaction
is committed, the buffer will be flushed to the journal files in accordance with the
WAL protocol.

JOURNAL PARAMETERS IN DMCONFIG.INI
Several journal file parameters can be set to enhance database performance.

¢ DB_]JnFil — Specifies the names of journal files. One to eight journal file names

can be specified. A comma or a space separates every journal file name.

Example

The database will have seven journal files specified on different drives to enhance

performance:

DB JnFil=myDb.jnl, myDb.jn2, myDb.jn3, /diskl/usr/myDb.jn4,
myDb.jn5, /disk2/usr/myDb.jn6, myDb.jn7

¢ DB_JnlSz — Specifies the size of a journal file. The unit is M, G and page, and
the default unit is page. (journal page size is set by DB_PGSIZ). The journal file

size is:
(DB_JNLSZ * DB_PGSIZ)KB

Decide on a reasonable size for journal files when creating a database. As the previous
section stated, when all journal files are filled, the current transaction might be aborted
because of a full journal. Therefore, a small journal file size may cause a long
transaction to be aborted by the system. If database operations involve long

transactions, choose a larger journal file size or more journal files.

¢ DB_NJnlB — Specifies the size of a journal buffer as a multiple of journal pages.
(journal page size is set by DB_PGSIZ)

©Copyright 1995-2012 CASEMaker Inc.

Storage Architecture 5

RESIZING JOURNAL SPACE

If journal full messages are frequently encountered when a database is running,

enlarging the journal files will improve database performance. In DBMaker 3.0,

previous backups cannot be used to restore a database to a specific point in time after

re-sizing the journal files, however, in versions after 3.0 this is permitted. To protect a

database from disk failure, perform a full backup immediately after resizing the journal

files.

To resize a journal file, a DBA performs the following:

1. Determine the number and size of journal files required by estimating disk space

required to handle the largest transactions

2. Shut down the database

3. Update dmconfig.ini and re-specify these two parameters: DB_JnFil, DB_]JnlSz

NOTE These settings may also be changed in the advanced settings — storage page

of the JServer Manager start database wizard.

4. Set the start mode to new journal mode in dmconfig.ini: DB_SMode = 2

NOTE 7his setting may also be changed in the advanced settings — start database

page of the [Server Manager start database wizard.
5. Restart the database

6. Reset the start mode back to normal in dmconfig.ini: DB_SMode = 1

NOTE 7Vis setting may also be changed in the start database page of the
JConfiguration Tool.

7. Perform an online full backup if a database is in BACKUP-DATA or BACKUP-

DATA-AND-BLOB mode.

Tablespaces

A DBMaker database is partitioned into smaller logical areas of space known as
tablespaces. Tablespaces are logical areas of storage that allow the database to be

subdivided into manageable areas. Each tablespace contains one or more operating

©Copyright 1995-2012 CASEMaker Inc.

O\ Database Administrator’s Guide

5-8

system files. Before starting to use tablespaces and files in DBMaker, be familiar with

the terms below.

TABLESPACE TYPES

Tablespaces can be either fixed in size or automatically extensible. Tablespaces that are
fixed in size are called regular tablespaces, and tablespaces that can have their size
automatically extended are called autoextend tablespaces. DBMaker also has a special

tablespace called the system tablespace.

THE SYSTEM TABLESPACE

All DBMaker databases have at least two tablespaces, one system tablespace
(SYSTABLESPACE), and one default tablespace (DEFTABLESPACE). DBMaker
generates a system tablespace to record the system catalog rable whenever a database is

created. The system catalog tables store information about the entire database.

THE DEFAULT TABLESPACE

The default tablespace stores user tables when users do not specify which tablespace to
be allocated. However, creating additional tablespaces for user table storage is more

flexible and efficient.

THE TEMPORARY TABLESPACE

The temporary tablespace (TMPTABLESPACE) is only used to store external temp
tables(ETT). The temporary tablespace also is an auto-extend tablespace. It have
exactly two types of files : data files and BLOB files. Data files’ logical name is
DB_TMPDB, and the physical name is DB_TMPDIR/DBNAME.TDB; BLOB files’
logical name is DB_TMPBB, and the physical name is
DB_TMPDIR/DBNAME.TBB.

When users call “create temporary table” or “select into” statement, ETT's will be
generated and stored into “TMPTABLESPACE 7. Users can create temp tables in
TMPTABLESPACE(of course system will default store ETT in
TMPTABLESPACE), but users can’t create any permanent table in
TMPTABLESPACE. Users can do “ALTER TABLESPACE TMPTABLESPACE

©Copyright 1995-2012 CASEMaker Inc.

Storage Architecture 5

SET AUTOEXTEND OFF/ON;” and “ALTER DATAFILE DB_TMPDB/
DB_TMPBB ADD »n PAGES;” ,but users can not add files to TMPTABLESPACE or
drop files from TMPTABLESPACE. TMPTABLESPACE will be created when a

database is created, and the size will be reset to default size when the database is started
up.

¢ Users can’t create temporary tables in any other tablespace which is not
TMPTABLESPACE.

¢ Users can’t create any permanent tables in TMPTABLESPACE.

¢ Users can’t add files to TMPTABLESPACE and drop files from
TMPTABLESPACE.

¢ Users can’t drop TMPTABLESPACE.

REGULAR TABLESPACES

A regular tablespace has a fixed size and contains one or more data files. If a file in a
regular tablespace is too small to hold all of the data intended for it, it can be enlarged
manually. The maximum number of files that can be contained in a regular tablespace

is 32,767. The total number of pages in all files in a tablespace must not exceed 8 TB.

AUTOEXTEND TABLESPACES

Autoextend tablespaces automatically grow as required. Files in an autoextend
tablespace will expand automatically; DBMaker expands them by the reverse order of
insertion. That means the last data file added will be the first one to expand if normal

data space is required.

Any autoextend tablespace can be changed to a regular tablespace to keep the
tablespace from expanding, and vice versa, a regular tablespace can be changed to an
autoextend tablespace if the space is exhausted. Alternatively, new files can be added or
existing files enlarged to expand a regular tablespace. Raw device files can only be used

with regular tablespaces, and cannot be used with autoextend tablespaces.

DBMaker automatically creates an autoextend tablespace called the system tablespace

when creating a database. When creating any other tablespaces, regular tablespaces will

©Copyright 1995-2012 CASEMaker Inc. 5-9

O\ Database Administrator’s Guide

5.3

5-10

be used by default. To prevent the default tablespace from growing without a limit,

change it to a regular tablespace.

The dmconfig.ini file registers the number of pages for each data file. The number of
pages in a data file is the initial size of a file belonging to an autoextend tablespace,

and is the actual size of a file belonging to a regular tablespace.

Managing Tablespaces and
Files

There are numerous things to consider when managing tablespaces and files for a
database. For example, the size and type of new tablespaces must be determined at the
time of database creation, additional tablespaces can later be created, autoextend
tablespaces changed to regular tablespaces and vice-versa, data files added to
tablespaces, the size of files in tablespaces set and altered, data files and tablespaces
dropped when they are no longer required, and tables can be altered to other

tablespace.

Either the JDBA Tool or a combination of dmSQL commands and modifications to
the dmconfig.ini file can be used to manage tablespaces. The JDBA Tool provides an
intuitive user interface for all tablespace management routines. For more information
on how to use the JDBA Tool to manage tablespaces, refer to the /DBA Tool User’s
Guide.

Each DBMaker database has at least one tablespace called the system tablespace.
When a database is created, DBMaker generates five files: a system data file, a user
data file, a system BLOB file, a user BLOB file, and a journal file. The system data
file, system BLOB file, and journal file are placed in the system tablespace. These three
files record the system catalog tables for the entire database. The user data file and user

BLOB file are placed in the default user tablespace.

User tables are stored in the default user tablespace unless additional tablespaces are
created. Creating additional tablespaces to store user tables is more flexible and

efficient.

©Copyright 1995-2012 CASEMaker Inc.

Storage Architecture 5

Initial Setting of System Files and Tablespace

DBMaker generates the system tablespace and the three system files (the system data
file, the system BLOB file, and the journal file) when creating a new database. These
files are used to keep a record of the database schema and transactions. DBMaker
concatenates the database name with the file extensions .SDB, .SBB, and .JNL to
name the system data, BLOB, and journal files respectively. If the system data, BLOB,
and journal file sizes are not specified, they will be created with default sizes of 200 x
DB_PGSIZ KB, 20 KB and 4,000 KB respectively. To use different names for the
system files, specify them in the dmconfig.ini file, or through the storage page of the
JConfiguration Tool.

Example

To specify the names of the system files in the dmconfig.ini file:

[MY DB] ;database name

DB DbDir = /diskl/usr ;database directory
DB DbFil = datafile.sdb ;data file

DB BbFil = blobfile.sbb ;BLOB file

DB JnFil = jrnlfile.jnl ;journal file

If these values are in the dmconfig.ini file at the time the CREATE DB command is
committed, then DBMaker will create the three system files as before, but this time it
will use the names provided above instead of the default names. In this case, the
system data file is named datafile.sdb, the system BLOB file is named blobfile.sbb,
and the journal file is named jrnlfile.jnl.

The system tablespace is created as autoextend by default; therefore, size of the system
tablespace is just an initial size, not a limitation. To limit the disk space used by the
system tablespace, change the system tablespace to a regular tablespace by using the

ALTER TABLESPACE command.

Once all of the space in a regular system tablespace is exhausted, the only way to
enlarge it are to add files to the regular system tablespace, enlarge the system files by

adding pages, or change the tablespace type to autoextend.

©Copyright 1995-2012 CASEMaker Inc. 5-11

O\ Database Administrator’s Guide

5-12

Initial Setting of Default User Files and Tablespace

DBMaker generates the default user tablespace and the two files (the user data file, the
user BLOB file) when creating a new database. These files are used to store user data.
DBMaker concatenates the database name with the file extensions .DB and .BB to
name the user data and BLOB files respectively. Unless their size is specified in
advance, the user data and user BLOB files will be created with default sizes of 200 x
DB_PGSIZ KB and 20 KB, respectively. To use different names for the default user
files, specify them in the dmconfig.ini file, or in the storage page of the
JConfiguration Tool.

Example

In order to specify the names of the default user files in the dmconfig.ini file:

[MY DB] ;database name
DB UsrDb = /diskl/usr/fl.db 200 ;data file
DB UsrBb = /diskl/usr/fl.bb 20 ;blob file

If a database is created with these values in the dmconfig.ini file, then DBMaker will
create the two files using the names provided above instead of the default names. In
this case, the default data file will be named f1.db with a size of 200 pages and the
default BLOB file will be named f1.bb with a size of 20 frames.

The default tablespace is initially created as an autoextend tablespace, so its initial size

is not a limitation.

Creating Tablespaces

Additional tablespaces can be created to contain other data and BLOB files. A
tablespace may be created using dmSQL or the JDBA Tool. Details on creating
tablespaces with dmSQL can be found in the SQL Command and Function Reference.
Details on how to create tablespaces with JDBA Tool can be found in the /DBA Too!
User’s Guide.

©Copyright 1995-2012 CASEMaker Inc.

Storage Architecture 5

A tablespace must contain at least one data file, but additional files in the tablespace
can be either data files or BLOB files. DBMaker creates a new file as a data file by
default; the file type must be specified as BLOB to create a BLOB file.

Before creating a new tablespace, specify the size and filenames of the data files

associated with the tablespace in the dmconfig.ini file.

Example 1

The following entries are required in dmconfig.ini to specify three files named f1, 2,

and f3 with operating system filenames and page sizes:

[MY DB] ;database name

f1 = /diskl/usr/fl.dat 1000 ;a data file with 1000 pages
f2 = /disk2/usr/f2.dat 500 ;a data file with 500 pages
£3 = /diskl/usr/£3.blb 1000 ;a blob file with 1000 frames

To create a regular tablespace ts_reg with two data files and one BLOB file, with the
data files placed on different disks:

dmSQL> CREATE TABLESPACE ts reg DATAFILE fl1, f£2, £3 TYPE=BLOB;
Example 2

To create an autoextend tablespace with one data file and one BLOB file. The initial
size of the data file is 500 pages, and the initial size of the BLOB file is 20 pages. If the
data file or BLOB file is filled, it will expand automatically:

[MY DB] ;database name
f4 = /usr/f4.dat 500 ;a data file with initial 500 pages
f5 = /usr/f5.blb 20 ;a blob file with initial 20 pages

To create a new tablespace that uses these files:

dmSQL> CREATE AUTOEXTEND TABLESPACE ts aut DATAFILE f4 TYPE=DATA, f5
TYPE=BLOB;

RAW DEVICE FILES
On UNIX systems, if the prefix of the physical file name is /dev/, DBMaker will

regard it as a raw device file. A raw device file supports faster access than a normal file.

Thus, raw device files will improve database performance. Create a raw device file on a

©Copyright 1995-2012 CASEMaker Inc. 5-13

O\ Database Administrator’s Guide

disk before associating this file with a tablespace. Only regular tablespaces may contain

raw device files.

S Example

To specify a raw device file, f2 with the operating system filename /dev/rawf2 with
5000 pages, add the following to dmconfig.ini:

[MY DB] ;database name

f2 = /dev/rawf2 5000 ;a raw device file with 5000 pages

To create a regular tablespace ts_raw, containing the above raw device file:

dmSQL> CREATE TABLESPACE ts raw DATAFILE f2;

Expanding a Regular Tablespace

There are three ways to expand a regular tablespace:
¢ Add new files to a regular tablespace

¢ Add pages to existing files in a regular tablespace
¢ Set autoextend to ON

All of these functions may be performed with the JDBA Tool or a combination of
SQL commands and modifications to the dmconfig.ini file. The following example

shows how to expand a regular tablespace by editing the dmconfig.ini file and using
SQL commands.

S Example

Before issuing a command, give DBMaker the name of the physical file that
corresponds to the logical file named file_blob by adding a statement to the
dmconfig.ini file in the section for that database. In this case, file_blob is the logical
name that will be used in the database, and file.blb is the physical file name that is
used by the operating system:

file blob = file.blb 120

To add a new BLOB file named file_blob to a regular tablespace with 120 frames to
the tablespace named ts_app:

5-14 ©Copyright 1995-2012 CASEMaker Inc.

Storage Architecture 5

dmSQL> ALTER TABLESPACE ts app ADD DATAFILE file blob TYPE = BLOB;

To add 100 pages to an existing data file named file_data in a regular tablespace
named ts_app:

dmSQL> ALTER DATAFILE file data ADD 100 PAGES

After altering the size of the file by adding the extra pages, DBMaker will update the

number of pages for the file in the dmconfig.ini file to reflect the new value.

Adding Files to Tablespaces

Enlarge the size of a regular tablespace or autoextend tablespace, and consequently the
database, by creating and adding new files to it. To increase the space available to
insert or update data rows, add data files into a regular tablespace or autoextend
tablespace. To increase the space available to store BLOB data, add BLOB files. Files
may be added to a tablespace by using the JDBA Tool or by modifying the
dmconfig.ini file and entering commands at the dmSQL prompt. The following is a
guideline for adding files by modifying the dmconfig.ini file and entering commands
at the dmSQL prompt

Be sure to first add lines to the dmconfig.ini file that specify the size and filenames of
new files when adding data files to a tablespace. Also, specify the file type as BLOB
when adding BLOB files, otherwise DBMaker will create a data file by default.

Example 1

To specify in the dmconfig.ini file a data file named £7 with 3,000 pages, where the
operating system filename is /disk1/usr/f7.dat:

[MY DB] ;database name
£7 = /diskl/usr/f7.dat 3000 ;a data file with 3000 pages

To add the data file f7 into the ts_reg tablespace:

dmSQL> ALTER TABLESPACE ts reg ADD DATAFILE £f7;

Example 2

To specify in dmconfig.ini a BLOB file named £8 with 5,000 pages; the operating
system file name is /disk1/ust/f8.blb:

©Copyright 1995-2012 CASEMaker Inc. 5-15

O\ Database Administrator’s Guide

5-16

[MY DB] ;database name
f8 = /diskl/usr/f8.blb 5000 ;a blob file with 5000 frames

To add this BLOB file to tablespace ts_reg:

dmSQL> ALTER TABLESPACE ts reg ADD DATAFILE £8 TYPE=BLOB;

The file type must be stated or it will be added as a data file by default.

Adding Pages to Files in Tablespaces

In addition to adding files to a regular tablespace to enlarge a database, a database can
be enlarged by increasing the size of existing files in a regular tablespace. File size can
be increased in autoextend tablespaces by adding pages, which pre-allocates disk space
for improved performance. When the size of a file is changed, DBMaker automatically

updates the entry for the file in dmconfig.ini to reflect the increased number of pages.

File size may be altered using the JDBA Tool or by entering the ALTER DATAFILE
command at the dmSQL prompt. The following is a guideline for altering file size by
entering commands at the dmSQL prompt.

Example

To alter the size and extend file f1 by adding 100 pages, (the file f1 must already exist
and be associated with a tablespace):

dmSQL> ALTER DATAFILE f1 ADD 100 PAGES;

Changing Regular to Autoextend Tablespaces

A database administrator may want to alter a tablespace from regular to autoextend

when:

¢ Adding more data to a regular tablespace, but the tablespace has already grown to

fill all files belonging to this tablespace and the disk still has space
¢ An unrestricted amount of space a tablespace will occupy is desired

After creating a regular tablespace, the database administrator can change it to an
autoextend tablespace by using JDBA Tool or the ALTER TABLESPACE command
at the dmSQL command prompt.

©Copyright 1995-2012 CASEMaker Inc.

Storage Architecture 5

S Example

To change the regular tablespace ts_reg to an autoextend tablespace:

dmSQL> ALTER TABLESPACE ts reg SET AUTOEXTEND ON;

Changing Autoextend Tablespaces to Regular
Tablespaces

A database administrator may want to alter a tablespace from autoextend to regular

when:

¢ Restricting the amount of space a tablespace will occupy is desired. An autoextend

tablespace can grow to fill all available space on a disk.

After creating an autoextend tablespace, the database administrator can change it to a
regular tablespace by using JDBA Tool or the ALTER TABLESPACE command at
the dmSQL command prompt.

S Example

To change the autoextend tablespace, ts_reg, to a regular tablespace:

dmSQL> ALTER TABLESPACE ts reg SET AUTOEXTEND OFF;

Shrinking Tablespaces and Files

Tablespaces may be reduced in size if there is a need to allocate disk space for other
uses. Two dmSQL commands can be used to reduce tablespace size, the SHRINK
DATAFILE command, and the SHRINK TABLESPACE command. The SHRINK
DATAFILE command works on a user-specified file, while the SHRINK
TABLESPACE command works on all files in the user-specified tablespace. These
operations may be carried out by using the or by using the JDBA Tool. The following
sections outline how to use commands at the dmSQL command prompt to reduce

tablespace size.

©Copyright 1995-2012 CASEMaker Inc. 5-17

O\ Database Administrator’s Guide

5-18

TRUNCATEONLY OPTION
The SHRINK command with the TRUNCATEONLY option removes contiguous

free pages at the end of any data file that it is executed on. It does not compress the
file; if there are free pages between used pages, they will remain in the file. The
database administrator may choose to truncate all tailing free pages (without WITH #
FREE PAGES option), or truncate free pages while still allowing a given number of
free pages to remain (WITH » FREE PAGES option). Following are examples of both

options.

Without WITH » FREE PAGES Option

The SHRINK command with the TRUNCATEONLY option (without WITH 7
FREE PAGES option) only truncates contiguous free pages at the end of a file.

For example, tablespace ts_shrink contains filel and file2. The following diagrams,
where gray blocks represent used pages and white blocks represent free pages, represent

the page status of filel and file2.

filel

file2

The free pages at the end of both files may be removed by executing the SHRINK
TABLESPACE command on the entire tablespace, or by executing the SHRINK
DATAFILE command on both files. The TRUNCATEONLY option must be

specified. The following examples demonstrate.

Example 1
dmSQL> SHRINK TABLESPACE ts shrink TRUNCATEONLY;

Example 2
dmSQL> SHRINK DATAFILE filel TRUNCATEONLY;
dmSQL> SHRINK DATAFILE file2 TRUNCATEONLY;

After truncating, the pages at the end of both files have been removed. A graphical

representation of the page status of both files follows:

©Copyright 1995-2012 CASEMaker Inc.

Storage Architecture 5

Result

filel

file2

Although all pages of file2 are free, DBMaker reserves at least two pages (one is a PE
page and one is a data page).

WITH » FREE PAGES Option
The WITH » FREE PAGES option specifies the total number of tailing free pages

(not including the PE page) to remain in the file after it has been truncated.

Using the previous example of filel and file2, execute one of the following.

Example 1
dmSQL> SHRINK TABLESPACE ts shrink TRUNCATEONLY WITH 3 FREE PAGES;

Example 2
dmSQL> SHRINK DATAFILE filel TRUNCATEONLY WITH 3 FREE PAGES;
dmSQL> SHRINK DATAFILE file2 TRUNCATEONLY WITH 3 FREE PAGES;

Result:

filel

file2

SHRINK TABLESPACE command and the WITH FREE PAGES option apply
individually to each file in a tablespace. In the above case, there are three free pages

reserved for each file in the same tablespace.

It is not possible to inadvertently add pages to a file by specifying more free tailing
pages than the file currently has. For example, if there are 50 free pages in a file,

©Copyright 1995-2012 CASEMaker Inc. 5-19

O\ Database Administrator’s Guide

5-20

=

specifying the option WITH 80 FREE PAGES option causes nothing to happen.
After the SHRINK command, there are still 50 free pages and it does not enlarge the
file size by adding 30 (80 - 50) free pages.

The SHRINK command should be executed with autocommit ON. The
TRUNCATEONLY option cannot be rolled back. Users cannot roll back this

command, even through crash-recovery.

COMPRESSONLY OPTION
Only the SHRINK TABLESPACE command supports the COMPRESSONLY

option. It compresses each file in the tablespace. It does not compress records on the
same page because the smallest unit used for compression is a page. It moves the used
pages in tail of the file to free front pages. After using the command, all free pages are

placed at the end of the file and all used pages at the front.

Result 1:

filel

Filel has five used pages that are not adjacent.

Example

To make it contiguous:

dmSQL> SHRINK TABLESPACE ts shrink COMPRESSONLY;

Result 2:

filel

The SHRINK command must be executed with autocommit ON. The
COMPRESSONLY option can be rolled back. If the database crashes, the operation
of COMPRESSONLY will be all done or all failure after crash-recovery.

There are some conflicts between the SHRINK command with the
COMPRESSONLY option and using backup. DBMaker does not allow these two

commands to be executed at the same time.

©Copyright 1995-2012 CASEMaker Inc.

Storage Architecture 5

LIMITATIONS TO SHRINKING AND COMPRESSING TABLESPACES
The general limitations for these commands are:

¢ The SHRINK command can be used on data and BLOB files but not on a

journal file
¢ Only a user with DBA authority can execute the SHRINK command
¢ The SHRINK command requires autocommit ON

¢ The SHRINK command was added in DBMaker 3.7; early versions of DBMaker
do not recognize this command. Therefore, once a DBA executes the SHRINK
command and then performs an incremental backup, earlier versions of

DBMaker cannot restore the journal backup file
¢ The TRUNCATEONLY option cannot be rolled back

¢ The COMPRESSONLY option cannot compress the SYSTABLESPACE
tablespace

¢ The COMPRESSONLY option does not check if user tables have an OID
column or not. An OID column is used to reference a record elsewhere in the
database. After using COMPRESSONLY, an OID column may no longer point
to the correct record if the referenced record is in the compressed tablespace or

file. It does not modify OID columns in user tables

¢ The COMPRESSONLY option and backup command cannot be executed at the

same time

Dropping Tablespaces

If a tablespace is empty or contains information that is no longer required, a database
administrator can drop it from the database. Any tablespace in a DBMaker database,
except the system tablespace, can be dropped. To drop a tablespace, first drop all
tables in the tablespace or ensure it is already empty of tables. For more information

on how to drop tables from a tablespace, refer to Chapter 6, Managing Schema Objects.

©Copyright 1995-2012 CASEMaker Inc. 5-21

O\ Database Administrator’s Guide

5-22

Dropping a tablespace will automatically drop all the files associated with it, but will
not remove them from the file system of the operating system. Those files will still
exist in the file system and can only be removed using operating system commands to
recover the disk space they occupy. The data stored in the physical files corresponding
to a tablespace is not recoverable once the physical files have been removed from the
file system. Be careful when removing files associated with tablespaces or valuable data

may be lost.

Tablespaces may be dropped using JDBA Tool or by using the DROP TABLESPACE

command at the dmSQL command prompt.

Example

To drop the tablespace ts_aut and all files associated with it:

dmSQL> DROP TABLESPACE ts aut;

Dropping Files From a Tablespace

Users are able to remove unwanted datafiles from a tablespace by using JBDA Tool or
by using the ALTER TABLESPACE tablespace-name DROP DATAFILE file-name
command at the dmSQL command prompt. But when use the latter, User need to
drop the physical datafiles and remove the information in the dmconfig.ini manually
after issuing and committing the ALTER TABLESPACE tablespace-name DROP
DATAFILE command.

Unwanted datafiles can be removed from a tablespace with the following conditions:

¢ Users are not able to drop a datafile from a tablespace if it is the only datafile in

that table space
¢ The datafile to removed must be empty

¢ Users cannot remove the system or default datafile from the system or default

tablespace

Example

To drop the datafile f4 from a tablespace ts_aut:

©Copyright 1995-2012 CASEMaker Inc.

Storage Architecture 5

=

dmSQL> ALTER TABLESPACE ts aut DROP DATAFILE f4;

Read Only Tablespace

The read-only tablespace is a tablespace that does not allow any updates or creations of

new objects in the tablespace.
Read-only tablespaces have many advantages:

¢ Eliminates the need to perform on going backups. A single backup after making it

read-only is sufficient
¢ Recovery becomes easier
¢ Read-only tablespaces have less over head than updateable tablespace (no lock)

¢ Reduces I/O

Example

To set tablespace ts_reg to read only tablespace

dmSQL> ALTER TABLESPACE ts reg SET READ ONLY

To set tablespace ts_reg to read write tablespace

dmSQL> ALTER TABLESPACE ts reg SET READ WRITE

Getting Information about Tablespaces and Files

Using JDBA Tool, it is straightforward to view the structure of tablespaces and files
within a given tablespace. Tablespaces are displayed as part of the logical tree structure
of all database objects. Selecting the tablespaces node on the tree will expand the tree
to display all tablespaces in the database. Selecting a tablespace from the tree will
display all files in the tablespace as well as details about the files, such as size, physical

location, data type, or whether the tablespace is extensible.

Alternatively, use dmSQL to select all columns of the system table SYSTABLESPACE
for information on tablespaces, or SYSFILE for information on user BLOB and data

files.

©Copyright 1995-2012 CASEMaker Inc. 5-23

O\ Database Administrator’s Guide

5-24

S Example 1

=

To obtain information on tablespaces, such as tablespace names, whether they are
regular or autoextend tablespaces, the number of files associated with tablespaces, and
the number of total pages, browse the system table SYSTABLESPACE in the system
catalog:

dmSQL> SELECT * from SYSTABLESPACE;

Example 2

To obtain information about files in a similar manner by browsing the system table
SYSFILE to get information about file names, file types, database internal file
identification, which tablespace files are associated with and how many pages each file

contains:

dmSQL> SELECT * from SYSFILE;

For more information about the system catalog tables SYSTABLESPACE and
SYSFILE, refer to System Catalog Reference.

Checking File and Tablespace Consistency

DBMaker supports six commands to check the consistency of different parts of a
database. These commands are time consuming when the database is large and they
will take locks, and should only be used when necessary. File and tablespace
consistency may be checked using one of these commands. The CHECK FILE

command will check if a file is corrupted or if a tablespace contains the correct tables.

CHECKING FILES

DBMaker allows the contents of every page or frame in a data file to be checked. Any

corruption found when checking files is usually caused by disk errors.

Example
To check consistency for the FILE1 data file:

dmSQL> CHECK FILE FILEL;

©Copyright 1995-2012 CASEMaker Inc.

Storage Architecture 5

CHECKING TABLESPACES

DBMaker allows files and tables associated with a tablespace to be checked. When
checking files and tables, DBMaker uses the same methods as the check file and check
table commands, and returns the same results as if these commands were executed

directly.

S Example

To check tablespace consistency for the ts_reg tablespace:

dmSQL> CHECK TABLESPACE ts reg;

©Copyright 1995-2012 CASEMaker Inc. 5-25

O\ Database Administrator’s Guide

5-26 ©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

Managing Schema
and Schema Objects

This chapter discusses the management of different types of schema objects in
DBMaker, including tables, views, synonyms, indexes, serial numbers, data integrity,

and domains.

The chapter includes topics on browsing the system catalogs to get information about
schema objects, and how to estimate the disk storage space required for tables and

indexes.

Schema object management may be carried out by using dmSQL commands or
through the JDBA Tool. The JDBA Tool contains an intuitive graphical interface,
provides easy-to-use wizards for most database management tasks, and displays the
logical structure of the database in an unambiguous format. Using JDBA Tool will aid
first time users of DBMaker in understanding the relationship between schema
objects. Experienced users will find the logical display aids in the creation and
management of database schema. The following sections show examples of how to
manage database schema objects though dmSQL. For more information on using
JDBA Tool to manage schema objects, refer to the J/DBA Tool User’s Guide. For more
information about how to use the SQL language in DBMaker, refer to the SQL
Command and Function Reference User’s Guide.

©Copyright 1995-2012 CASEMaker Inc. 6-1

O\ Database Administrator’s Guide

6.1

=

=

=)

Managing Schema

Schema are namespaces (logical grouping of database objects). Schema contain schema
objects such as tables, views, indexes, commands, procedures and a domain and a

synonym.
CREATE SCHEMA defines a new schema. After the schema is created, we can create
objects within the schema. The schema owner is the grantor for any privileges granted.

The owner of the schema is determined as follows:

¢ Ifan AUTHORIZATION clause is specified, the specified user-name is the
schema owner. And if schema-name is omitted, the specified user-name is used as

the schema name.
For example
CREATE SCHEMA AUTHORIZATION JEFFERY;

¢ Ifan AUTHORIZATION clause is not specified, the user that issued the
CREATE SCHEMA statement is the schema owner.

Example 1

As a user with RESOURCE authority, JEFFERY, creates a schema called SCH_JEF.
JEFFERY is the default owner.

CREATE SCHEMA SCH JEF;

Example 2

As a user with DBA authority, creates a schema with the user JEFFERY as the owner,
and the username JEFFERY is the default schema name.
CREATE SCHEMA AUTHORIZATION JEFFERY;

Example 3

As a user with DBA authority, creates a schema called SCH_ForJEF with the user
JEFFERY as the owner.

CREATE SCHEMA SCH ForJEF AUTHORIZATION JEFFERY;

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

S Example 4

=

A user with DBA authority creates a schema, inventory. The user then creates a table
and an index on that table. The user final grants authority on the table to the user
JEFFERY.

CREATE SCHEMA inventory;

CREATE TABLE inventory.part (partNo smallint not null, quantity int);
CREATE INDEX partind ON inventory.part (partNo);

GRANT ALL ON inventory.part TO JEFFERY;

DROP SCHEMA removes schemas from the database. A schema can only be dropped
by its owner or a DBA. Note that the owner can’t drop the schema if it contains any

objects.

Example 5
Remove schema SCH_]JEF from the database.

DROP SCHEMA SCH JEF;

NOTE User names and schema names cannot be the same.

INFORMATION SCHEMA

Every database in DBMaker contains a schema called INFORMATION_SCHEMA.
The schema contains a series of views that allow viewing, but not change the

description of the objects belonging to the database.

DBMaker provides information schema views for obtaining metadata. These views
provide an internal, system table-independent view of the DBMaker metadata.
Information schema views allow applications to work properly even though significant
changes have been made to the system tables. The information schema views included
in DBMaker conform to the SQL-92 Standard definition for the
INFORMATION_SCHEMA.

DBMaker supports a three-part naming convention when referring to the current
server. The SQL-92 standard also supports a three-part naming convention. However,
the names used in both naming conventions are different. These views are defined in a
special schema named INFORMATION_SCHEMA, which is contained in each

©Copyright 1995-2012 CASEMaker Inc. 6-3

O\ Database Administrator’s Guide

database. Each INFORMATION_SCHEMA view contains metadata for all data
objects stored in that particular database. This table describes the relationships
between the DBMaker names and the SQL-92-standard names.

DBMAKER NAME EQUIVALENT SQL-92 NAME
Owner Schema

Database Catalog

Object Object

user-defined data type Domain

aming convention mapping applies to these DBMaker SQL-92-compatible views.
These views are defined in a special schema named INFORMATION_SCHEMA,
which is contained in each database. Each INFORMATION_SCHEMA view

contains metadata for all data objects stored in that particular database.

The INFORMATION_SCEHMA views are listed below.
¢ COLUMN_DOMAIN_USAGE
¢ COLUMN_PRIVILEGES

¢+ COLUMNS

¢+ DOMAINS

¢+ SCHEMATA

¢+ TABLE_PRIVILEGES

¢ TABLES

¢+ VIEW_COLUMN_USAGE

¢+ VIEW_TABLE_USAGE

¢ VIEWS

S Example

dmSQL> Select * from INFORMATION SCHEMA.COLUMNS;

6-4 ©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

6.2

Managing Tables

Tables are the logical unit of storage used by DBMaker to store data. A table consists
of several columns and rows. A column is sometimes referred to as a field or attribute,

and a row can be referred to as a record or tuple.
In DBMaker, each table is identified by a unique schema name and table name.

For example, if two users called Jeff and Kevin each create a table named friend with
the default schema name, then the table names Jeff.friend and Kevin.friend denote

the two different tables.

In the JDBA Tool, all tables in a database can be viewed by expanding the tables node
on the logical tree. Selecting a table displays that table’s schema.

Creating Tables

Every table is defined with a table name and a set of columns. The number of columns

in a table can range from 1 to 2000.
Each column has:

¢ A column name and a data type or a domain, which is described in Section 6.10,

Managing Domains

¢ Alength (the length might be predetermined by the data type, such as
INTEGER), a precision and scale (for columns of the DECIMAL data type only)
or a starting number (for columns of SERIAL data type only)

DBMaker supports a large number of data types that can be used to define columns.
There are numerical types (SMALLINT, INTEGER, BIGINT, FLOAT, DOUBLE,
DECIMAL, SERIAL and BIGSERIAL), binary types (BINARY, VARBINARY,
CHAR, and VARCHAR), BLOB types (LONG VARCHAR, LONG VARBINARY
and FILE), and time types (DATE, TIME and TIMESTAMDP). See the SQL

Command and Function Reference for more information about data types.

When creating a table, provide the table name, column definitions, and the name of

the associated tablespace. A table will be placed in the system tablespace by default if it

©Copyright 1995-2012 CASEMaker Inc. 6-5

O\ Database Administrator’s Guide

is not associated with another tablespace. Tables may be created using the JDBA Tool
Create Table wizard or using the dmSQL command prompt. For information on
creating a table with JDBA Tool, refer to the J/DBA Tool User’s Guide. The following
is an example of how to create a table using dmSQL. Details on syntax and usage of

the SQL command CREATE TABLE can be found in the SQL Command and

Function Reference.

S Example

To create the tb_staff table in tablespace ts_reg:
dmSQL> CREATE TABLE tb staff (nation CHAR(20),
ID INTEGER,
name CHAR (30),
joinDate DATE,
height FLOAT,
degree VARCHAR (200),
picture LONG VARCHAR) IN ts_reg;

DBMaker provides many useful features that can be applied when creating tables:
¢ Defining a default value for a column

¢ Specifying that a column is not nullable

¢ Specifying the primary key or the foreign key for the table

¢ Specifying the LOCK MODE, FILLFACTOR, or NOCACHE options to

improve database efficiency
¢ Specifying the table as temporary

¢ Specifying the table to automatically update statistics

DEFAULT VALUES FOR COLUMNS

A column in a table can be assigned a default value so that when a new row is inserted

and a value for the column is omitted, the default value will be automatically supplied.

Default values for each column in a table may be specified. If a default value is not

defined for a column, the default value for the column is set to NULL.

6-6 ©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

Legal default values can be constants or built-in functions. For more information
about built-in functions, refer to the SQL Command and Function Reference. The
following example shows how to specify the default value of a column as a built in

function using dmSQL.

Example

To specify the default value of the column nation, in the table tb_staff as a
constant — ‘R.O.C.” and the default value of the column joinDate as the value of the
built-in function curdate():
dmSQL> CREATE TABLE tb staff (nation CHAR(20) DEFAULT “R.0.C?,
ID INTEGER,
name CHAR (30),
joinDate DATE DEFAULT CURDATEQ),
height FLOAT,
degree VARCHAR (200),
picture LONG VARCHAR) IN ts reg;

Not NULL

Rules for columns or tables may be specified. These rules are called inzegrity
constraints. One example is the NOT NULL integrity constraint defined on a column

in a table. It enforces the rule that the column cannot contain a null value.

For example, the tb_staff table might always need an ID and a name for a new

employee.

Example

To create an ID and name for new employees on the tb_staff table:
dmSQL> CREATE TABLE tb staff (nation CHAR(20) DEFAULT ‘R.O.C’,
ID INTEGER NOT NULL,
name CHAR (30) NOT NULL,
joinDate DATE DEFAULT CURDATE (),
height FLOAT,
degree VARCHAR (200)) IN ts reg;

©Copyright 1995-2012 CASEMaker Inc. 6-7

O\ Database Administrator’s Guide

6-8

=

PRIMARY KEY AND FOREIGN KEYS

The table owner can specify the primary key or foreign key with the CREATE
TABLE command. Refer to Section 6.8, Managing Data Integrity for information on
primary and foreign keys.

LOCK MODE

The lock mode of a table identifies the type of lock that DBMaker automatically places
on objects when accessing the database. DBMaker supports three lock mode levels:
TABLE, PAGE, and ROW. The ROW lock mode is used by default if the lock mode
is not specified when a table is created. If the lock mode is set to a higher level (such as
TABLE), the level of concurrency on database accesses will be lower, but the required
lock resources (shared memory) will also be smaller. If the lock mode is set to a lower
level (such as ROW), the level of concurrency on database accesses will be higher, but
the required lock resources (shared memory) will be larger. In other words, if a user
inserts or modifies rows in a table with the lock mode set to TABLE, no one else will
be able to access the table. The reason for this is that an exclusive lock is taken on the

entire table. For more information about lock modes, see Section 9.4, Locks.

Example

To specify the lock mode on a table th_staff:
dmSQL> CREATE TABLE tb staff (nation CHAR(20) DEFAULT ‘R.0.C’,
ID INTEGER NOT NULL,
name CHAR (30) NOT NULL,
joinDate DATE DEFAULT CURDATE (),
height FLOAT,
degree VARCHAR (200)) IN ts reg
LOCK MODE ROW;

FILLFACTOR
The FILLFACTOR feature optimizes the utilization of space for data pages by

reserving space for the expansion of existing records. It specifies the percentage of a

page that can be filled before stopping new records from being inserted. Using this

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

=

method records can be accessed more efficiently by avoiding the need to retrieve

information for one record from multiple pages.

Example

To set the FILLFACTOR of the tb_staff table to be 80%:
dmSQL> CREATE TABLE tb staff (nation CHAR(20) DEFAULT ‘R.0.C’,
ID INTEGER NOT NULL,
name CHAR (30) NOT NULL,
joinDate DATE DEFAULT CURDATE (),
height FLOAT,
degree VARCHAR (200)) IN ts reg
LOCK MODE ROW
FILLFACTOR 80;

In this case, new rows cannot be inserted into the data page after the used space is
larger than 80%. The legal values for the FILLFACTOR can be from 50 to 100, and
the default value is 100.

NOCACHE

The NOCACHE feature is useful when accessing large tables with a table scan.
Although DBMaker uses page buffers in shared memory to cache retrieved data and
avoid frequent disk I/O, table scans on large tables can still cause frequent disk I/O
activity. This happens during a table scan on a table with a larger number of data

pages than the number of page buffers, which causes all page buffers to be exhausted.

Once the NOCACHE option is specified when creating a table, DBMaker only uses
one page buffer to cache the data retrieved from a table during a table scan. This

prevents the page buffers from being exhausted by only one large table scan.

Example

To specify the NOCACHE option:
dmSQL> CREATE TABLE tb staff (nation CHAR(20) DEFAULT ‘R.O.C’,
ID INTEGER NOT NULL,
name CHAR (30) NOT NULL,

©Copyright 1995-2012 CASEMaker Inc. 6-9

O\ Database Administrator’s Guide

6-10

joinDate DATE DEFAULT CURDATE (),
height FLOAT,
degree VARCHAR (200)) IN ts reg
LOCK MODE ROW
FILLFACTOR 80
NOCACHE;

TEMPORARY TABLES

A temporary table may be created for storing data. Temporary tables only exist during a
single session and can only be used by their creator. DBMaker automatically drops
temporary tables when the user that created it disconnects from the database.

Temporary tables support fast data operations. Client users may also create a local
temporary table using the CREATE LOCAL TEMPORARY TABLE syntax.

Example 1

To create a temporary table named tb_student:

dmSQL> CREATE TEMPORARY TABLE tb student (name CHAR(25) NOT NULL,
birthday DATE,
score INTEGER) ;

Example 2

To create a local temporary table named tb_student:

dmSQL> CREATE LOCAL TEMPORARY TARLE tb student (name CHAR(25) NOT NULL,
birthday DATE,
score INTEGER) ;

AUTO UPDATE STATISTICS

The statistics value is very important if a table is read frequently. DBMaker can
automatically update the statistics of a table periodically if a user has specified the

update statistics time interval when creating it.

Example 1

To create a table and specify to automatically update its statistics every seven days:

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

=

dmSQL> CREATE TABLE tb student (name CHAR(25) NOT NULL,
birthday DATE,
score INTEGER)
UPDATE STATISTICS EVERY 7 DAYS;

When the database is running, a user can change the specified statistics value with the

system stored procedure SetSystemOption.

Example 2

The following syntax is used to set update statistics sample to 60 when the database is
running:

dmSQL> call setSystemOption (‘STSSP’, ‘60');

Statistics are only updated after the database has been started. Updating statistics also
requires processor resources and will affect database performance. Selecting an interval
and a time that does not interfere with peak table usage will prevent degradation of

performance while still providing updated statistics.

Browsing Table Schema

The schema of a table may be queried by using dmSQL or the JDBA Tool. JDBA
Tool provides a graphical representation of table schema and allows table schema to be
modified without entering any SQL commands. It is also possible to use the dmSQL
command DEF TABLE to directly query a table’s schema.

Example

To view the schema for table tb_staff:
dmSQL> DEF TABLE tb staff;

CREATE TABLE SYSADM.TB STAFF (
NATION CHAR(20) default 'R.0.C' ,
ID INTEGER not null ,

NAME CHAR(30) not null ,
JOINDATE DATE default CURDATE () ,
HEIGHT FLOAT DEFAULT NULL ,
DEGREE VARCHAR (200) DEFAULT NULL)

©Copyright 1995-2012 CASEMaker Inc. 6-11

O\ Database Administrator’s Guide

6-12

in TS REG LOCK MODE ROW FILLFACTOR 80 NOCACHE;

Altering Tables

After a table is created in DBMaker, a user with modify permission can alter it by:
¢ Adding/dropping columns

¢ Modifying column definitions

+ Changing the FILLFACTOR value

¢ Turning on/off the NOCACHE option

¢ Altering tables to Another Tablespaces

A table’s schema may be altered using dmSQL commands or the JDBA Tool.

ADDING/DROPPING COLUMNS

A user with modify permission can add/drop one or multiple columns in a table
whether the column is empty or not. Adding a new column to an empty table is the
same as expanding the table schema and placing the new column in the last position.
A user with modify permission can also add to the table a new column before or after

any existing column.

When adding a new column to a table, DBMaker not only expands the table schema
but also fills all rows in the new column with NULL values by default. If a user with
modify permission wants to add a column with the NOT NULL integrity constraint
to a table, give a specified value for the existing records on the column (a default value,
as described in “Default Values for Columns”). For detailed SQL syntax, refer to the
SQL Command and Function Reference.

Example 1

To add a column named photo to the tb_staff table:
dmSQL> ALTER TABLE tb_staff ADD COLUMN photo LONG VARCHAR;

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

Example 2

To add a column named city after the existing column name to the tb_staff table and

set the default value to “Taipei™:

dmSQL> ALTER TABLE tb staff ADD COLUMN city CHAR(20) default ‘Taipei’
AFTER name;

Example 3

If the tb_staff table is not empty and a user wants to add a non-null column to it, the
GIVE keyword can be used to specify a value for the existing records on the newly
added column. To add a non-null column named HireDate to the tb_staff table:
dmSQL> ALTER TABLE tb staff ADD (HireDate date NOT NULL give ‘2000-02-
20");

Example 4

To drop a column named photo from the tb_staff table:

dmSQL> ALTER TABLE tb staff DROP COLUMN photo;

MODIFYING COLUMN DEFINITION

The definition of every existing column in a table can be altered, such as column
name, data type, column order, default value, column constraint, etc. Before
modifying the data type of one column, make sure that the new data type is
compatible with the original one, or the modifying operation will fail due to data
incapability. For example, a CHAR type data column cannot be modified to a DATE

type data column.

Example 1

To modify the column named city in the tb_staff table:
dmSQL> ALTER TABLE tbistaff MODIFY city NAME TO empiphoto;

Example 2

To modify the data type for a column named height in the tb_staff table:

dmSQL> ALTER TABLE tb staff MODIFY height TYPE TO decimal (10,2);

©Copyright 1995-2012 CASEMaker Inc. 6-13

O\ Database Administrator’s Guide

6-14

Example 3

To modify the column order for a column named height, place it before the HireDate

column:

dmSQL> ALTER TABLE tb staff MODIFY height BEFORE HireDate;
Example 4

To modify the default value for a column named nation:

dmSQL> ALTER TABLE tb staff MODIFY nation DEFAULT TO ‘Taiwan’;
Example 5

To modify the constraint for a column named height:

dmSQL> ALTER TABLE tb staff MODIFY height CONSTRAINT TO CHECK value <
250;

CHANGING THE LOCK MODE

To gain a higher level of concurrency on simultaneous connections to a database, set
the lock mode to a lower level (such as a ROW lock). However, doing this causes
DBMaker to expend more resources; deciding which lock mode to use on a table

always involves a trade-off. For more information about lock modes, see Section 9.4,
Locks.

Example
To change the lock mode for the tb_staff table:

dmSQL> ALTER TABLE tb staff SET LOCK MODE PAGE;

CHANGING THE FILLFACTOR VALUE

FILLFACTOR may be specified during table creation or later modified. For more
information on the FILLFACTOR option, refer to the subsection “FILLFACTOR” in
Creating Tables.

Example

To change the FILLFACTOR value for a table:

dmSQL> ALTER TABLE tb staff SET FILLFACTOR 90;

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

=

TURNING NOCACHE ON/OFF

The ON/OFF option can be used at any time for NOCACHE. For more information
on the NOCACHE option refer to the subsection NOCACHE in.

Example
To turn the NOCACHE option for a the tb_staff table OFF:

dmSQL> ALTER TABLE tb staff SET NOCACHE OFF;

ALTERING TABLES TO ANOTHER TABLESPACES

You can move a table to another tablespace, and at the same time move the index to
another tablespace if the index and the table in the same tablespace. In addition, if the
index and the table in different tablespace, the index will not be moved to another

tablespace, so we can rebuild index in another tablespace.

Move table to another tablespace can store the table to other disk, and avoid the table
can’t store data while disk full.

Altering table to another tablespace have some limitations:
¢ Users cannot alter a system table, temporary table or view to another tablespace.

¢ Users cannot move a permanent table to SYSTABLESPACE or
TMPTABLESPACE.

¢ Users cannot rebuild index for permanent table in TMPTABLESPACE.
¢ Users cannot rebuild index for temporary table in NON-TMPTABLESPACE.

¢ Users cannot rebuild index for system table in other tablespace.

Example

dmSQL> CREATE TABLE tb staff (cl int, c2 char(10)) in ts reg; // create
table tb staff in ts reg

dmSQL> CREATE INDEX idx desc ON tb staff (cl); // default store index in
ts reg as the table tb staff

dmSQL> ALTER TABLE tb staff MOVE TABLESPACE ts app; // move table
tb staff and index idx desc to ts app

dmSQL> REBUILD INDEX idx desc FOR tb staff IN ts shrink; // rebuild
index idx desc in ts_shrink

©Copyright 1995-2012 CASEMaker Inc. 6-15

O\ Database Administrator’s Guide

6-16

dmSQL> ALTER TABLE tb staff MOVE TABLESPACE ts aut; // only move table
tb staff to ts aut, index idx desc no change

Locking Tables

Although DBMaker automatically handles the lock mechanism whenever a database is
accessed, a table may be manually locked for subsequent SELECT or UPDATE
statements. Locking a table while a user is viewing or modifying it will prevent updates

by other people.

DBMaker supports some options for locking tables, such as shared locks for viewing
data or exclusive locks for modifying data, and the WAIT or NO WAIT option which
is used when obtaining a lock. For more information about these features, see the SQL
Command and Function Reference. To learn about table locks, concurrency control,

and transaction handling, refer to Chapter 9, Concurrency Control.

Example

To lock the tb_staff table for later selections and not wait if it cannot get the table
lock right away:
dmSQL> LOCK TABLE tb staff IN SHARE MODE NO WAIT;

Dropping Tables

A user can drop a table when the table is not being used any more. When a table is
dropped, all data and indexes for this table are dropped, and pages allocated by the
dropped table are released.

Example 1

To drop the tb_staff table use the DROP TABLE command:

dmSQL> DROP TABLE tb staff;

Example 2

To drop the tb_staff table use the DROP TABLE IF EXISTS command:
dmSQL> DROP TABLE IF EXISTS tbistaff,'

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

6.3

Managing Views

DBMaker provides an ability to define a virtual table called a view, which is based on
existing tables and is stored as a definition with a user-defined view name. The view
definition is stored persistently in the database, but the actual data is not physically
stored there. Rather, the data is stored in the original base tables the views were
derived from. A view is defined by a query that references one or more tables or other

views.

Views are a very helpful mechanism in a database. For example, complex queries can
be defined once and used repeatedly without having to be rewritten. Furthermore,
views can be used to enhance the security of a database by restricting access to a

predetermined set of rows and/or columns in a table.

A user cannot determine from a view which rows of tables to update, since a view is
derived from queries on tables. Due to this limitation, views can only be queried

unless the view is derived from a single table.

Creating Views

Views may be created with dmSQL or the JDBA Tool. A view is defined by a name

together with a query that references tables or other views.

Users can specify a list of column names for a view. If column names are not specified,

the view will inherit column names from the underlying tables.

Use CREATE VIEW syntax. For example, to allow other users to see only two
columns from the tb_staff table, create a view with the SQL command shown below.
Users can then view only two columns, (name and ID), from the tb_staff table

through the view vi_staff.

Example 1
dmSQL> CREATE VIEW vi staff (empName, empId) AS
SELECT name, ID FROM tb staff;

Use CREATE OR REPLACE VIEW syntax. For example, a view named vi_staff

already exists, it will allow other users to see only two columns, (name and ID), from

©Copyright 1995-2012 CASEMaker Inc. 6-17

O\ Database Administrator’s Guide

the tb_staff table, but we need to change the view definition to allow the same users to
see only three columns from the tb_staff table, but not change the privileges on the
view. Replace the view with the SQL command shown below. Users can view three

columns, (name, ID and age), from the tb_staff table through the view vi_staff.

S Example 2
dmSQL> CREATE OR REPLACE VIEW vi staff (empName, empId, empAge) AS
SELECT name, ID, age FROM tb staff;

Browsing View Schema

The construction of a view may be queried by using dmSQL or the JDBA Tool. Use
the dmSQL command DEF VIEW to directly query a table’s schema.

S Example

To view the construction for view vi_staff:
dmSQL> DEF VIEW vi staff;

create view SYSADM.VI STAFF (empname,empid) as select name,id from
SYSADM.TB STAFF ;

Dropping Views

A view can be dropped when it is no longer required. When a view is dropped, only
the definition stored in the system catalog is removed. The base tables that the view

was derived from are unaffected.

S Example 1
To drop the view vi_staff use the DROP VIEW command:

dmSQL> DROP VIEW vi staff;
S Example 2

To drop the view vi_staff use the DROP VIEW IF EXISTS command:
dmSQL> DROP VIEW IF EXISTS VifStaff,’

6-18 ©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

6.4

=

Managing Synonyms

A synonym is an alias for any table or view. Since a synonym is simply an alias, it

requires no storage other than a definition in the system catalog.

Synonyms are useful for simplifying a fully qualified table or view name. DBMaker
normally identifies tables and views with fully qualified names that are composites of
the owner and object names. By using a synonym, anyone can access a table or view
using the corresponding synonym without having to make use of the fully qualified
name. Because a synonym has no owner name, each synonym in the database must be
unique so DBMaker can identify them. Synonyms may be created or dropped with
dmSQL or the JDBA Tool.

Creating Synonyms

Example 1
Use CREATE SYNONYM command:

dmSQL> CREATE SYNONYM staff FOR SYSADM.tb staff;

Assume that the owner of the table tb_staff is SYSADM. This command creates the
alias staff for the table SYSAMD.tb_staff. All database users can directly reference the
table SYSAMD.tb_staff through the synonym staff.

Example 2

Use CREATE OR REPLACE SYNONYM command:

dmSQL> CREATE OR REPLACE SYNONYM staff FOR SYSADM.tb staff;

Assume that an alias staff for the table SYSAMD.tb_staff is already exists, you can

replace it without drop it.

Dropping Synonyms

A synonym that is no longer required can be dropped. When a synonym is dropped,

only its definition is removed from the system catalog.

©Copyright 1995-2012 CASEMaker Inc. 6-19

O\ Database Administrator’s Guide

6.5

6-20

S Example 1

=

To drop the staff synonym with the DROP SYNONYM command:
dmSQL> DROP SYNONYM staff;

Example 2
To drop the staff synonym with the DROP SYNONYM IF EXISTS command:

dmSQL> DROP SYNONYM IF EXISTS staff;

Managing Indexes

An index provides support for fast random access to a row. Building indexes for a table
speeds up searching. For example, when a user executes the query SELECT NAME
FROM tb_staff WHERE id = 306004, it is possible to retrieve the data in a much

shorter time if there is an index created for the ID column.

An index can be composed of more than one column, up to a maximum of 32. All the

table’s columns can be used in an index.

An index can be unigue or non-unique. In a unique index, no more than one row can
have the same key value, with the exception that any number of rows may have NULL
values. If a user creates a unique index on a table, DBMaker will check whether all
existing keys are distinct or not. If there are duplicate keys, DBMaker will return an
error message. After creating a unique index on a table, if a user inserts a row in the

table, DBMaker ensures there are no existing rows with the same key as the new row.

When creating an index, the sort order of each index column can be specified as
ascending or descending. For example, suppose there are five keys in a table with the
values 1, 3, 9, 2 and 6. In ascending order, the sequence of keys in the index is 1, 2, 3,

6 and 9, and in descending order, the sequence of keys in the index is 9, 6, 3, 2 and 1.

When a user implements a query, the index order occasionally affects the order of data

output.

Example

If the following query is executed:

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

dmSQL>select name, age from friend table where age > 20

Using an index with a descending order on the column age, the output appears as

follows:

name age
Jeff 49
Kevin 40
Jerry 38
Hughes 30
Cathy 22

A user can specify the fi// factor for tables when creating an index. The fill factor
denotes how dense the keys will be in the index pages. The legal fill factor values are in
the range from 1% to 100%, and the default is 100%. If a user updates data often
after creating the index, the user can set a loose fill factor in the index, for example
60%. If the user never updates the data in this table, then the fill factor can be left at
the default value of 100%.

A user may also specify to create an index on a separate tablespace. This can result in

improved disk I/O for searches that use the index if multiple disks are used.

Before creating indexes on a table, it is recommended to load all data first, especially if
there is a large amount of data for that table. If a user creates an index before loading
the data into a table, the indexes will be updated each time the user loads a new row.
It is far more efficient to create an index after loading a large amount of data than to

create an index before loading the data.

Creating Indexes

Indexes may be created using the Create Index wizard of the JDBA Tool, or the
dmSQL CREATE INDEX command. To create an index on a table, specify the index
name and index columns. Specify the sort order of each column as ascending or

descending. The default sort order is ascending.

©Copyright 1995-2012 CASEMaker Inc. 6-21

O\ Database Administrator’s Guide

S Example 1

To create an index, idx_desc, on the column ID for the table tb_staff in descending
order use the DESC option:

dmSQL> CREATE INDEX idx desc ON tb staff (ID DESC);
S Example 2

To create a unique index, idx_uniq, on the column ID for the table tb_staff use the
UNIQUE option:
dmSQL> CREATE UN'QUE INDEX idxiuniq ON tbistaff (ID) ;

S Example 3

To create an index with a specified fill factor use the FILLFACTOR option:
dmSQL> CREATE INDEX idx fill ON tb staff (name, id DESC) FILLFACTOR 60;

S Example 4

To create an index on tablespace ts_reg:

dmSQL> CREATE INDEX idx reg ON tb staff (name, id DESC) IN ts reg
FILLFACTOR 60;

Creating Expression Indexes

Indexes can be created not only on simple columns, but also on Expression columns

or User Defined Function (UDF) columns.

S Example 1

To create an index, idx_expr, on the expression basepay+bonus for table tb_salary:

dmSQL> CREATE INDEX idx expr ON tb salary (basepay+bonus);

S Example 2

To create an index, idx_substr, on the UDF substring (nation,1,3) for table tb_staff:
dmSQL> CREATE INDEX idx substr ON tb staff (substring(nation,1,3) desc);

6-22 ©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

o Example 3

To create an index, idx_udf, on the expression and UDF abs(bonus) for table
tb_salary:

dmSQL> CREATE INDEX idx udf ON tb staff (basepay+abs (bonus)-tax desc);

Creating Indexes on XML column

To improve XML querie performance, we can create special XML index on XML
columns. The XML index supports XML UDF: extract() and extractvalue(). The
following example shows how to create an index on an XML column using dmSQL.
Please see the SQL Command and Function Reference for additional details on the
syntax and usage of the SQL command CREATE INDEX.

S Example 1

To create an index use the extract XML UDF:

create index idx extr on tb extract (extract (id,
'/order/items/item/@product', NULL));

S Example 2

To create an index use the extractValue XML UDF:

create index idx extrV on tb extract (extractValue (id,
'/order/items/item/@product', NULL));

The primary difference between extract() and extractvalue() are:
extract()

¢ allows a multi-value, a single value or zero value result.

¢ asc/ desc are not allowed

¢ unique index is not allowed

extractValue()

¢ allows a single value or a zero value of the UDF results (when the UDF result is a
multi-value result then the create index fails for existing tuple and the insert data

fails for newly inserted tuple)

©Copyright 1995-2012 CASEMaker Inc. 6-23

O\ Database Administrator’s Guide

6-24

* allows asc / desc

¢ allows unique index

Dropping Indexes

Indexes may be dropped using the JDBA Tool, or the dmSQL DROP INDEX
statement. If the index is a primary key and is referred to by other tables it cannot be
dropped. For information on primary keys, refer to the section Managing Data
Integrity.

Example
To drop the index idx_desc from the table tb_staff:

dmSQL> DROP INDEX idx desc FROM tb staff;

Rebuilding Indexes

Indexes may be rebuilt using JDBA Tool, or the dmSQL REBUILD INDEX
statement. In general, the index will need to be rebuilt when it becomes fragment,
which reduces its efficiency. Rebuilding an index will drop the old index and then

create a new one.

In DBMaker 5.3, user can move a table to another tablespace, if the index and the
table in the same tablespace, then the index will be moved to another tablespace. If the
index and the table in different tablespaces, then the index will not be moved to

another tablespace, so we can rebuild index in another tablespace.

Example 1

To rebuild the index idx_fill for the table tb_staff:
dmSQL> REBUILD INDEX idx_fill FOR tb_Staff;

Example 2
dmSQL> REBUILD INDEX idx FOR tb staff IN ts reg;

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

Managing Text Indexes

A text index is a mechanism that provides fast access to rows in a table that contains
one or more words or phrases in columns. Text indexes contain a representation of all
the text found in the columns they are based on, but the data is encoded and
structured to make retrieval much faster than directly from the table. Once a user
creates a text index for a table, its operation is transparent. The DBMS uses the index

to improve full-text query performance whenever possible.
DBMaker provides two text indexing methods: signature and inverted file (IVE).

Text indexes can be built on all character type columns, including CHAR,
VARCHAR, LONG VARCHAR, LONG VARBINARY, and FILE data types. A
table can have many text indexes and a text index can be built using multiple columns.
A user may create text indexes by using either the JDBA Tool or the CREATE

[SIGNATURE | IVF] TEXT INDEX dmSQL command.

Example

To use a text index in the data column automatically (without specifying it):

dmSQL> SELECT id FROM tb book WHERE data MATCH 'compute';

The string operators for DBMaker include MATCH, CONTAIN, CONTAINS, and
LIKE. Only the MATCH and CONTAINS operators can be applied to a text index

search.

DBMaker provides two different types of text index: signature and inverted-file.
Signature text index is more efficient for small amount of data. Inverted-file text index
usually consumes more storage space but its response for queries is faster for large

amount of data.

Creating Signature Text Indexes

DBMaker creates signature text indexes if no text index method is specified by the
command. A user may create text indexes using either the JDBA Tool, the CREATE
TEXT INDEX dmSQL command or the CREATE SIGNATURE TEXT INDEX

command.

©Copyright 1995-2012 CASEMaker Inc. 6-25

O\ Database Administrator’s Guide

S Example

Creating a signature text index, tidx_name, on the name column for the table
tb_staff:

dmSQL> CREATE SIGNATURE TEXT INDEX tidx name ON tb staff (name);

SIGNATURE TEXT INDEX PARAMETERS

DBMaker provides two parameters for conveniently configuring performance and

storage size of signature text indexes.

+ Total text size (MB) — the estimated total size of all source documents, in
megabytes (MB). The range is 1 through 200 and the default is 32. Please note,
the real total text size is not limited to 200 MB; if the size is larger than 200, set
to 200. However, we strongly recommend using IVF text index to index very

large amounts of data for significantly better query performance.

¢ Scale — the expected index size-to-total text size ratio. If a user sets total text size
to 20 (MB) and expects the text index to use 10 MB of storage, then he should
set scale to 50 (percent). The larger scale, the better search performance. The
range is 10 through 200 and the default value is 40 (in percent)

S Example

To create a text index, tidx_scale on the column name of the table tb_staff that
contains about 40 megabytes of data, and we wish the text index uses about 20
megabytes of storage space:
dmSQL> CREATE SIGNATURE TEXT INDEX tidx scale ON tb staff (name)
TOTAL TEXT SIZE 40 MB
SCALE 50;

¢ Users can use the default setting as text index parameters. To get higher text index
performance or to reduce the text index size, change the text index parameters.
Set the parameters and monitor the text index performance, and then re-adjust

the parameters.

6-26 ©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

Creating Inverted-File (IVF) Text Indexes

A user can create inverted-file text indexes by using the CREATE IVF TEXT INDEX

command.

Example

To create an inverted-file text index, ivfidx_name, on the name column for the table
tb_staff:
dmSQL> CREATE IVF TEXT INDEX ivfidx_name ON tb_staff(name);

INVERTED-FILE TEXT INDEX PARAMETERS
There are two parameters for use in the creating IVF text index command:

Storage path — the logical working directory where the inverted-files will reside in.
Users should define the logical directory in the dmconfig.ini file. The default is the
value of DB_DbDir, the database’s home directory. The detail storage management

and naming convention of inverted-file index will be described in the next section.

Total text size (MB) — the approximate total size of documents will be indexed in
the future. The unit of size is mega-byte (MB). Based on the size, DBMaker decides
how many partitions will be made. It may range between 1 MB to 10,000 MB , and
the default value is 500 MB.

Example

To create an inverted-file text index, ivfidx_name in the path \IVFDIR on the column
name of the table tb_staff that contains about 400 MB of data:

First, add a logical path in the database’s dmconfig.ini section.

MYPATH1 = \IVEDIR

Use the following command.

dmSQL> CREATE IVF TEXT INDEX ivfidx name ON tb staff (name)
2> STORAGE PATH MYPATH1
3> TOTAL TEXT SIZE 400 MB;

©Copyright 1995-2012 CASEMaker Inc. 6-27

O\ Database Administrator’s Guide

6-28

=

While creating inverted-file text indexes, it requires large amount of memory resource.
DBMaker will take a simple rule to decide the maximum memory usage for creating
text indexes. If DBMaker cannot detect free memory or free memory resource less
than 128 MB, then the maximum memory usage will be 64 MB, otherwise will be
half of free memory resource. Users can specify the approximate upper bound of
memory usage manually through dmconfig.ini by adding a keyword entry
DB_IFMem in megabyte (MB).

Example

To specify 100 MB memory usage for creating inverted-file text-index in
dmconfig.ini:

DB _IFMEM = 100

STORAGE OVERVIEW

In addition to the working directory specified by the Storage path parameter,
DBMaker will generate sub-directories in this directory to manage different inverted-
file indexes. Each inverted-file index has a unique time version, so DBMaker can use
this property to generate a unique sub-directory to store index files. Naming the sub-
directory is described later. Sub-directories and inverted-files cannot rollback when an

inverted-file index is dropped.

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

Specified
Working
Directory

IVF OID1 IVF OID2 IVF OID3

For example, \DBMaker5.3 is a specified working directory, and we create an IVF
under this working directory with index name IVF1, time version 1024476670, then
a sub-directory IVF1.1024476670 is created. All inverted-files are resided in the sub-
directory. There are three kinds of inverted-file with different term type, Single-Byte
term, Uni-Gram term and Bi-Gram term, and each inverted-file has several partitions

decided by text size.
The following is the conceptual structure of IVF index files with four partitions.
Choosing between signature and inverted-file will depend on the following factors:

1. Index size — the size of signature index will not exceed the ratio set by the Scale
parameter, which is 40% of total data size by default. The average size of inverted-file
indexes is about 1.5 times of the data size, but could grow to two or even three times,

depending on the property of data.

2. Response time for queries — on a modern personal computer with sufficient

memory and processing power, users can expect sub-second response time from

©Copyright 1995-2012 CASEMaker Inc. 6-29

O\ Database Administrator’s Guide

inverted-file indexes even the data size is gigabytes. Signature indexes will take longer

to respond, especially when the data size is getting large.

3. Integration with database — unlike signature indexes which are stored as BLOB
objects, inverted-file indexes are stored as external files, so, for example, users cannot

rollback a dropping inverted-file index operation.

Try both types of text index to find which one suits the data’s characteristics best. As a
rule of thumb, for data size smaller than 100 MB, signature indexes respond to queries

reasonably fast and usually take less storage space.

Creating Text Indexes on Multiple Columns

A text index can be built using multiple columns. Use CONTAINS and the
concatenation operator (||) to perform multi-column text queries. Users can query on
all columns of the index or just part of them. That is, the column list in a match query
must be contained in the column list of a text index to use the text index. Users are
also allowed to use the multi-column query syntax even if no text index is created on

the column list, but no text index will be used.

Searching on multiple columns is logically equivalent to merging all columns’ data

then searching.

S Example 1

To create an inverted-file text index ivfidx_multiple on columns author, subject and

content of the table tb_document:

dmSQL> CREATE IVF TEXT INDEX ivfidx multiple ON
tb document (author, subject, content) ;

dmSQL> SELECT author FORM tb document WHERE
2> CONTAINS (author || subject || content, 'reagan');

S Example 2

To query on partial column lists:

dmSQL> SELECT author FORM tb document WHERE

2> CONTAINS (author || content, 'reagan');

dmSQL> SELECT author FORM tb document WHERE CONTAINS (subject, 'reagan');

6-30 ©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

=

=

dmSQL> SELECT author FORM tb document WHERE subject MATCH 'reagan';

Example 3

In this example, the column subject is included in the text index ivfidx_multiple but
abstract is not, so this query will not use any text index.

dmSQL> SELECT author FORM tb document WHERE

2> CONTAINS (subject || abstract, 'reagan'); // no text index used

Example 4

This example illustrates the behavior of query on multiple columns.

dmSQL> CREATE TABLE tb example (cl char(20), c2 char (20), c3 serial);

dmSQL> INSERT INTO tb example VALUES ('apple orange', 'banana grape');

dmSQL> INSERT INTO tb example VALUES ('grape orange', null);

dmSQL> CREATE TEXT INDEX ivfidx example on tb example (cl, c2);

dmSQL> SELECT c3 FROM tb example WHERE CONTAINS (cl || c2, 'apple');
Cc3

1 rows selected

dmSQL> SELECT c3 FROM tb example WHERE CONTAINS (cl || c2, 'orange &
grape') ;

2 rows selected

Creating Text Indexes on Media Types

DBMaker's large object columns can register media types. For example, a LONG
VARBINARY column knows its content is a Microsoft Word file. This allows
DBMaker to invoke the proper functions to perform full-text searches on Microsoft
Word documents. DBMaker also provides media UDF for converting some media
formats to pure text and a UDF (CHECKMEDIAFORMAT) to query the media

©Copyright 1995-2012 CASEMaker Inc. 6-31

O\ Database Administrator’s Guide

6-32

format. Table 6-1 summarizes the media types available and their associated SQL

commands.

MEDIA TYPE DATA TYPE FILE TYPE
Microsoft Word MsWordType MsWordFileType
HTML HtmlIType HemlFileType
XML XmlType XmlFileType
Microsoft PowerPoint MsPPTType MsPPTFileType
Microsoft Excel MsExcel Type MsExcelFileType
PDF PDFType PDFFileType

Table 6-1: Media types and corresponding SQL commancds

Internally, MsWordType MsPPT Type, MsExcelType and PDFType are treated as a
LONG VARBINARY object; HimlType and XmlType are LONG VARCHAR
objects and MsWordFileType, HtmlFileType , XmlFileType, MsPPTFileType,
MsExcelFileType and PDFFileType are FILE objects.

FULL-TEXT SEARCH ON MEDIA-TYPE COLUMNS

Users can create a text index and perform a full-text search on the media type, but first
the media format must be converted into pure text. DBMaker will not understand
new media formats so conversion of the media format into pure text will not be

possible nor will full-text search on the media format

DBMaker provides the following media UDFs for converting some media format to

pure text:

DOC, XLS, PPT, HTM, PDF.

¢+ DOCTOTXT(BLOB) RETURNS NCLOB;
¢ XLSTOTXT(BLOB) RETURNS NCLOB;
¢ PPTTOTXT(BLOB) RETURNS NCLOB;
¢ HTMTOTXT(CLOB) RETURNS CLOB;
¢+ PDFTOTXT(BLOB) RETURNS NCLOB;

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

=

=

=

MATCH and CONTAINS can also be used for performing full-text search on media-

type columns just as on regular text columns.

Example 1
Converts a PowerPoint document to a temporary BLOB containing the pure text of
blob as Unicode.
dmSQL> create table tb ppt (pptfile long varbinary) ;
dmSQL> insert into tb ppt values(?);
dmSQL/Val> &e:\udf\pptfile\pfile.ppt;
dmSQL/Val>end;
dmSQL> select PPTTOTXT (pptfile) from tb ppt;
Example 2
Create a table with a MS Word type column, insert some data, and search.
dmSQL> create table tb minutes(id int, doc MsWordFileType) ;
dmSQL> insert into tb minutes values (1, 'c:\meeting\20020403-1.doc');
dmSQL> select id from tb minutes where doc match 'Jeff';
id
1
1 rows selected
Example 3

Create a signature text index on the column doc of the table tb_minutes and search.
dmSQL> create text index tidx doc on tb minutes (doc);
dmSQL> select id from tb minutes where doc match 'Jeff';

id

1 rows selected

©Copyright 1995-2012 CASEMaker Inc. 6-33

O\ Database Administrator’s Guide

6-34

CHECK COLUMN DATA’S MEDIA TYPE

It is possible that a media-type column contains data of different types. DBMaker can
verify the content during inserting or updating data to media-type columns.
DBMaker provides a built-in function CHECKMEDIAFORMAT to check whether
the column's data match the specified media format. If types match, the function
returns 1, otherwise returns 0. In DBMaker5.3, these media type formats can be

supported to office 2007-2010 version.

DBMaker support the following media type formats: DOC, XLS, PPT, HTM and
PDF.

¢+ DOC: Microsoft Words Document

¢ XLS: Microsoft Excel Document

¢ PPT: Microsoft Power Point Document
¢+ HTM: Hypertext Markup Language

¢ PDF: Portable Document Format

NOTE 7)e format of PDF supported by DBMaker are 1,2 to 1.7.

Example

To check weather the media type format is correct:

dmSQL> Create table tb checkmedia (note long varbinary) ;
dmSQL> insert into tb checkmedia VALUES (?);

dmSQL/Val> &E:\DOCS\Media.doc;

dmSQL/Val> &E:\DOCS\Media2007.docx;

dmSQL/Val> end;

dmSQL> select checkmediaformat (note, 'doc') from tb checkmedia;

It will returns 0,1 or NULL.
¢ Returns 1 when the BLOB’s content matches the specified media format

¢ Returns 0 when the BLOB’s content does not match the specified media format

¢ Returns NULL when the blob is NULL.

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

When the table column defined with original media type (system domain) and the
media format is not the correct format, the migration may fail. To resolve this
problem, either remove the invalid media data or change the data type to the CLOB
or the BLOB data type to avoid the step of checking for the correct media format.

Dropping Text Indexes

Text indexes may be dropped using the JDBA Tool or the dmSQL DROP TEXT
INDEX statement.

Example

To drop the tidx_name text index from the table tb_staff:

dmSQL> DROP TEXT INDEX tidx name FROM tb staff;

Rebuilding Text Indexes

Unlike indexes, the text index will not simultaneously reflect table content if new
records are inserted or old records are updated. Therefore, they need to be rebuilt
manually. Data updated after the most recent rebuild will not be found during a text

index search.

Example

dmSQL> CREATE TABLE tb song (id int, name varchar (20));
dmSQL> INSERT INTO tb song VALUES (1, 'Endless Love');

1 rows inserted

dmSQL> CREATE TEXT INDEX tidx name ON tb song (name) ;
dmSQL> INSERT INTO tb song VALUES (2, 'Love Story'):

1 rows inserted

dmSQL> SELECT * FROM tb song WHERE name MATCH 'love';

id name

1 Endless Love

1 rows selected

There should be two records to match the search pattern, but only one is retrieved.

©Copyright 1995-2012 CASEMaker Inc. 6-35

O\ Database Administrator’s Guide

6-36

INCREMENTALLY REBUILD TEXT INDEXES
The REBUILD TEXT INDEX command rebuilds the updated data incrementally by

collecting all new and updated records, building new signature vectors, and appending
the new vectors to the tail of the text index. When only a few records have changed,
the REBUILD TEXT INDEX <index_name> INCREMENTAL command is the
fastest method for rebuilding.

Example

To rebuild a text index incrementally and display the results:
dmSQL> REBUILD TEXT INDEX tidx name FOR tb song;
dmSQL> SELECT * FROM tb song WHERE name MATCH 'love';

id name

1 Endless Love
2 Love Story
2 rows selected

FULLY REBUILD TEXT INDEXES

If a large number of documents are deleted or updated, use the REBUILD TEXT
INDEX <index_name> FULL command to fully rebuild a text index with its original

type (signature or inverted file) and parameters.

Example 1

To fully rebuild the tidx_name text index for the table tb_song:
dmSQL> REBUILD TEXT INDEX tidxiname FOR tbisong;

To reset the creating text index parameters of a text index or use a different type of

text index, it must be dropped and re-created.

Example 2

To rebuild the tidx_name signature text index for the table tb_song as an inverted-file

index:

dmSQL> DROP TEXT INDEX tidx name FROM tb song;

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

=

dmSQL> CREATE IVF TEXT INDEX tidx name ON tb song (name) ;

Example 3

To fully rebuild the tidx_name signature text index for the table tb_song with a new
total text size.
dmSQL> DROP TEXT INDEX tidx name FROM tb song;

dmSQL> CREATE TEXT INDEX tidx name FROM tb song (name) TOTAL TEXT SIZE 60
MB;

Boolean Text Search

Not only can the MATCH operator search a simple text pattern, but also complex

Boolean operations.

A user can specify the following Boolean characters in a search pattern:

‘& — AND

‘'~ OR

‘> — EXCLUDE

‘(“ = Left bracket

)’ — Right bracket

The precedence of Boolean characters is: bracket > EXCLUDE = AND > OR. When a

MATCH pattern contains Boolean characters, all the other characters between
Boolean characters are processed as simple search patterns. For example, if the
MATCH pattern is “coffee | tea | apple juice”, then the search pattern includes

“coffee”, “tea” and “apple juice”.

Example 1

To search for documents that contain ‘love’ and ‘friend’:

dmSQL> SELECT * FROM tb song WHERE name MATCH 'love & friend';

©Copyright 1995-2012 CASEMaker Inc. 6-37

O\ Database Administrator’s Guide

6-38

S Example 2

The following searches the documents that contain ‘love’ or ‘friend’ but do not
include ‘endless love’.

dmSQL> SELECT * FROM tb song WHERE name MATCH ' (love | friend) - endless
love';

Example 3

SQL syntax Boolean operators, such as AND and OR, can be used to get the same
results as the MATCH pattern’s Boolean operators. However, it has lower
performance since only the last part of the search pattern uses the text index. For
example, the following SQL command will only apply the text index scan when
searching for the string ‘friend’, and will use a standard non-indexed search for the
string ‘love™:

dmSQL> SELECT * FROM tb song WHERE name MATCH 'love’ AND name MATCH
‘friend’;

Fuzzy Search

Sometimes users would like to search imprecise patterns. If only exact phrases are
allowed, the query “‘William Clinton’ will not find “William Jefferson Clinton’ and
vice versa. A Boolean expression like “William & Clinton’ may return many irrelevant
results. DBMaker provides a fuzzy search feature allowing users to perform imprecise

queries without receiving too many irrelevant results.

A phrase led by a 2’ (Question mark) will be evaluated as a fuzzy expression, e.g.,
"?intel pentium'. Words used for a search in a fuzzy expression can be separated by up
to four words in the target text. For example, "?intel pentium' will find 'Intel will
release its 1GHz Pentium III processor', and '?amd k7 athlon"AMD has renamed its
K7 processor as Athlon'.

A number of words in the query may be missing from the result set. For example
"?William Jefferson Clinton' can find "William Clinton' and "William J Clinton', but
the first word of the query must appear; the query '*William Clinton" will not find
'Bill Clinton'.

Fuzzy expressions can be combined with other text Boolean operations.

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

S Example

DmSQL> SELECT content FROM tb document WHERE content MATCH '?intel
pentium & ?amd k6'

DmSQL> SELECT title FROM tb document WHERE title MATCH ‘al gore

| ?george bush’

The phrase in a fuzzy expression cannot contain any other operators. Thus the
expression “intel pentium & amd k6' is evaluated as '(intel pentium) & (amd ko),

and "(intel & pentium)' generates an error.

Near logic full-text search

A fuzzy match allows users to perform inexact queries without receiving many
irrelevant returns. A near match search is similar to a fuzzy search, but more exact. It
ensures that all words in the query string appear in the text. A phrase led by a '~'(tilde
mark) will be evaluated as a near expression. For example, ?amd sales 1ghz athlon’ will
find ‘AMD announced quarterly sales of its 1ghz Athlon chip’, but not, ‘AMD

announced quarterly sales of its Athlon chip’.

Near match search expressions can be combined with other text Boolean operations.

S Example

DmSQL> SELECT content FROM tb document WHERE content MATCH '~intel
pentium & ~amd k6'

DmSQL> SELECT title FROM tb document WHERE title MATCH ‘al gore |
~george bush’

Fuzzy/Near Logic Matching Rules

The following four rules apply to the matching of a query string to the result string.

1. The first word of the query must appear, e.g., the query '?William Clinton' does not
find 'Bill Clinton'.

2. Words can be separated by a preset number of words (“proximity”), e.g., "?intel
pentium' will find 'Intel will release its 1 GHz Pentium III processor', and '?amd k7

athlon"AMD has renamed its K7 processor as Athlon'. Currently the number of

©Copyright 1995-2012 CASEMaker Inc. 6-39

O\ Database Administrator’s Guide

6-40

additional words in the matched result set between words in the query string can be

no greater than 4.

3. A number of words in the query may be missing from the result set, e.g., '*William
Jefferson Clinton' can find "William Clinton" and "William] Clinton'. The maximum

allowed number of missing words is determined by the formula:
max_miss = num_words - round(num_words X threshold).
The current threshold is 0.75.

4. All words in the query must appear in the original order, e.g., ?amd 1ghz k7 athlon'
will find '"AMD will announce 1 GHz Athlon', but not '"AMD Athlon, formerly

known as K7'.

A phrase led by a *~’ (tilde mark) will be evaluated as a near expression, e.g., '~intel
pentium'. Near search is a special case of fuzzy search that meets the rules 1, 2 and 4

above but does not allow for missed words.

User-Defined Stopword

As opposed to a keyword-based system, full-text retrieval software indexes every word
in a document, with the exception of stopwords. Stopwords are terms that full-text
retrieval software is programmed to ignore during the indexing and retrieval processes,
to prevent the retrieval of extraneous records. Generally, a stopword list includes
articles, pronouns, adjectives, adverbs and prepositions (e.g., the, they, very, not, of)
that are common in the English language. You can also apply this rule to the Chinese

language or any double-byte-encoded text, for example: [+ We+ Wi and If;.
SEARCH PATH FOR STOPWORD LIST

DB_StpWd = <string>

This keyword indicates the name of the stopword list definition file that is put in the
shared/stopword subdirectory of DBMaker’s installation directory. The stopword list
definition file is a pure text file, which would affect the text index result in DBMaker.
This keyword is used when the database creating and retrieving text index. Without
this keyword, database search pre-defined stopword list definition based on LCode.

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

default value:
DB_LCode Stopword List Definition
0 English (ASCII) en.tab
1 Traditional Chinese (BIG5) tw.tab
2 Japanese (Shift JIS + Half Corner) jp-tab
3 Simplified Chinese (GB) cn.tab
4 Latinl code (ISO-8859-1) en.tab
5 Latin2 code (ISO-8859-2) en.tab
6 Cyrillic code (ISO-8859-5) en.tab
7 Greek code (ISO-8859-7) en.tab
8 Japanese code (EUC-JP) jp.tab
9 Simplified Chinese (GB18030) cn.tab
10 UTE-8 (UTE-8) en.tab

valid range: file name of the user-defined stopword list definition file
see also: DB_LCode

where to use: server side (only for creating and searching text index)

Default Stopword List

¢ Ifyou do not specify any configuration, DBMaker should load default stopwords
that are in a pre-defined file and based on LCODE. This feature can be used by

users of previous versions of DBMaker.

¢ DBMaker searches the pre-defined file in local directory, and installs the
directory.

©Copyright 1995-2012 CASEMaker Inc. 6-41

O\ Database Administrator’s Guide

6-7

6-42

User Defined Stopword List
¢ You can specify a stopword list through the configuration file DB_STPWD.

DBMaker loads the file when you create a text index or retrieve objects from the

text index.

¢ DBMaker searches the file in local or user specified directory, and installs the
directory.

Disable Stopword List
There are two ways to disable a stopword list:
¢ Rename or remove the pre-defined file

¢ Define a non-existing stopword list in the configuration file

Managing Memory Tables

Memory tables, for almost all intents and purposes, function in the same manner as a
permanent table in DBMaker. The differences lie in the fact that memory tables are
temporary tables, their life cycle being connection based. This means that a memory
table exists only as long as long as there is a connection to the database. When a user
severs their connection to the database, when logging out of the system to clock out
for the day for example, the memory table and it’s contents will be lost to the user.
Memory tables are only visible during their connection to the database. Once
connection to the database is lost, they are no longer visible. Unlike a permanent
table, memory tables are only stored in the memory of the machine that created them.
They can not be used by a group and they can only have data selected or inserted, they
do not support updating or delete data functions. Memory tables do support the
transaction controls: commit, rollback, define save point, rollback to save point, and

internal save point.

To create a memory table use the dmSQL syntax CREATE MEMORY TABLE.
Details on syntax and usage of the SQL command CREATE MEMORY TABLE can
be found in the SQL Command and Function Reference.

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

S Example

To create memory table tb_memory:

create memory table tb memory (id int, name char(10), brithday date);

Hash Index Management

Memory tables are stored in the memory of the machine that created it, for this reason
memory tables do not support the B-tree structure of other table types. To help users
when using memory tables users are able to create hash indexes on memory tables.
Hash indexes can only be created on memory tables. The benefit of a hash index is
that users have very quick access to data stored in the hash index. Hash indexes also
improve equal expression and equal join performance. To create a hash index on a
table users can use the CREATE HASH INDEX index_name ON table_name
(column_name, ...) [bucket n]; where index name is the name of the hash index being
created, table name is the name of the memory table, column name is the name of the
column in the memory table being effected (this value cannot specify asc/desc
columns) and bucket n sets the array size for the hash table being created. For
example, with the memory table created, a hash index hidx, can be made on memory

table th_memory, using columns id and name with an array size of 31.

Example

To create hash index hidx on memory table tb_memory from the previous example:

create hash index hidx on tb memory (id, name) bucket 31;

Managing Data Integrity

Applying constraints, or rules, to ensure the data meets certain criteria, can ensure the
integrity of data. For example, verifying that an input value for a particular data item
is within the correct range of values, e.g., a new employee’s age must be between 16

and 90, is an example of data integrity.

In general, the different types of data integrity applicable to tables include those

described in the following subsections.

©Copyright 1995-2012 CASEMaker Inc. 6-43

O\ Database Administrator’s Guide

6-44

=

Not Null

By defaulg, all columns in a table allow NULL values. NOT NULL indicates that
NULL values are not permissible in a column defined with the NOT NULL keyword.

Unique Indexes

Unique indexes, mentioned in section 6.5, Managing Indexes, can be used to ensure no
two rows of a table have duplicate values, except NULL values, in a specified column

or set of columns.

Unique Constraints

A UNIQUE constraint may be set on a column, a set of columns, or an entire table.
The UNIQUE constraint ensures that every row in a column has a different value. No
row may have the same value in the column or columns that a UNIQUE constraint is

placed on.

Example

To create a table with the UNIQUE constraint on column Name:
dmSQL> CREATE TABLE tb student (Name CHAR (50) CONSTRAINT u UNIQUE,
mathematics SMALLINT) ;

Check Constraints

A CHECK constraint on a column or set of columns requires that a specified
condition be true for every row of the table. If an INSERT or UPDATE statement is
issued and the condition of the CHECK constraint is evaluated as false, the statement

will fail.

In general, a CHECK constraint can be defined on a column (column constraint) or

set of columns (table constraint).

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

COLUMN CONSTRAINTS

A column constraint is defined on a specific column and does not affect the other
columns of the same table. When inserting a new row or updating an existing row,

each column constraint is evaluated.

TABLE CONSTRAINTS

A table constraint is defined on a set of columns. When inserting a new row or
updating an existing row, the table constraint is evaluated after, all column constraints
are evaluated as true. Only after the table constraint is also evaluated as true will the

statement be processed.

S Example 1

To create a table with column and table constraints:
dmSQL> CREATE TABLE tb student (mathematics SMALLINT
CHECK VALUE >= 0 AND VALUE <= 100,
chemistry SMALLINT
CHECK VALUE >= 0 AND VALUE <= 100,
CHECK mathematics + chemistry <= 200);

S Example 2

To create a table with column and table constraints using standard SQL99 syntax:
dmSQL> CREATE TABLE tb student (mathematics SMALLINT
CONSTRAINT con math CHECK VALUE >= 0 AND VALUE <= 100,
chemistry SMALLINT
CONSTRAINT con chem CHECK VALUE >= 0 AND VALUE <= 100,
CONSTRAINT con_sum CHECK mathematics + chemistry <= 200);

The keyword VALUE is used to represent the value of the column in column
constraints, but the columns names are used to represent the values of the columns in

a table constraint.

©Copyright 1995-2012 CASEMaker Inc. 6-45

O\ Database Administrator’s Guide

6-46

Primary Keys

A table can have one primary key, which includes a column or a group of columns
with unique values to identify each row. A primary key is similar to a unique index
except that its columns cannot contain NULL values. When a user creates a primary
key, DBMaker will create a unique index called PrimaryKey on the table. After
creating a table, primary keys may modified or added as long as all columns to be in
the primary key contain unique, non-null values. A primary key may be added to a
table or modified by using the ALTER TABLE statement. Furthermore, a primary key
added to a table or modified in this fashion may be stored on a different tablespace
from the table.

CREATING PRIMARY KEYS

Example 1

To create a table with its primary key on the ID column:
dmSQL> CREATE TABLE tb student (
D INTEGER PRIMARY KEY,
name CHAR (30),
nation CHAR (20)
)i

Example 2

To create a table with a compound primary key on the ID and name columns on
tablespace ts_reg:
dmSQL> CREATE TABLE tb student (

ID INTEGER,

name CHAR (30),

nation CHAR(20),

PRIMARY KEY (ID, name)

) in ts reg;
Example 3

To add a primary key to the tb_student table:

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

=

dmSQL> ALTER TABLE tb student PRIMARY KEY (ID , name);
Example 4

To add a primary key PK1 to the tb_student table in tablespace ts_reg using SQL99
standard syntax:

dmSQL> ALTER TABLE tb student ADD CONSTRAINT PK1 PRIMARY KEY (ID , name)
IN ts_reg;

Example 5

To create a table with its primary key on the ID column using SQL99 standard
syntax:
dmSQL> CREATE TABLE tb student (
ID INTEGER CONSTRAINT pkl PRIMARY KEY,
name CHAR (30),
nation CHAR(20)
)i

DROPPING PRIMARY KEYS

A user can drop a primary key when it is no longer necessary. Before dropping the

primary key, all foreign keys that refer to that primary key should be dropped.

Example

To drop the primary key for the tb_student table:
dmSQL> ALTER TABLE tb student DROP PRIMARY KEY;

Foreign Keys (Referential Integrity)

A column in a table containing the same values as the primary key from another table
is known as a foreign key. A foreign key denotes the relationship between the two
tables. A user can create a foreign key on a column or a group of columns in a table,
and use it to reference a column or group of columns from another table. The
referenced columns should be a primary key or a unique index, and cannot contain
NULL values.

©Copyright 1995-2012 CASEMaker Inc. 6-47

O\ Database Administrator’s Guide

6-48

Referenced columns must already contain the key values being inserted into a new row
for the foreign key table. If they are not present, the user will not be allowed to insert
the row. In addition, all key values in the foreign key table must be deleted before
deleting the key values in the referenced table.

A user can create or drop a primary key or foreign key whenever it is necessary.
DBMaker will check the uniqueness of a primary key when it is created. DBMaker
will also check whether all the key values already exist in the referenced table when a

foreign key is created.

CREATING FOREIGN KEYS

A foreign key is used to refer to another table by specifying the referencing and
referenced columns. Both the referencing and referenced columns should be mapped
to each other; their schema should be the same. The mapping columns should be the
same type and length. The referenced columns (specified by the primary key or unique
index) should be NOT NULL, but the referencing columns (specified by the foreign
key) can be NOT NULL or NULL. If the referenced column(s) are not specified, the
primary key on the referenced table is regarded as the referenced column(s). Foreign
keys may be created using the JDBA Tool Create foreign key wizard or the dmSQL
FOREIGN KEY option.

Example 1

To create a foreign key f1 for the tb_salary table, referencing the tb_staff table with a
compound primary key for its ID and name columns:

dmSQL> ALTER TABLE tb salary FOREIGN KEY f1 (ID, name) REFERENCES

tb staff;

Example 2

Alternatively, specify the foreign key while creating the tb_salary table:
dmSQL> CREATE TABLE tb salary (

ID INT,

name CHAR(30),

basepay INT,

bonus INT,

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

tax INT,
FOREIGN KEY f1 (ID, name) REFERENCES tb staff);

S Example 3

Using SQL99 standard syntax, specify foreign key f1 while creating table th_example:
dmSQL> CREATE TABLE tb example (
cl int,

c2 int CONSTRAINT f1 REFERENCES tb other (cl) ON DELETE SET
NULL) ;

If a primary key exists for the tb_staff table, a foreign key can be made for another
table to refer to it without specifying the referenced columns.

DROPPING FOREIGN KEYS

If the relationship defined by a foreign key is not necessary, drop it using the JDBA
Tool or the dmSQL DROP FOREIGN KEY command.

Example 1

To drop a foreign key from the tb_salary table:

dmSQL> ALTER TABLE tb salary DROP FOREIGN KEY f1;

DBMaker provides a feature to automatically generate serial numbers. This feature is
especially useful in multi-user environments for generating and returning unique

sequential numbers without the overhead of disk I/O or transaction locking.

Serial numbers are signed 32-bit integers in DBMaker. A table can only have one

column containing the SERIAL data type for generating serial numbers.

A user can specify the starting number for the SERIAL type column in any table when
creating a table. If the starting number for a SERIAL type column is not specified, it is
setto 1.

To trigger DBMaker to generate a serial number, insert a new row and supply a

NULL value for the serial column. If a user inserts a new row and supplies an integer

©Copyright 1995-2012 CASEMaker Inc. 6-49

O\ Database Administrator’s Guide

value instead of a NULL value, DBMaker will not generate a serial number. If the
supplied integer value is greater than the last serial number generated, DBMaker will
reset the sequence of generated serial numbers to start with the supplied integer value.

SERIAL type columns cannot be defined with default values or constraints.

Creating Serial Columns

A SERIAL type column may be created using the JDBA Tool or dmSQL. A serial
column must be defined with the SERIAL, BIGSERIAL type keyword and an

optional starting number.

S Example
To create a SERIAL type data column ID for the tb_staff table and specify its starting

number as 1001:
dmSQL> CREATE TABLE tb staff (nation CHAR(20) DEFAULT ‘R.O.C’,
1D SERIAL(1001),
name CHAR (30) NOT NULL,
joinDate DATE DEFAULT CURDATE (),
height FLOAT,
degree VARCHAR (200)) IN ts reg;

Generating Serial Numbers

DBMaker automatically generates serial numbers when a NULL is inserted into the
SERIAL type column.

S Example

To insert a new row into the tb_staff table and generate a serial number for the
column ID :
dmSQL> INSERT INTO tb staff VALUES

(‘.s.A’, NULL, ‘Jeff’, 6.6, ‘Director’, NULL);

6-50 ©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

6.10

=

=

Retrieving Serial Numbers

DBMaker keeps the last generated serial number in the LAST_SERIAL column of the
system table SYSCONINFO for each connection. After inserting a record containing
a serial number, the serial number can be retrieved from LAST_SERIAL.

Example

To get the serial number that has just been generated for the inserted record:
dmSQL> select LAST SERIAL from SYSCONINFO;
IAST SERIAL

200

1 rows selected

Resetting Serial Numbers

A user can reset the counter for a serial column. This allows a new sequence to be

started in a serial column without having to modify the table.

Example

To alter the serial counter value for the tb_staff table from its current value to 3000:

dmSQL> ALTER TABLE tb staff SET SERIAL 3000;

A domain is a type of integrity constraint used when defining a column. Domains
specify the data type for the column, and may specify a default value or a value
constraint. When a column is defined using a domain, it inherits the properties of the
domain, (data type, default value, and value constraint), without requiring the user to

specify them.

Specifying the default value and value constraint using domains achieves the same
result as specifying them in a standard column definition. If a user specifies a default

value for a column, it will override the default value specified in a domain.

©Copyright 1995-2012 CASEMaker Inc. 6-51

O\ Database Administrator’s Guide

6-52

Any value constraints specified in the column definition will be used in addition to the
value constraints specified in the domain. If a user defines a column using a domain
and specifies additional value constraints, the additional value constraints must not

conflict with those defined in the domain.

DBMaker does not check for conflicting value constraints, so it may be possible to
define value constraints that would not allow the user to enter any values. All data
types supported by DBMaker except the SERIAL type can be used in domains.

Creating Domains

A domain is defined by a domain name, an optional default value, and an optional
constraint. For example, a user might want to ensure that all columns dealing with
some form of tites, (e.g., movie, CD, or videotape), have a data type of VARCHAR,
are no more than 35 characters in length, and do not permit insertion of NULL
values. Domains may be created using the JDBA Tool or the dmSQL CREATE
DOMAIN statement.

Example 1

The keyword VALUE is used to represent the value of the column defined on the
domain. To create a specific domain that is used in the subsequent CREATE TABLE

statements:

dmSQL> CREATE DOMAIN title type VARCHAR(35) CHECK VALUE IS NOT NULL;

Example 2
To define columns as in the CREATE TABLE statement:

dmSQL> CREATE TABLE movie titles (title title type, ..., ...)

CREATING DOMAIN WITH TEXT CONVERTER

A media type is a domain having specific characteristic with the media format. User
can create domain using the TEXT CONVERTER syntax in CREATE DOMAIN
clause. When user have specified the TEXT CONVERTER syntax on the domain,
DBMaker uses the TEXT CONVERTER expression to convert the CLOB, NCLOB,
BLOB or FILE data to pure text for creating a text index and PURETEXT() UDF.

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

6.11

The TEXT CONVERTER function-name should contain only BLOB related
argument type. The return type must be the CLOB or the NCLOB data type or

DBMaker returns an error. Not more than 32,767 domains can be created with the

TEXT CONVERTER syntax.

NOTE User cannot specify expression, function without argument or function with more
argument in the TEXT CONVERTER clause

Example

To define a domain MSWORDTYPE:
DmSQL> CREATE DOMAIN MSWORDTYPE AS BLOB
TEXT CONVERTER DOCTOTXT
CHECK VALUE IS NULL OR CHECKMEDIAFORMAT (VALUE, 'DOC') = 1;

To create a table tb_ MT with domain MSWORDTYPE:
DmSQL> CREATE TABLE tbiMT (C1 MSWORDTYPE) ;

Dropping Domains

A domain can be dropped only when there are no columns referenced on it. Drop

domains using the JDBA Tool or the dmSQL DROP DOMAIN statement.
Example

To use the DROP DOMAIN statement:
dmSQL> DROP DOMAIN titlegtype;

Unloading and Loading Objects

Sometimes the user may need to save database data to an external text file. DBMaker
provides the UNLOAD and LOAD commands just for this purpose. Objects that are
unloaded from the database are not removed from the database; they are simply saved
as one or more external text files. When an object is loaded onto a database, the

schema of that object is also recreated.

©Copyright 1995-2012 CASEMaker Inc. 6-53

O\ Database Administrator’s Guide

6-54

=

Unloading Objects

Unload is a tool provided by dmSQL used to transfer the contents of a database to an
external text file. After the unload procedure succeeds, dmSQL will produce two text
files. One stores the script, with extension name .s0, to establish the database object

and the other stores the BLOB data, with the extension name .bn.

There are eight options for the unload command: unload database, unload table,
unload schema, unload data, unload project, unload module, unload procedure, and
unload procedure definition. Unloading an object requires that the user have SELECT
privilege on the object in question. For instance, if a user has SELECT privilege on a
table, then only that user can unload the content of this table. Only a user with DBA
or SYSADM authority may unload the database.

UNLOAD [DB | DATABASE]
A user with DBA or SYSADM authority may unload the content of a database to an

external text file. This file includes information about security, tablespaces, definitions,
indices, synonyms and data. For each database, dmSQL will generate at least two

external files, one script, and one BLOB data.

Example

dmSQL> unload db to empdb;

The name of the external text file is empdb. By default, dmSQL will create these files
in the current working directory. In the above statement, there are at least two text
files created, empdb.s0 and empdb.b0. If the unloaded BLOB file empdb.b0 exceeds
the maximum size allowed by the operating system, dmSQL will sequentially generate
files empdb.bl, empdb.b2, ..., empdb.bn, up to a maximum number of 99. dmSQL
will always generate one script file emodb.s0, with a maximum size limited by the

operating system.

UNLOAD TABLE

The UNLOAD TABLE command unloads tables to an external file and will record
the definition, synonyms, indices, primary key, foreign keys, and data of the table. Use

«wx»

the wild cards “_” and “%”, which correspond to “?” and “*” in DOS in the owner

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

=

and table name. The wild card “_” represents a character, and “%” represents a set of

characters.

UNLOAD SCHEMA

The usage of this option is very similar to unload table. It can only unload the
definition of a table; it cannot unload the data in a table. It uses the same wild cards as

the UNLOAD TABLE option.

UNLOAD DATA

This option will unload all data from a table. It will not unload the definition of the
table. UNLOAD DATA uses the same wildcards as the previous two options. Only
users with the SELECT privilege on the unloaded table may execute the UNLOAD
DATA command.

DBMaker 3.6 and later versions support an additional syntax for unloading data:

dm SQL> unload data from (select statement) to file name.

If the select statement is a join, the projection columns must be from the same table,
the following statement is executable. DDL commands, delete, insert, or updates are

not permitted.

Example 1

Valid syntax:

dmSQL> unload data from (select tl.cl, tl.c2 from tl, t2 where tl.cl=
t2.cl) to f1;

Example 2

Illegal syntax:

dmSQL> unload data from (select tl.cl, t2.cl from tl, t2 where tl.cl =
t2.cl) to f1l;

No aggregate or built-in functions are permitted in the projection columns.

Example 3

Illegal syntax:

©Copyright 1995-2012 CASEMaker Inc. 6-55

O\ Database Administrator’s Guide

dmSQL> unload data from (select avg(cl) from tl) to fl;
dmSQL> unload data from (select now() from tl) to fl;

Views and synonyms are permitted.
S Example 4

Valid syntax:
dmSQL> unload data from (select * from sl where cl > 10) to f1;
dmSQL> unload data from (select * from vl where cl < 10) to f1;

UNLOAD PROJECT

This option allows a user to unload an ESQL/C project to an external text file.

UNLOAD MODULE

This option allows a user to unload a module to an external file.

UNLOAD [PROC | PROCEDURE]

This option allows a user to unload the stored procedures to an external file.

UNLOAD [PROC DEFINITION | PROCEDURE
DEFINITION]

This option allows a user to unload the definition of the stored procedure to an

external text file.

S Example 1

The following will unload the table e tab for the current user; if there are any blanks
in the table name add double quotes:

dmSQL> unload table from “e tab” to empfile;
S Example 2

The following will unload all tables with the names starting with emp for the
SYSADM owner, for example, emptab, empname, ... :

dmSQL> unload table from SYSADM.emp$ to empfile;

6-56 ©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

o Example 3

=

The following will unload the schema of all tables with the name ktab:

dmSQL> unload schema from %$.ktab to kfile;

Unload the table with names containing wild cards. Use the escape character “\”, or

double quotes on the name.

Example 4

The following commands will unload data from a table named abc%:
dmSQL> unload data from abc\% to abcfile;
dmSQL> unload data from “abc%” to abcfile;

Loading Objects

The LOAD command is a tool provided by dmSQL, and is used to transfer a database
object that has already been unloaded to a text file, into the database. There are seven
options: load database, load table, load schema, load data, load project, load module,
and load procedure. A file must be unloaded and loaded with the same option. For
example, load a database from a text file that was unloaded with the database option.
When loading a text file, set the number of commands <#> to automatically commit
the transaction. The default is 1000. The size of <n> will affect whether the
transaction succeeds or not and the loading speed. The journal will fill easily with a
large <n> value and could cause the transaction to fail. A small <#> value will increase
the number of transactions committed and slow down the loading speed. If there are
errors occurring during the loading procedure, an error messages will be recorded in a
log file, which the system will use to undo executed commands. The log file is stored
in the same directory as the external text file being loaded and does not stop the

loading procedure.

LOAD [DB | DATABASE]
Use the LOAD [DB | DATABASE] command to transfer the contents of a database

to a new database. First, unload the database to transfer to an external text file. Next,

use the LOAD DB command to load the contents of the database from the text file.

©Copyright 1995-2012 CASEMaker Inc. 6-57

O\ Database Administrator’s Guide

6-58

Before loading a database, create a new one. The name of the new database can be
different from the old one. Only a DBA or a SYSADM may execute this command.

Example

The following set option for LOAD DB has been added to versions above DBMaker
3.6:
Set LOAD DB [safe | fast]

The database runs in normal mode if LOAD DB is set to SAFE. The load utility
rollbacks to the last committed command if an error occurs during loading, the error
messages are displayed in the screen, and writes to the load utility’s log file. When
using the set LOAD DB in fast mode, the rule for loading the utility in DBMaker
versions earlier than 3.6, will make the whole load procedure work under the no
journal mode. Setting LOAD DB in fast mode will speed up the load utility, but it
will make the database shut down in no journal mode if any error occurs. For
example, suppose that the load file has tablespace creation but it is not specified in the
dmconfig.ini file. If LOAD DB is set to use the safe option, the following error
message, “ERROR(8002): [DBMaker] keyword entry is required for configuration
file”, will be reported and then the load command will rollback. If LOAD DB is set to
use the fast option, then the following error message occurs, “ERROR(30017),

[DBMaker] errors occurred in no-journal mode, shut down database”.

NOTE 7Ve default option is SET LOADDB SAFE.

LOAD TABLE

This option permits loading the contents of a table, including schema and data, from
a text file. When loading a table from a text file, make sure that the table name is

unique.

LOAD SCHEMA

This option allows users to load the schema, not including the data, from a table
contained in a text file. When loading a table schema from a text file, ensure that the

table name is unique.

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

LOAD DATA

A corresponding table must exist when loading data from an external text file. In
versions earlier than 3.6 when the errors occur during the LOAD DATA procedure, it

will rollback to the last committed command.

Example

DBMaker 3.6 and later versions support the following options:

Set load data skip [error] | stop [on error]

If LOAD DATA SKIP ERROR is set then the following error messages will be
skipped during the loading of data:

ERROR(401) unique key violation

ERROR(410) referential constraint violation: value does not exist in parent key
ERROR(6521) table or view does not exist

ERROR(6002) syntax error

ERROR(6015) incomplete SQL statement input

The errors will be skipped and the load utility will resume execution of subsequent
commands. The above errors are the most common errors to occur during loading of
data. When LOAD DATA STOP or STOP ON ERROR is set, the whole LOAD
command will be rolled back if an error occurs. The default value for this option is
LOAD DATA SKIP ERROR. All the error messages that occur during the loading of
data will be written into the log file.

LOAD MODULE

This option allows a user to load a module from an external text file.

LOAD PROJECT

This option allows a user to load an ESQL/C project from an external text file.

©Copyright 1995-2012 CASEMaker Inc. 6-59

O\ Database Administrator’s Guide

6.12

6-60

LOAD [PROC | PROCEDURE]

This option allows a user to load a stored procedure from an external text file.

Example 1

The following command loads the database from a file named empdb, and commits it
automatically every 100 commands during loading. The system will generate a log file
named empdb.log in the same directory:

dmSQL> load db from empdb 100;
Example 2

The following command will load a table from a file named empfile, and it will
commit automatically every 50 commands during loading:

dmSQL> load table from empfile 50;
Example 3

The following command will permit the loading of data from an external data file
named datafile and will commit automatically every 1,000 commands using the

default setting:

dmSQL> load data from datafile;

Browsing System Catalogs

DBMaker keeps detailed information on all schema objects in the system catalog tables.

For more information on system catalog tables, see Systemn Catalog Reference.

SCHEMA OBJECT INFORMATION SYSTEM CATALOG TABLE NAME
Tables SYSTABLE

Columns SYSCOLUMN

Views SYSVIEWDATA

Synonyms SYSSYNONYM

Indexes SYSINDEX

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

6.13

Domains SYSDOMAIN
Serial numbers SYSCONINFO
Table constraints SYSTABLE
Column constraints SYSCOLUMN
Domain constraints SYSDOMAIN

Table 6-2: Schema information in the System Catalog tables

Calculating the Space Required

As stated in previous sections, only tables and indexes occupy physical disk space. To
manage disk space, estimate the size of each object and decide which tablespace each
object will belong to before creating them. In the estimation phase, the database
administrator must have a clear picture of how to construct tablespaces using tables

and how much hardware will be required to support the database in the future.

Generally, tables that are split between several tablespaces will get higher performance
than tables in a single large tablespace. Conversely, many small tablespaces are harder

to manage.

How to Estimate the Size of a Table

The following formulas show how to estimate the size of a table and the size of an

index:
table size = row size x number of rows x 1.05
index size = key size x number of rows x 1.20

These two formulas are used to estimate the size needed for a tablespace by adding the
size of all tables and indexes in it. In the above formulas, 1.05 and 1.20 are estimates
of the resource overhead used to calculate the system resources required. The row size
and key size contain the internal record header size. The following subsections show

how to calculate the size of a row and a key.

©Copyright 1995-2012 CASEMaker Inc. 6-61

O\ Database Administrator’s Guide

ROW SIZE

The storage size of a row, excluding BLOB data, cannot exceed 3996 bytes and

consists of the space required for data storage and an internal record header.

The size of an internal record header is equal to:

internal record header size = (number of columns + 1) x 4

Each data type has space requirements:

TYPE

COLUMN LENGTH

BIGINT

BINARY(n)

BIGSERIAL

CHAR(n)

SMALLINT

INTEGER

FLOAT

SERIAL

DOUBLE

o[z 2| e

DECIMAL(p,s)

—

(p+1)/2]+2

TIME

DATE

TIMESTAMP

—

1

OID

16

VARCHAR(n)

1-3992n

FILE

20

LONG VARBINARY

48 + X

LONG VARCHAR

48 + X

Table 6-3: Data Types and sizes

6-62 ©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

NOTE VARCHAR is a variable-length data type that takes any character that can be
entered from the keyboard. A BLOB type column (LONG VARCHAR or
LONG VARBINARY) occupies at least 48 bytes in the data file and the actual
data is stored in the BLOB file or a data file. For more detailed information, refer
to Chapter 7, Large Object Management. If the value in a column is NULL, it does

not occupy any space.

S Example

To create a table with five columns defined:
dmSQL> CREATE TABLE tb staff (ID INTEGER NOT NULL,
name CHAR (30) NOT NULL,
height FLOAT,
degree VARCHAR (200),
picture LONG VARCHAR) ;

After issuing this command, insert rows into the table and calculate the size of the

record:

(3001, "Jeff Yang", 175.5, "Stanford PhD.", [picl]) where picl is an image.

DATA ITEM TYPE SI1zE
ID integer 4 bytes
name char 30 bytes
height float 4 bytes
degree varchar 13 bytes
picture long varchar | 48 bytes
row header — 24 bytes
Total 123
bytes

=(4+30+4+13+48)+ (5+1) x4 =123 bytes

©Copyright 1995-2012 CASEMaker Inc. 6-63

O\ Database Administrator’s Guide

6-64

(3002, "George Wang", 180.0, "NCTU Ms.", NULL)

DATA ITEM TYPE SizE
ID integer 4 bytes
name char 30 bytes
height float 4 bytes
degree varchar 8 bytes
picture long varchar | 0 bytes
row header — 24 bytes
Total 70 bytes

=(4+30+4+8+0)+(5+1)x4=70 bytes

DBMaker will verify that the row size does not exceed MAXTUPLEN' bytes when
inserting or updating rows. When creating a table, DBMaker also verifies that the
smallest possible row size does not exceed MAXTUPLEN byrtes.

The smallest row size in the above example can be calculated as follows:

minimum row size = (4 + 30 + 0+ 0 + 0) + (5 + 1) x 4 = 58 bytes

The minimum row size does not exceed MAXTUPLEN bytes, so DBMaker will allow
this table to be created.

KEY S1ZE

Key storage size is made up of the space required for data storage in the index columns
and an internal record header. It also requires an extra 16 bytes for an internal row

identifier. The internal row identifier also requires 4 bytes in the record header.

' MAXTUPLEN : The value is 3968 in 4KB page size, 8064 in 8KB page size, 16256 in 16KB page
size and 32640 in 32KB page size, respectively.

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

The size of the internal record header is equal to:
Internal record header size = (no. of columns + 1 + 1) x 4

For example, if an index is created on a single column with the SMALLINT type, the
size of each key will be:

keysize=2 + 16 + (1 + 1 + 1) x 4 = 30 bytes

In this case, two bytes are used by the data in the key column, 16 bytes are used for
the internal row ID for each key, and 12 bytes are used for the record header.

ESTIMATING THE SIZE OF TABLESPACES AND TABLES

The following example demonstrates how to estimate the size of a tablespace and its
tables. Assume there is a tablespace that contains three tables A> B, and C, and one
index D created for table A, Columns in table A are defined as INTEGER, and
CHAR(10). Columns in table B are defined as SMALLINT, CHAR(10), FLOAT,
and VARCHAR(200). Columns in table C are defined as SMALLINT, INTEGER,
and LONG VARCHAR. Index D is created on the first column in table A. Table A,
table B and table C consist of 1500, 3000, and 250 rows respectively.

The row and key sizes for this database can be calculated as shown below. Suppose the
average length of the VARCHAR column in table B is 80 bytes, and the size of each
BLOB column in the data file in table C is 48 bytes:

In table A: row size = (4 + 10) + 3 x 4 = 26 bytes

In table B: row size = (2 + 10 + 4 + 80) + 5 x 4 = 116 bytes

In table C: row size = (2 + 4 + 48) + 4 x 4 = 70 bytes

©Copyright 1995-2012 CASEMaker Inc. 6-65

O\ Database Administrator’s Guide

6.14

6-66

If the average size of each BLOB item in table C is 9000 bytes, then specify the BLOB
frame size to be 11KB. See Chapter 7, Large Object Management for more information
about BLOB data.

Index D: keysize = 4 + 16 + 3 x 4 = 32 bytes

The table sizes for this database can be calculated as shown below. Note that the size

of table A also includes the size of index D.

Table A: table size = (26 1500 1.05) + (32 1500 1.2) = 98550 bytes
Table B: table size = 116 3000 1.05 = 365400 bytes
Table C: table size =70 250 1.05 = 18375 bytes

In the BLOB file, the size of table C is 250 frames (every row needs a frame).

After examining the figures above, create a tablespace with at least one data file
(482325 bytes) and one BLOB file (250 frames with an 11 KB frame size) to store the

tables and index shown above.

Estimate the size of a tablespace when creating it to avoid needing to add or enlarge

files later.

Checking Database
Consistency

DBMaker includes several commands that a user with DBA privilege can use to check

the consistency of a database. Examples of database consistency include an index that

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

=

=

has a key but does not exist in the table, or a key that exists in a foreign table but does
not exist in the parent table. DBMaker supports six commands to check different
levels of consistency. These commands are time consuming when the database is large

and they will take locks, administrators should only use them when necessary.

Checking Indexes

DBMaker allows a user with privilege on the index in question to check an index and
its relationship to a table. It checks if the index structure (i.e., B-tree) is correct, if the

data is in order, and if the index keys exactly match the data records.

If an index seems to have a problem, use this command to verify that a problem exists.

If DBMaker finds inconsistencies in the index, drop and rebuild the index to fix it.

Example

To check the index consistency for the index idx_desc in the tb_staff table:

dmSQL> CHECK INDEX tb staff.idx desc;

Checking Tables

DBMaker allows a user to check all records, indexes, and BLOB data associated with a
table and the relationship between foreign and parent tables, given that the user has
privilege on those objects. If there is any inconsistency in a table, unload all records in

the table, drop the table, recreate it, and then reinsert all records.

Example

To check consistency for the tb_staff table:
dmSQL> CHECK TABLE tb staff;

Checking Catalogs

DBMaker allows a user with DBA privilege to check the consistency of system tables.

If the system catalogs have errors, the database may be seriously corrupted.

©Copyright 1995-2012 CASEMaker Inc. 6-67

O\ Database Administrator’s Guide

6.15

6-68

S Example

To check the consistency of the system catalogs:

dmSQL> CHECK CATALOG;

Checking Databases

DBMaker also allows a user with DBA privilege to check the whole database including
the system catalogs and all tablespaces.

Example

To check the consistency of an entire database:

dmSQL> CHECK DB;

If corruption exists and the database has been backed up, use the most recent backup
to restore it. For more information, refer to Chapter 14, Database Recovery, Backup,

and Restoration.

When the database has no backup and an index is corrupted, drop and recreate the
affected indexes. If any other type of corruption has occurred, immediately backup the
database including all data and journal files. Then try to shut down and restart the
database, then run the CHECK commands again. After DBMaker automatically
recovers from a crash, some types of corruption may be fixed. If any inconsistency
remains, contact CASEMaker technical support to help fix the remaining problems
with the database.

Updating Statistics for Schema
Objects

Outdated statistics values for schema objects (tables, indexes, columns) may cause the
DBMaker optimizer to use an inefficient plan for an SQL statement. If users have
inserted large amounts of data into the database after the last time the database

administrator updated the statistics values, update the values again.

©Copyright 1995-2012 CASEMaker Inc.

Managing Schema and Schema Objects 6

Example 1

To update the statistics values for all schema objects:

dmSQL> update statistics;

If a database is extremely large, it will take a lot of time to update statistical values for
all of the schema objects. An alternative method is to update statistics on specific
schema objects that have been modified since the last update, and set the sampling

rate.

Example 2

To update statistics for tables:

dmSQL> update statistics tablel, table2, userl.table3;
Example 3

To update statistics for index idx_desc on tb_staff:

dmSQL> update statistics tb staff (index idx desc);
Example 4

To update statistics for tablespace ts_reg:

dmSQL> update tablespace statistics ts reg;
Example 5

To update statistics for indexes idx_desc and idx_fill on tb_staff:
dmSQL> update statistics tb staff (index idx desc, idx fill);

When the database is running, a user can change the specified statistics value with the

system stored procedure SetSystemOption.

Example 6

The following syntax is used to set update statistics sample to 60 when the database is
running:

dmSQL> call setSystemOption (‘STSSP’, ‘60');

Please refer to Chapter 17, Performance Tuning for more information about updating

statistics and the SQL optimizer.

©Copyright 1995-2012 CASEMaker Inc. 6-69

O\ Database Administrator’s Guide

6-70 ©Copyright 1995-2012 CASEMaker Inc.

Large Object Management 7

Large Object
Management

A Large Object (LO) is any variable length data object, such as document text, images,
sound, or video. DBMaker has a great deal of flexibility when dealing with large

objects and provides an excellent mechanism for unstructured data.

DBMaker does not limit the number of LOs that can be in a table, and there is no
aggregate size limit on LO columns. This means the capacity of each LO column can
be up to 2 GB. DBMaker can use extensions to the SQL language to directly access
Large Objects, eliminating the need for users to learn any special syntax. All access to
LO columns is transparent in SQL statements, which makes using large objects easy to
learn. Furthermore, users can input or output LO data to and from a file using SQL
commands or the ODBC interface. An LO is always written to disk as a single unit.
However, users can read all or part of an LO. The SELECT, UPDATE, INSERT and
DELETE statements are permitted with LOs. LO items can only be used in Boolean
expressions if users would like to test them for NULL values. DBMaker also provides
the MATCH function for use with LOs to perform searches with pattern matching.
The MATCH function is similar to the LIKE function except it only works on LO

columns and does not permit the use of wildcard characters.

DBMaker does not permit the operation of arithmetic or string expressions on LO

items, nor can the LO items be used in any of the following ways:

¢ With aggregate functions

©Copyright 1995-2012 CASEMaker Inc. 7-1

O\ Database Administrator’s Guide

7.1

7-2

¢ With the IN, ANY, EXIST or LIKE predicates
¢ With the GROUP BY clause
¢ With the ORDER BY clause

There are two kinds of LOs: Binary Large Objects (BLOBs), which are stored in
database files, and File Objects (FOs), which are stored as external files on a host file

system.

Large Object
(LO)

i . Binary Large
File Object Object

(FO) (BLOB)

stored as an external file stored inside database files

Figure 7-1: Large Objects supported by DBMaker

A BLOB, stored in database files, can only be accessed through DBMaker and insists
on the data integrity provided by DBMaker, such as transaction controls, logging and
recovery. A BLOB can only be shared among tuples in the same table while updating
records. However, a FO can be shared between tables in a database. In addition, when
the data needs to be shared by the other non-database applications, using FOs will be

more flexible.

Managing BLOBs

There are two types of BLOB items, LONG VARCHAR (or CLOB) and LONG
VARBINARY. Data of the LONG VARCHAR type can consist of any kind of text
data such as memos, long text, HTML source files, or program source files. The
LONG VARBINARY data type can hold any kind of binary data including images,

sound, spreadsheets and program modules.

©Copyright 1995-2012 CASEMaker Inc.

Large Object Management 7

A BLOB may be stored in a data file or a BLOB file, depending on its size. Although
the format of a data file is fixed, the format of BLOB files in the database should be

customized to obtain better performance and disk utilization.

The choice of BLOB logging is optional because it occupies a large amount of the
journal space and can pull down performance. To save logging space and improve
performance, the BLOB journal may be turned off. However, if BLOB logging is
turned off, DBMaker will not ensure that the BLOB contents will be correct after the
database has been restored from a backup. If the BLOB journal is turned on, make
sure the journal file has enough space to accommodate the BLOB data.

Customizing BLOB Space

DBMaker automatically decides where to store BLOB data. If the size of a LONG
VARCHAR or LONG VARBINARY column is small and the total length of a tuple
does not exceed the limitation for the maximum tuple size, DBMaker will put the
BLOB data in a column together with the other data in the database. This increases
efficiency because the BLOB data is also fetched when DBMaker fetches a tuple.

When the total length of a data tuple exceeds the limitation of the maximum tuple
size, DBMaker will store the BLOB data separately. In this situation, getting the
BLOB data (called an indirect BLOB) requires two disk operations, one to fetch the
data tuple, and one to fetch the BLOB data.

According to its size, an indirect BLOB may be stored in a DATA file or in a BLOB
file in the same tablespace as the table. The data in an indirect BLOB column is stored
in a data file when its size is equal to or less than 16,240" (in 16 KB page size) byrtes,
otherwise, it is stored in a BLOB file.

*'This value is 3952 bytes in 4 K page size, 8048 bytes in 8 K page size, 16240 bytes in
16 K page size and 32624 bytes in 32 K page size, respectively.

©Copyright 1995-2012 CASEMaker Inc. 7-3

O\ Database Administrator’s Guide

Database Communication

_ small/large BLOB | DBMaker
Process

and Control Area
(DCCA)

A '
small BLOB large BLOB

BB
BLOB files

Figure 7-2: DBMaker accesses BLOB data through DCCA

MYDB.SDB
<y
MYDB.DB

Ty
MYDB2.DB

|

data files

Data files contain pages, and BLOB files contain frames. There are two major

differences between pages and frames:

¢ There are four values to choose for page size: 4 KB, 8 KB, 16 KB or 32 KB. Page
size is defined using the keyword DB_PGSIZ when creating databases, while the

size of a frame can be customized.

¢ A page can contain more than one tuple, but a frame can only contain a single

BLOB.

The frame size of a BLOB file can be customized before database creation to increase
performance and disk utilization. To customize the frame size, specify the value in
kilobytes of the DB_BFRSZ configuration keyword in dmconfig.ini. The default
value of DB_BFRSZ is 32. Refer to Section 4.2, Creating a Database for more

information on configuration parameters that must be set before database creation.

Example

To specify the BLOB frame size by adding a line to the dmconfig.ini file:

DB BFRSZ = 16 ; BLOB frame size = 16K bytes

The valid range of DB_BFRSZ is from 8 to 256.

©Copyright 1995-2012 CASEMaker Inc.

Large Object Management 7

The frame size of all BLOB files in a database is the same. Once a database is created,
the BLOB frame size cannot be changed from its initial setting. DBMaker will keep
this value in the database system information table. When the database is restarted,
DBMaker will get the original value from the system information page and ignore the
DB_BFRSZ keyword in dmconfig.ini.

Example

To query the SYSINFO system table for the frame size:

dmSQL> SELECT INFO, VALUE FROM SYSINFO WHERE INFO = ‘FRAME SIZE’;

INFO VALUE

FRAME SIZE 16384

1 rows selected

Determining the frame size is a trade-off between disk utilization and performance. If
entire BLOBs are frequently retrieved, adjusting the frame size to contain the entire
BLOB will result in better performance because only one disk access is required.
However, there may be large variations in the size of the BLOB data. If the frame size
is set large enough to contain the largest BLOB, it may waste disk space, as other

frames that contain smaller BLOBs will contain unused disk space.

Alternatively, the frame size is only large enough to contain the smallest BLOBs,
performance will be degraded when fetching larger BLOBs that are stored in multiple

frames.

Each frame contains a header to record frame information. If the frame size is 8 KB,
for example, the space occupied by the BLOB will be less than 8192 bytes. About 1.8
KB is reserved to store information (such as where other frames are) for each BLOB
item, so the usable space in the first frame of a BLOB is much less than the size of the
entire frame. Thus, if the actual size of a BLOB is 8192 bytes, it will occupy two
frames: the first 6.2 KB of the BLOB are stored in the first frame and the remaining
bytes of the BLOB are stored in the second frame.

©Copyright 1995-2012 CASEMaker Inc. 7-5

O\ Database Administrator’s Guide

7-6

A group contains an BE page and NBE? PE blocks, the BE page is a PAGE_SIZE
KB data page. Then each PE blocks contains NPE* + 1 frames. The first frame is a
PAGE_SIZES -KB PE page. The remaining NPE frames are for data, and their size is
determined by DB_BFRSZ.

* NBE specifies the number of PE blocks is controlled by a BE page. The value is
2004 in 4 KB page size, 2026 in 8 KB page size, 2716 in 16 KB page size and 2723 in
32 KB page size, respectively.

“NPE specifies the number of pages is controlled by a PE page. The value is 165 in 4
KB page size, 333 in 8 KB page size, 671 in 16 KB page size and 1347 in 32 KB page
size, respectively.

*PAGE_SIZE is defined by the keyword DB_PGSIZ in dmconfig.ini

©Copyright 1995-2012 CASEMaker Inc.

Large Object Management 7

Y

lPGSIZF; P DB_BFR

S
| Frame PE2 Frame
BE | PE1 |Framel| NPE Framel NPE
Frame Header
Frame size determineded by
space for BLOB data BLOB Data (Iillt_’);b]ziRSZ while creating the

waste space ¢ \ Free Space v

Figure 7-3: the structure of a BLOB file

Users can calculate the size of a BLOB file according to the total number of frames,

PE pages, BE pages and data frames.

The following formula shows how to approximately calculate the size of a BLOB in

KB:

Number of BE pages = [total frames / 676685, ([] means gain the nearest bigger

integer)
Number of PE pages = [(total frames — number of BE pages) / NPE + 1]

BLOB file size = (Number of BE pages + Number of PE pages) x PAGE SIZE KB +
(total frames - Number of BE pages - Number of PE pages) x DB_BFRSZ KB

For example, if page size is 8 KB and the BLOB frame size is 32 KB, the size of a
BLOB file with 3 frames is:

Number of BE pages = [3 / 676685] = 1
Number of PE pages = [(3-1) /333 + 1] = 1

© this value depends on the Page size, this is 332665 in 4 KB page size, 676685 in 8 KB page
size, 1825153 in 16 KB page size and 3670605 in 32 KB page size.

©Copyright 1995-2012 CASEMaker Inc. 7-7

O\ Database Administrator’s Guide

BLOB filesize=(1+1)x 8+ (3-1-1) x32 =48 KB

DB_BbFil specifies the system BLOB file name in the system tablespace,
SYSTABLESPACE. Users cannot specify the size of the system BLOB file. The
default file name for the system BLOB file is the database name concatenated with
"SBB'.

DB_UsrBb specifies the default user BLOB file name in the default tablespace,
DEFTABLESPACE, and its size.

For more details on adding new BLOB files to an existing user tablespace, refer to the

subsection Adding Files to Tablespaces in Section 5.3.

Generating BLOBs

A BLOB column is the same as other columns except that its data type is LONG
VARCHAR or LONG VARBINARY.

S Example

To create two BLOB columns named note and photo:

dmSQL> CREATE TABLE tb staff (id INTEGER, note LONG VARCHAR, photo LONG
VARBINARY) ;

Insert BLOB data from the ab.txt file and image file img001.gif using host variables:
dmSQL> INSERT INTO tb staff VALUES(2,7?,7?);

dmSQL/Val> &ab.txt, &img001.gif(2,4);

dmSQL/Val> END;

The resulting LONG VARBINARY column is represented in hexadecimal format.
The following results will be returned when browsing the table:

dmSQL> SELECT * FROM tb staff;
id note photo

2 <script lan f£d8£ffe000104a464

7-8 ©Copyright 1995-2012 CASEMaker Inc.

Large Object Management 7

DBMaker also supports fetching BLOB data into a user-specified file. For more
information on how to insert and fetch BLOB data, refer to the /DBA Tool User’s
Guide and the ODBC Programmer’s Guide.

Updating BLOBs

A BLOB item is always written to disk as a whole. Thus, when updating a BLOB
column, DBMaker will drop the original BLOB item and then insert the new data as a
new BLOB item.

Example

To update contents for a BLOB column, using the UPDATE command:
dmSQL> UPDATE tb staff SET note = 'Hello !' WHERE id > O;
dmSQL> SELECT * FROM tb staff;

id note photo
1 Hello ! 31323334353637
2 Hello ! 33343536

From the user’s viewpoint, there must be a BLOB for each tuple. However, to save
disk space, DBMaker creates only a single copy of the BLOB data shared by all tuples
with an ID greater than zero. DBMaker maintains an internal counter to record how
many tuples reference a BLOB. When updating a BLOB column for a tuple that links
to the shared BLOB, DBMaker generates a new BLOB item and decreases the counter
of the shared BLOB by a value of one. This prevents any changes made to the BLOB
column from influencing other tuples. In DBMaker, this is known as loose coupling.
This makes disk utilization more efficient, but a BLOB item can only be shared by
tuples that are in the same table. If a BLOB is not linked with tuples DBMaker

automatically drops it.

Predicate Operations on BLOB Columns

BLOB objects can only be used in CONTAIN, MATCH or Boolean expressions
when testing for NULL values.

©Copyright 1995-2012 CASEMaker Inc. 7-9

O\ Database Administrator’s Guide

7.2

7-10

S Example 1

=

To fetch all data from the tb_staff table from the NOT NULL note column:
dmSQL> SELECT * FROM tbistaff WHERE note IS NOT NULL;

DBMaker provides pattern matching for BLOBs. The CONTAIN and MATCH
function is similar to the LIKE function except that wildcard characters are not
supported. The difference between CONTAIN and MATCH is that the former is a
partial word match and the latter is a full word match. For example, "This is a
character.’ CONTAIN 'char' and "This is a character.” MATCH 'character', but "This
is a character.' NOT MATCH 'char'.

Example 2

To find all staff from the note column containing 'Database Administrator':

dmSQL> SELECT * FROM tb staff WHERE note MATCH 'Database Administrator';

Managing File Objects

Each file object (FO) column references external files. Using FOs is beneficial when the
data is also used by other applications, since the file can be accessed directly. Most
current multimedia tools can only process multimedia data when it is stored as a
complete file of the required type. Multimedia data that is stored in BLOB or data
files must be fetched from DBMaker by the user and redirected to a file that can be
processed by the appropriate tool. However, if BLOB data is stored as an FO a user
can simply get the file name from DBMaker and pass the name to the appropriate

multimedia tool.

There are two kinds of FOs: system and user. System file objects are created when a
user inserts data on the client side and DBMaker passes it through and stores it in an
external file specified by the configuration parameter DB_FoDir. System FOs are
created by DBMaker and can be recognized by their client’s source file name
extension User file objects are external files that are simply linked to a column. A user
file object may be a file on any device that is accessible by DBMaker through the

server’s operating system.

©Copyright 1995-2012 CASEMaker Inc.

Large Object Management 7

The major difference between system and user file objects is that DBMaker generates a
system FO automatically. This means a system FO will be deleted when no column
references it. Therefore, with system FOs, users can leave storage management to
DBMaker. Another advantage to using system FOs is that data is duplicated to the
server side, so users can manage data from the server. DBMaker’s backup and

restoration features also protect system FOs.

A user FO will not be deleted when there are no more references to it. The major
advantage to user FOs is that DBMaker can link a column to an existing file directly.
It does not need to duplicate data, such as a file on a CD-ROM. This conserves disk
space and makes it easier to share a file among several records. However, if a file is
deleted outside of DBMaker, all columns linking to this file may become invalid. A

file linked as a user FO must open its read permission.

User FO files must be accessible from the database. They can be scattered in many
directories on the server side. Instead of specifying a USER FO directory, users need
to set the DB_UsrFO keyword to 1 in dmconfig.ini to enable the use of USER file
objects. USER FOs are disabled by default.

Users can get the file name and file size of a FO by using the built-in functions,

filename() and filelen().

Customizing the System File Object Path

DBMaker generates a series of file object subdirectories for storing system file objects.
These subdirectories are located in the file object directory, which is specified by the
DB_FoDir keyword in the dmconfig.ini file. When a file object subdirectory is filled
to a threshold value by file objects, a new subdirectory is created. The threshold value
is specified by the DB_FoSub keyword in the dmconfig.ini file, and may have a value
from 100 to 10,000.

File object names take the form ZZxxxxxx.ext where xxxxxx is a six digit base 36 serial
number, and ext is the file extension of the object. The file extension of the object
depends on the SET EXTNAME command. Refer to System File Object Extension

Names for more information.

©Copyright 1995-2012 CASEMaker Inc. 7-11

O\ Database Administrator’s Guide

Subdirectories follow a naming convention based on the name of the first file object in
the subdirectory. It takes the form SUBxxxxxx where xxxxxx is the six-digit base 36
number of the first file object to be inserted into the directory.

Although an FO directory can be shared by more than one database to simplify FO
management, it is not recommended because it becomes inconvenient when backing
up a database. The file object path may be changed before database startup by

modifying the configuration parameter, or during runtime.

SETTING THE FO PATH OFFLINE

Users should specify where to put system FOs by setting the value of DB_FoDir in
dmconfig.ini. The value of DB_FoDir is the full path of an existing directory.

DBMaker must own the write-permission on that directory.

S Example 1

To create system FOs in the /disk1/usr/fo directory, add the following line to the
dmconfig.ini file:

DB FoDir = /diskl/usr/fo
S Example 2
To set DB_USRFO = 1 and enable user objects:
DB USRFO = 1 ; enable USER file objects
SETTING THE FO PATH ONLINE

DBMaker provides a system procedure for users to modify the system file object
directory while the database is running. This operation changes the setting of the

following 3 items to the new value:

¢ Run-time FO directory — after the change is made, all new system file objects

will be stored in the new FO directory.

¢ DB_FoDir — the next time the database is restarted, it will use the new FO

directory.

7-12 ©Copyright 1995-2012 CASEMaker Inc.

Large Object Management 7

¢ $DB_FODIR alias. — the default FO alias, which corresponds to the setting of
the DB_FoDir keyword in dmconfig.ini.

S Example
To change the FO directory to a new directory, e.g., /lhome/DBMaker/mydb/fo,

execute the following command:

dmSQL> call SETSYSTEMOPTION (‘fodir’, ‘/home/DBMaker/mydb/fo’);

In addition to being able to change the file object directory, users may query the
system to return the current settings for the FO directory path.

S Example

The following command returns the current FO directory setting:
dmSQL> call GETSYSTEMOPTION (‘fodir’, ?);
OPTION VALUE: /home/DBMaker/mydb/fo

Generating File Objects

Several steps are required to generate file objects within DBMaker. First a FILE type
column must be created on a table. Either system or user file objects may be inserted
into an FO type column. To create a FO column, set the column type to FILE when

creating the table.

S Example 1

To create a table named tb_person with a file object column called photo:

dmSQL> CREATE TABLE tb person (name CHAR(10), photo FILE);

S Example 2

If the FO to be input is on the on the server, DBMaker will link the FO column to

the existing file and generate a user FO. If the FO is on the client side, DBMaker will

create a system FO by copying the file from the client side to the FO directory on the

server side. To insert FO data:

dmSQL> INSERT INTO tb person VALUES (‘cathy’, ‘/diskl/image/cathy.bmp’)
2>; // stored as a USER FO

©Copyright 1995-2012 CASEMaker Inc. 7-13

O\ Database Administrator’s Guide

dmSQL> INSERT INTO tb person VALUES (‘jeff’,?);
dmSQL/Val> &jeff.gif; // stored as a SYSTEM FO
dmSQL/Val> END;

S Example 3

There are three varieties of fetching methods for a FO column: content, file name, and

file size. To fetch an FO file named cathy.bmp:
dmSQL> SELECT photo, FILENAME (photo), FILELEN (photo) FROM tb person ;

photo filename (photo) filelen (photo)
012034451 /diskl/image/cathy.bmp 21100
349045821 /diskl/usr/fo/zz000000 . hmp 12034

For more information about manipulation on FO columns, refer to the /DBA Tool

User’s Guide and the ODBC Programmer’s Guide.

System File Object Extension Names

Users can set the system file object extension name using the SET EXTNAME

command.

S Example 1

To set the system file object <extension_name>:

SET EXTNAME TO <extension name>;
There are two types of <extension_name>:
¢ A character string less than seven characters, such as 'bmp’, 'avi' and 'jpg'

¢ Using the SOURCE option, the extension name is set equal that of the client’s

source file

S Example 2
To use the SET EXTNAME command:

dmSQL> CREATE TABLE tb example (cl INT, f1 FILE);
dmSQL> INSERT INTO tb example (cl, fl) VALUES (?, ?);

7-14 ©Copyright 1995-2012 CASEMaker Inc.

Large Object Management 7

=

dmSQL/Val> SET EXTNAME TO FOB;

dmSQL/Val> 1, &readme.txt; //extension name : '.FOB'
1 rows insertedl

dmSQL/Val> SET EXTNAME TO doc;

dmSQL/Val> 2, &readme.txt; //extension name : '.doc'
1 rows inserted

dmSQL/Val> SET EXTNAME TO SOURCE;

dmSQL/Val> 3, &readme.txt; //extension name : '.txt'
dmSQL/Val> END;

dmSQL> SELECT FILENAME (f1) FROM tb example;

cl filename (f1)

1 /usrl/£o/72000001.FOB
2 /usrl/fo/77000002.doc
3 /usrl/fo/27000003. txt

3 rows selected

Updating File Objects

To update the contents of a FO column, use the SQL UPDATE command.
DBMaker replaces the FO column with a new file.

As with inserting FOs, an FO column may be updated for a new SYSTEM FO or
linked to a USER FO.
Example 3

To link the photo column to /disk2/image/common.bmp:

dmSQL> UPDATE tb person SET photo = '/disk2/image/common.bmp' WHERE name
= ‘cathy’;

Alternatively, users can input new data from a file on the client side. For more
information, refer to the /DBA Tool User’s Guide and ODBC Programmer’s Guide.

If the results of the UPDATE operation contains more than one tuple, only one file is

created. This file is shared among the tuples to save disk space. DBMaker maintains

©Copyright 1995-2012 CASEMaker Inc. 7-15

O\ Database Administrator’s Guide

7-16

=

an internal counter to record how many tuples reference the file. In addition, if a user
modifies the contents of the file through an external application program all tuples

will recognize the modification.

When no tuples retain links to a system FO after UPDATE or DELETE operations,
DBMaker automatically deletes the file after that transaction is committed. However,
DBMaker never removes any USER FO, even when no tuples are referencing it,
because DBMaker did not generate this file.

Renaming File Objects

Sometimes full disks or a disk layout reorganization make it is necessary to change the
positions or names of FOs. DBMaker permits users to use the MOVE FILE OBJECT
statement to change the name or path of the FO. Before using the MOVE FILE
OBJECT command, use the operating system to move the files to the new location;

DBMaker will make sure the new files exist before allowing the move.

Example 1

To get the names of the files that will be moved using filename():

dmSQL> MOVE FILE OBJECT '/diskl/usr/fo/zZ000000.FOB' TO
' /disk3/pub/photol .bmp' ;

DBMaker also permits users to move FOs from one directory to another. Note that
DBMaker permits using only one * character for the specified file name in the source
directory, but does not allow using any * character in the destination directory.
DBMaker does not support recursively-moving files. To move all of the files, not
including subdirectories, from one directory to another, specify the former directory

by adding the */’ or ‘/* characters at the end of the directory.

Example 2

Let there be four files in /disk1/usr/fo named ABC1.FOB, ABC2.FOB, ABC3.FOB,
ABC4.FOB. To move ABC1.FOB, ABC2.FOB, ABC3.FOB, ABC4.FOB from
/disk1/ust/fo to /disk3/pub file objects use:

dmSQL> MOVE FILE OBJECT '/diskl/usr/fo/ ' TO '/disk3/pub/ ';

dmSQL> MOVE FILE OBJECT '/diskl/usr/fo/* ' TO '/disk3/pub/ ';

©Copyright 1995-2012 CASEMaker Inc.

Large Object Management 7

dmSQL> MOVE FILE OBJECT '/diskl/usr/fo/*.FOB ' TO '/disk3/pub/ ';
dmSQL> MOVE FILE OBJECT '/diskl/usr/fo/A* ' TO '/disk3/pub/ ';

To move ABC1.FOB from /disk1/ust/fo to /disk3/pub:
dmSQL> MOVE FILE OBJECT '/diskl/usr/fo/*1.FOB ' TO '/disk3/pub/ ';
dmSQL> MOVE FILE OBJECT '/diskl/usr/fo/A*1.FOB ' TO '/disk3/pub/ ';

Retrieving the Length of File Objects

A FO’s length can be retrieved using the built-in functions FILELENEX and
FILELEN. For more information about these functions, please refer to the SQL

Command and Function Reference .

Predicate Operations on File Objects

As with BLOBs, users can test FOs for NULL values and use the CONTAIN and
MATCH functions to perform pattern searches. Furthermore, the FO item can be
used in arithmetic expressions with the FILELEN() built-in function, in Boolean
expressions with the FILEEXIST () built-in function, and in string expressions with
the FILENAMEY() built-in function.

In the event that a file has been removed or renamed from within the operating
system, use the FILEEXIST() built-in-function to test which files exist. A value of 0
indicates that the referenced FO file does not exist, 1 indicates that it still exists, and
NULL indicates that the tuple is a NULL value.

Example 1

To select tuples with the .gif extension from the column photo:

dmSQL> SELECT * FROM tb person WHERE FILENAME (photo) LIKE '$.gif';

Example 2

To fetch tuples with a size greater than 100KB from the column photo:
dmSQL> SELECT * FROM tbiperson WHERE FILELEN (photo) > 102400;

©Copyright 1995-2012 CASEMaker Inc. 7-17

O\ Database Administrator’s Guide

7-18

o Example 3

To fetch all tuples for files that exist:
dmSQL> SELECT * FROM tbiperson WHERE FILEEXIST (photo)=1;

File Object UNC Names

Universal Naming Convention (UNC) filenames can be used for the file object path
and directory names in Microsoft Windows environments. This makes it easy to
specify the path and directory names when a DBMaker server is running on a
Microsoft Windows platform. Directories on machines other than the machine

hosting the server can also be specified.

S Example 1
To retrieve all system FOs created in the \NTMACHINE\E\FO directory when used

in the dmconfig.ini file:

DB_FoDir = \\NIMACHINE\E\FO
S Example 2

To show how file objects work with UNC names:

dmSQL> CREATE TABLE tb example (cl INT, c2 FILE);
dmSQL> INSERT INTO tb example VALUES (?, ?);
dmSQL/Val> 1, '\\NTMACHINE\D\DB\memol.txt';

1 rows inserted

dmSQL/Val> 2, &c:\temp\memo2.txt;

1 rows inserted

dmSQL/Val> END;

dmSQL> SELECT cl, FILENAME (c2) FROM tb example;

cl FILENAME (c2)
1 \\NTMACHINE\D\DB\memol . txt
2 \\NTMACHINE\E\FO\ZZ000001 . txt

©Copyright 1995-2012 CASEMaker Inc.

Large Object Management 7

2 rows selected

File Object Path Default Aliases

DBMaker supports two alias names for the file object path: $DB_DbDir and
$DB_FoDir. The file object path alias provides an alias name to represent the real file
object path. Users may insert, update and delete file objects using the alias path name.

File objects can be moved more easily to another directory path.

The two alias names are set using the keywords DB_DbDir and DB_FoDir. in the
dmconfig.ini file for $DB_DbDir and $DB_FoDir, respectively.

Example 1

The file object path alias is set to the path specified by the DB_FoDir keyword in

dmconfig.ini:

DB FoDir = “/usrl/tmp/employeedata/FO”
Example 2

To use the file object path alias to insert values into the FILE type column photo:
dmSQL> create table tb example (cl INT ,photo FILE);
dmSQL> insert into tb example values (2, ‘$DB_FoDir/photo471.jpg”)

In the above example, file photo471.jpg could also have been inserted using the full
file object path ‘/usrl/tmp/employeedata/FO/photo471.jpg’.

FO and Applications

FILE type data is only supported by DBMaker, and is not defined by ODBC.
Development tools, such as Inprise/Borland Delphi or Microsoft Visual Basic do not
recognize FILE type data as valid. The configuration parameter DB_FoTyp may be
used to specify which type of data FILE type data will be mapped to. To allow these
tools to access data of FILE type, DBMaker should be set to internally map FILE type
data to LONG VARBINARY by setting DB_FoTyp to 1. There is no mapping if
DB_FoTyp is 0, and tools will fail to recognize FILE type data.

©Copyright 1995-2012 CASEMaker Inc. 7-19

O\ Database Administrator’s Guide

S Example

To set the database to map FILE type data to LONG VARBINARY:
DB FoTyp = 1

7.3 Journal of Large Objects

Logging transactions involving BLOB (LONG VARCHAR or LONG VARBINARY)
data requires large amounts of disk space and results in decreased performance.
DBMaker lets the database administrator decide whether a BLOB in a specified
tablespace is logged or not. DBMaker does not support logging for file objects (FILE).

DBMaker does not log the content of BLOB data by default. During the period
between starting and shutting down the database, DBMaker ensures the consistency of
BLOB data. Even in the event of a system crash, BLOB data is consistent after

recovery.

However, when restoring a database from incremental backups, DBMaker does not
ensure BLOB data consistency. Two steps must be taken to ensure that BLOB data is
recorded in the journal. First, the configuration parameter DB_BMode must be set to
record BLOB transactions. Second, the tablespace containing the BLOB data that is to
be backed up must have been created with the BACKUP BLOB ON option.

BLOB Journal Logging

There are two conditions to ensure BLOB logging:

¢ Setting the value of the DB_BMode keyword in the dmconfig.ini file to 2
(BACKUP DATA AND BLOB mode)

¢ BLOB files are added to a tablespace that was created with the option BACKUP
BLOB ON

7-20 ©Copyright 1995-2012 CASEMaker Inc.

Large Object Management 7

SETTING THE DB_BMODE VALUE

The keyword DB_BMode specifies the backup mode of a database. Setting the value
to 0 enables NON-BACKUP mode, 1 enables BACKUP-DATA mode, and 2 enables
BACKUP-DATA-AND-BLOB mode.

¢+ NON-BACKUP (0) mode — does not support incremental backup for

tablespaces, including system or user-defined

¢ BACKUP-DATA (1) mode — supports incremental backup for system
tablespace, data in user-defined tablespaces, but not BLOBs in user-defined

tablespaces

¢+ BACKUP-DATA (2) mode — supports incremental backup for system
tablespace, data in user-defined tablespaces, BLOBs in user-defined tablespaces
created with the BACKUP BLOB ON option, but not BLOBs in user-defined
tablespaces created with the BACKUP BLOB OFF option

To turn on BLOB journal logging, add a line to the dmconfig.ini file:
DB_BMode =2 ;log all data including BLOB

For details on database backup mode, refer to Chapter 14, Database Backup, Recovery,

and Restoration.

SETTING THE CREATE TABLESPACE BACKUP OPTION

The backup mode for an individual tablespace is set when it is being created. The
syntax for the CREATE TABLESPACE command follows:

CREATE [AUTOEXTEND] TABLESPACE tablespace name [backup mode]

DATAFILE [tsfile , tsfile, ...];

where:

backup mode ::= BACKUP BLOB OFF | BACKUP BLOB ON

tsfile ::= file name TYPE = DATA | file name TYPE = BLOB

Users can place important BLOBs in tablespaces with the BACKUP BLOB ON flag.
It is a good idea to place BLOBs that do not need to be backed up in tablespaces with

©Copyright 1995-2012 CASEMaker Inc. 7-21

O\ Database Administrator’s Guide

7-22

the BACKUP BLOB OFF setting in order to improve the system performance.

Tablespace creators determine the trade-off.

Data and BLOB files must be specified in the dmconfig.ini file before the tablespace is
created. This may be accomplished through the “user files” page in the JConfiguration
Tool. Refer to the /Configuration Tool Reference for detailed instructions on creating
data and BLOB files.

Example 1

To create tablespace ts_reg with BACKUP BLOB OFF and ts_aut with BACKUP
BLOB ON:
dmSQL> CREATE TABLESPACE ts reg BACKUP BLOB OFF
2> DATAFILE f1 TYPE = DATA, f2 TYPE = BLOB;
dmSQL> CREATE TABLESPACE ts aut BACKUP BLOB ON
2> DATAFILE f3 TYPE = DATA, f4 TYPE = BLOB;

Example 2

Query the BK_MODE column from the SYSTABLESPACE table to know the
backup mode for each tablespace. The value 1 means that BACKUP BLOB is OFF,
while 2 means that it is ON. Querying the backup mode of a tablespace will yield the
following result:
dmSQL> SELECT TS NAME, BK MODE FROM SYSTEM.SYSTABLESPACE;

TS NAME BK MODE

SYSTABLESPACE
DEFTABLESPACE

ts reg

N PN

ts aut

4 rows selected

A summary of the interaction of the backup modes between a database and its
tablespaces follows. ‘Yes’ indicates that the type of tablespace in question is backed up

‘No’ indicates that it is not.

©Copyright 1995-2012 CASEMaker Inc.

Large Object Management 7

USER- USER- SYSTEM
DATABASE | TABLESPACE | pepingp DEFINED | TABLESPACE
Backup BACKUP | 1,p| ESPACE | TABLESPACE (DATA AND
MODE MoODE
(DATA) (BLOB) BLOB)

NON
BACKUP

- No No No
(DB_BMode =
0)
BACKUP
DATA

- Yes No Yes
(DB_BMode =
1)
BACKUP BACKUP BLOB v N v
DATAAND |OFF s ° s
BLOB
(DB_BMode = BOACKUP BLOB Yes Yes Yes
2) N

Before setting the backup mode, ensure that the journal file is large enough to record
all BLOB data; otherwise, a journal full message may be returned. For information on
how to adjust journal file size, refer to the subsection Resizing Journal Space in Chapter

5.

For concepts on data files, the BLOB file and the tablespace, refer to Chapter 5,
Storage Architecture.

For information on the CREATE TABLESPACE command, refer to the SQL

Command and Function Reference.

For information on the SYSTABLESPACE table, refer to System Catalog Reference.

File Object Journal Logging

DBMaker does not support journal logging of FOs. When backing up the database,
back up all FOs belonging to the database as well by manually copying them into a
backup directory. Alternatively, Backup server may be used to automatically back up

file objects to a backup directory. For more information on backing up file objects,

©Copyright 1995-2012 CASEMaker Inc. 7-23

O\ Database Administrator’s Guide

7.4

7-24

refer to section 14.6, Backup Server. To determine what files belong to a database,

query the SYSFILEOB] table.

Example
To retrieve the filenames of all FOs by querying the SYSFILEOB] table:

dmSQL> SELECT FILE NAME FROM SYSFILEOBJ;

Copy all FOs to the backup storage location. When restoring the database from a
backup, copy all FOs as well. If the file paths or file names have changed, use the
MOVE FILE OBJECT command to update the file names in the SYSFILEOB] table.

Large Objects and SELECT
INTO Command

The SELECT INTO command takes selected data and inserts it into a specified table.
File objects and BLOBs can be moved from one table to another using this command.
The SELECT INTO command can be used in a distributed database (DDB)

environment.

In a local-to-local SELECT INTO statement, DBMaker needs to duplicate the BLOB

data or increase the shared counter of the system file object or a user file object.

In a DDB environment, DBMaker copies the BLOB data from one site to another,
but there are many considerations for file objects. DBMaker provides the distributed
file object duplication mode (SET DFO DUPMODE command) to take care of

processing file objects in a DDB environment.

SET DFO DUPMODE

The DFO DUPMODE tells a database whether file objects are to be copied to the
target database or not. There are two modes for DFO DUPMODE: NULL and
COPY mode.

©Copyright 1995-2012 CASEMaker Inc.

Large Object Management 7

S Example

Syntax for DFO DUPMODE: NULL and COPY mode:

dmSQL> SET DFO DUPMODE NULL;
dmSQL> SET DFO DUPMODE COPY;

SET DFO DUPMODE NULL

There are two cases in DDB mode to consider:

¢ The source and target databases are the same, including the local database or both
remote databases. Since they are the same database, DBMaker only increases the

shared counters of the file objects.

¢ The source and the target database are not the same. The target FILE column is

set to NULL. Thus, the file objects in the source database are not sent out.

SET DFO DUPMODE COPY

There are three situations to consider for file objects:

¢ For user file objects, DBMaker passes only the source file name to the target
database. The user needs to copy the files to a place where the target database can
access them. Sometimes the UPDATE command or the MOVE FILE OBJECT
command must be used to change the file names on the target database if the new

directories are not the same on the source database.

¢ For system file objects between two different databases, DBMaker creates a new
system file object on the target database and copy the contents of the source

database to it.

¢ For system file objects on the same database, local-to-local or remote-to-remote,

DBMaker increments only the shared counters.

Limitations

DFO DUPMODE mode does not affect a SELECT INTO command used on a
BLOB (LONG VARCHAR and LONG VARBINARY) column. BLOB data can be
copied using the SELECT INTO command regardless of the DFO DUPMODE.

©Copyright 1995-2012 CASEMaker Inc. 7-25

O\ Database Administrator’s Guide

7-26

In a DDB environment, if a SELECT INTO command is used on a user file object
and the option of DFO DUPMODE is set to COPY, then the user should be aware
of the location of the linked file on the target database. The linked file object should
exist in the same relative path on the target database. If it is not, the user should use
the operating system to copy the file from the source to the target database and use the
UPDATE or the MOVE FILE OBJECT commands for these columns if the file paths

of the source and target databases are different.

If the user has not performed the above operations, an error message will be returned
when querying the file object, because the file does not exist in the full path or the

path of the file is incorrect.

When selecting a system file object from a remote database into the local database,
DBMaker has to keep a record of the shared information. The information is kept
within one SELECT INTO command. Therefore, there is still a duplicate file
problem, which wastes space. Additionally, selecting system file objects into a remote

database creates duplicate files.

The SET EXTNAME option does not affect the result of the SELECT INTO

command. The extension names of the file objects on the source and target databases
are the same. For example, the file name of the source database is 'ZZ000001.BMT",
and then the target name of the file object on the target may be "ZZXXXXXX.BMP".

Example

DBMaker assumes the data of CHAR, VARCHAR or BINARY as the file name, so
users must make sure db2 can access the /etc/hosts file from the view of db1. Select
the CHAR column into the FILE column, where column ¢2 in table t2 on database
db2 is FILE type:

dmSQL> SELECT cl, '/etc/hosts' FROM dbl:tl INTO db2:t2(cl, c2);

Considering the FILE type column on the target database, the table below summarizes
the effect of the SELECT INTO command with the different source data types:

©Copyright 1995-2012 CASEMaker Inc.

Large Object Management 7

TYPE ON THE

SOURCE ENVIRONMENT SET DFO RESULT
DUPMODE

DATABASE

string

expression non-DDB or Source: passes the file name.

CHAR DDB Target: inserts new user file

VARCHAR |Environment. objects.

BINARY
The source and the Increases the shared counter
target are the same |... of the file objects.
database.

NUILL Target: inserts the NULL
value.
The source is the user file
object:

FILE Source: passes the file name.
The source and the Target: inserts the new user
target database are file object.
not the same. COPY The source is the system file

object:

Source: passes the content of
the file object.

Target: inserts the new system
file object.

LONG

VARCHAR

LONG Not supported.

VARBINARY

Other

©Copyright 1995-2012 CASEMaker Inc.

7-27

O\ Database Administrator’s Guide

7-28 ©Copyright 1995-2012 CASEMaker Inc.

Security Management 8

8-1

Security
Management

This chapter provides guidelines on setting up the security policies for a database, and

includes information on security, authority levels, and table privileges.

Security Policies

DBMaker provides two kinds of security:

¢ Database authority — determines who can log on to DBMaker and the actions

they can perform

¢ Object privileges — controls access rights for DBMaker objects. DBMaker

objects include tables, columns, views, domains, and synonyms

Database Authority

Database authority is used to determine access for a database. DBMaker controls
database access with user names and passwords and has four classes of users as shown in
Table 12-1.

The SYSADM is the most powerful authority level in DBMaker. There can be only
one SYSADM for every database. A user with SYSADM authority can grant DBA,

©Copyright 1995-2012 CASEMaker Inc. 8-1

O\ Database Administrator’s Guide

RESOURCE or CONNECT authority to other users, and has all the privileges of the
DBA authority level on the database.

Users with DBA authority level have all privileges for all objects in the database and
can grant, change, or revoke object privileges for any user except users with SYSADM
or DBA authority. They can also create new resources like tablespaces and files, and
perform database administrative operations like starting/terminating and backing up

databases.

Users with RESOURCE authority are allowed to create new tables or views, and to

grant privileges on their own tables to other users.

Users with only CONNECT authority can access objects that they have been granted
privileges for, but cannot create new tables or views. They may also select information

from the system tables.

Authority levels are hierarchical

CONNECT

RESOURCE

DBA

SYSADM

Figure 8-1: DBMaker database authority level hierarchy

LEVEL PRIVILEGES

SYSADM Can grant and revoke security authority levels to all users
except the SYSADM authority level.

Can change the passwords of all users.

Has all privileges of the DBA authority level.

8-2 ©Copyright 1995-2012 CASEMaker Inc.

Security Management

LEVEL

PRIVILEGES

DBA

Has all privileges on tables except SYSTEM tables.

Can grant/change/revoke object privileges of all users and
groups.

Can add/remove users from groups.

Has privileges on database administration commands such as

starting or terminating a database, creating/dropping/ altering
a tablespace, and backing up a database.

Has all the privileges of the CONNECT and RESOURCE

authority levels.

RESOURCE

Can create and drop tables, views, domains, and synonyms.

Can only drop tables, views, domains, and synonyms created
by the user.

Can grant/revoke owned table/view privileges to other users.
Has any table privileges granted to the user.

Has all the privileges of the CONNECT authority level.

CONNECT

Can log on to the database.
Can select the SYSTEM tables.
Has any table privileges granted to the user.

This authority level must be granted before the other authority
levels.

Table 8-1: DBMaker database authority levels

Managing Users

DBMaker provides several SQL commands for managing users. These commands

allow new users to be added, existing users to be removed from a database, user

passwords to be set or changed, and user authority levels to be granted.

©Copyright 1995-2012 CASEMaker Inc.

O\ Database Administrator’s Guide

=

=

ADDING A USER

The SYSADM must assign each user a user name and a password by using the
GRANT (database authority) command before a user can log on.

RESOURCE s
j—TO—(
DBA user_ID
CONNECT TO{
user_ID

Figure 8-2 Syntax for the GRANT command

«—— GRANT

password

The GRANT command grants authority levels to users. Only the SYSADM can grant
authority levels to other users. The SYSADM authority level cannot be granted to
other users. As a result, for each database there is only one user with the SYSADM
user name and SYSADM authority level. The SYSADM is also the default user who
creates the database. Only the password can be changed for the SYSADM user name.

The SYSADM can grant CONNECT, RESOURCE or DBA authority to other users.
If the GRANT command is used to grant RESOURCE or DBA authority to a user, it

will not take effect until the next time the user connects.

The SYSADM can grant CONNECT authority to a user with a password. If the
SYSADM does not specify the password, it means that user does not need a password
to log on to database. A password can be any valid SQL identifier, which is not longer
than eight bytes.

Example 1

To grant CONNECT authority level and the password jeff123 to user Jeft:

dmSQL> GRANT CONNECT TO Jeff jeffl23;

Example 2
To increase the authority level for user Jeff to RESOURCE:

©Copyright 1995-2012 CASEMaker Inc.

Security Management 8

dmSQL> GRANT RESOURCE TO Jeff;

o Example 3

To increase the authority level for user Jeff to DBA:
dmSQL> GRANT DBA TO Jeff;

CHANGING A PASSWORD
The ALTER PASSWORD command can be used to change a user’s password.

OF user_name x new_password
«— ALTER PASSWORD old_p. ord TO «L
NULL NULL

Figure 8-3 Syntax for the ALTER PASSWORD command
There are two ways to use the command:

¢ A user can change their own password with the ALTER PASSWORD
<old_password> TO <new_password> command. The <old_password> must match

the original password stored in the database.

¢ The SYSADM can change any user’s password with the ALTER PASSWORD
OF <user_name> TO <new_password> command. It is not necessary for the
SYSADM to know the old password of other users.

S Example 1

The user Jeff changes his password from no password to xyz@#

dmSQL> ALTER PASSWORD NULL TO “xyz@4#”;
S Example 2
The SYSADM changes the password for user Jeff to xyz@#
dmSQL> ALTER PASSWORD OF Jeff TO “xyz@#”;
REMOVING A USER OR CHANGING A USER’S AUTHORITY LEVEL
The SQL REVOKE command removes a database authority level.

©Copyright 1995-2012 CASEMaker Inc. 8-5

O\ Database Administrator’s Guide

CONNECT ,
REVOKE —@ESOURCEL, FROM ‘j\—-
DBA user_ID
Figure 8-4 Syntax for REVOKE command

Revoking a user’s RESOURCE or DBA authority does not take effect until the next

time the user connects to the database.

S Example 1

To revoke DBA authority from user Jeff:

dmSQL> REVOKE DBA FROM Jeff;

After executing the command, Jeff will no longer have DBA authority but will still
have CONNECT authority.

< Example 2

To remove Jeff's CONNECT authority and take away his ability to log on:

dmSQL> REVOKE CONNECT FROM Jeff;

REVOKED DESCRIPTION

PRIVILEGE

DBA Revoking DBA authority for a user means they can no longer
create or drop tables and grant or revoke privileges from other
users.

The user will retain only the CONNECT authority unless
granted the RESOURCE privilege.

All tables, views, domains, and synonyms created by this user
remain in the database.

RESOURCE Revoking RESOURCE authority means the user can no
longer create or drop tables.

The user will retain only the CONNECT authority unless
granted the DBA privilege.

All tables, views, domains, and synonyms created by this user
remain in the database.

8-6 ©Copyright 1995-2012 CASEMaker Inc.

Security Management 8

REVOKED DESCRIPTION
PRIVILEGE

CONNECT Revoking this authority means the user can no longer log on
to the database.

All privileges owned by this user on tables and views will be
revoked.

All tables, views, domains, and synonyms created by this user
remain in database.

Table 8-2: Description of revoking DBMaker database authority levels

Managing Groups

To simplify management of authority levels, use a group to collect several users and/or
other groups. Database privileges can then be granted to all members in a group at the
same time with one command. Though a group is different from a user, it can be

treated as a user. Object privileges granted to a group apply to all members in the
group.

Only users with SYSADM or DBA authority levels can:

¢ Create groups

¢ Add members to groups

¢ Remove members from groups

¢ Drop groups

CREATING GROUPS
The CREATE GROUP statement is used to create a new group.

CREATE GROUP —— group_name

Figure 8-5 Syntax for the CREATE GROUP command

©Copyright 1995-2012 CASEMaker Inc. 8-7

O\ Database Administrator’s Guide

8-8

=

=

The group identification (group name) uniquely identifies the name of a group in
DBMaker. The group name cannot be SYSTEM, PUBLIC, GROUP or any existing

user or group names.

Example

To create a new group named COMMITTEE:

dmSQL> CREATE GROUP COMMITEE;

ADDING MEMBERS TO GROUPS

After creating a new group, users can be added using the ADD <user name or group
name> TO GROUP command.

ADD —C T— TO GROUP —— group_name ———
user_name

Figure 8-6 Syntax for the ADD ... TO GROUP command

A group cannot be added as a new member of itself. Members of a group can include

any existing user or group name.

Example

To add user Jeff and group RD to the COMMITEE group and grant SELECT
privilege to the CASEMaker. TB_STAFF table:

dmSQL> ADD Jeff, RD TO GROUP COMMITEE;

dmSQL> GRANT SELECT ON CASEMaker.TB STAFF TO COMMITEE;

All members in COMMITEE will have the SELECT privilege for the CASEMaker.
TB_STAFF table.

REMOVING MEMBERS FROM GROUPS
The REMOVE <user name or group name> FROM GROUP command can be used to

remove users from a specified group.

©Copyright 1995-2012 CASEMaker Inc.

Security Management 8

«——— REMOVE —C i— FROM GROUP —— group_name ——
user_name

Figure 8-7 Syntax for the REMOVE ... FROM GROUP command

The members removed from the group will lose all privileges granted to the specified

group, but will retain privileges granted to them directly.

Example
To remove user Jeff from the COMMITEE group:

dmSQL> REMOVE Jeff FROM GROUP COMMITEE;

After this command is executed, user Jeff will be removed from the group
COMMITEE and lose SELECT privilege on the table CASEMaker. TB_STAFF.
DROPPING GROUPS

The DROP GROUP command will drop a specified group from a database; all

members in the group will lose the privileges granted for the group.

DROP GROUP — group_name
Figure 8-8 Syntax for the DROP GROUP command

Example

To drop the COMMITTEE group from the database:
dmSQL> DROP GROUP COMMITEE;

Checking IP Addresses

You may want clients to connect to your database using only specific IP addresses, for
example 192.72.112.*. Enabling IP checking allows you to control the IP addresses
clients can use to access your database. All users' settings are stored in the system

catalog SYSACL.
The catalog contains two columns USER_NAME and IP_ADDRESS.

¢ USER_NAME: The name and settings of the user trying to connect

©Copyright 1995-2012 CASEMaker Inc. 8-9

O\ Database Administrator’s Guide

¢ JP_ADDRESS: The IP address allowed to connect to the database

The user name PUBLIC is reserved. If you use the user name PUBLIC all users must

satisfy specified settings to connect to the database.

ENABLE IP CHECKING
You can use the keyword "DB_STACL" in the dmconfig.ini file to enable IP

checking. You must configure IP checking setting before starting the database.
¢ DB_STACL = 1: Enables IP checking
¢+ DB_STACL = 0: Disables IP checking (default)

CREATE A RULE
To assign a IP checking rule to a user, use the GRANT ACCESS statement.

) bl
— GRANT Access To—(£ J\ —
— User_name Ip_ADDRESS

Figure 8-9 GRANT ACCESS TO USERLIST IPLIST

S Example
dmSQL> GRANT ACCESS TO vivian,joe '192.72.5.23','140.21.55.*';

REMOVE A RULE
To revoke an IP checking rule for a user, use the REVOKE ACCESS statement.

L Y "y
— REVOEE Access From 4<; 3 (}7
L name _)"r fp_ADDRESS

Figure 8-10 REVOKE ACCESS FROM USERLIST IPLIST

8-10 ©Copyright 1995-2012 CASEMaker Inc.

Security Management 8

8.3

S Example

dmSQL> REVOKE ACCESS FROM vivian,joe '192.72.77.*','140.44.88.23';

Object Privileges

An object in a database includes the following items: tables, views, and columns in
tables/views, domains, or synonyms. DBMaker provides security management for
objects, which enables users to GRANT or REVOKE object privileges for other users.

All users can reference a domain by default, but only the creator can drop the domain.
The privileges for a synonym are based on a base table. Refer to Chapter 6, Managing

Schema and Schema Objects for detailed definitions of views, domains, and synonyms.

Granting Object Privileges

The user that creates an object becomes the owner of the object and has all privileges
for it. An owner can also grant privileges on the object to other users by using the SQL

GRANT <object privilege> command.

UPDATE ,
INSERT (J< })
« GRANT REFERENCE column_name

ALL

PRIVILEGES J

SELECT
INSERT
DELETE
UPDATE
INDEX
ALTER
REFERENCE

—— ON —— table_name —— TO —< user_ID /.

group_ID
PUBLIC J

Figure 8-11 Syntax for the GRANT command

©Copyright 1995-2012 CASEMaker Inc. 8-11

O\ Database Administrator’s Guide

A user with DBA authority can grant privileges for any table or view in a database. A
user with the RESOURCE authority can grant privileges only on tables or views
created them. All privileges supported by DBMaker are described in Table 12-3.

INSERT, UPDATE, and DELETE privileges should be controlled to prevent
corruption of information in a database. ALTER and INDEX privileges should be

restricted to developers.

UPDATE, INSERT, and REFERENCE privileges can be restricted to some specific

columns. Each column name must be qualified and be in every table identified in the

ON clause.
PRIVILEGE DESCRIPTION

SELECT Allows users to select data from a table or view.

INSERT Allows users to insert rows into a table or view and
optionally insert into specified columns.

DELETE Allows users to delete rows from a table or view.

UPDATE Allows users to update a table or view and optionally
update specified columns.

INDEX Allows users to create or drop indexes for a table.

ALTER Allows users to alter the definition of a table.

REFERENCE Allows users to create a foreign key on a source table
that references a primary key for a destination table or
view.

ALL [PRIVILEGES] | Allows users to exercise all the above privileges for a
table or view. PRIVILEGES is an optional keyword.

Table 8-3: Description for granting DBMaker table level privileges
The user in a GRANT command must have at least CONNECT authority. The

group name is created using the CREATE GROUP command. The keyword
PUBLIC includes all current and future users.

8-12 ©Copyright 1995-2012 CASEMaker Inc.

Security Management 8

Example 1

Jeff executes the GRANT command to give Cathy the read privilege to data in the
TB_INFO table, created by him:
dmSQL> GRANT SELECT ON TB INFO TO Cathy;

Example 2

A DBA executes the GRANT command to give Cathy the read privilege to data in the
TB_INFO table created by Jeff:
dmSQL> GRANT SELECT ON Jeff.TB INFO TO Cathy;

Example 3

A DBA gives INSERT and UPDATE privileges for the PHONENO column of
TB_INFO table to Cathy:

dmSQL> GRANT INSERT, UPDATE (PHONENO) ON Jeff.TB INFO TO Cathy;

Cathy will have no privileges for deleting information from the column.

Example 4

Use of the PUBLIC keyword to permit all users to read data in the Jeff. TB_INFO
table:

dmSQL> GRANT SELECT ON Jeff.TB INFO TO PUBLIC;

Revoking Object Privileges

The REVOKE <object privileges> command revokes privileges granted to a user. The

syntax for this command is shown in Figure 8-10.

The privileges in the REVOKE (object privileges) command are the same as those for
the GRANT (object privileges) command. In the diagram, the user name represents
an authorized user in the database, the group name represents a group of users, and

the PUBLIC keyword represents all users in the database

©Copyright 1995-2012 CASEMaker Inc. 8-13

O\ Database Administrator’s Guide

UPDATE i > < ,
INSERT ({

)
REFERENCE j column_name j
ALL

«— REVOKE

PRIVILEGES j

SELECT
INSERT
DELETE
UPDATE
INDEX
ALTER
REFERENCE

—— ON —— table_name —— FROM
user_ID
group_ID
PUBLIC

Figure 8-12 The REVOKE (object privileges) command

S Example 1

The following command revokes the SELECT privilege for the TB_INFO table from
Cathy:

dmSQL> REVOKE SELECT ON TB INFO FROM Cathy;

S Example 2

The following command revokes the SELECT privilege for table Jeff. TB_INFO from
Cathy:

dmSQL> REVOKE SELECT on Jeff.TB INFO FROM Cathy;

8-14 ©Copyright 1995-2012 CASEMaker Inc.

Security Management 8

8-4

S Example 3

The following command revokes the UPDATE privileges on the column
PHONENO in table Jeff TB_INFO from groupl:

dmSQL> REVOKE UPDATE (PHONENO) on Jeff.TB INFO FROM groupl;

Example 4

The following command revokes all privileges granted to PUBLIC on the TB_INFO
table:

dmSQL> REVOKE ALL ON TB INFO FROM PUBLIC;
Example 5

The following command revokes INSERT, UPDATE, and SELECT privileges for the

TB_INFO table from user Cathy and all users in group2;

dmSQL> REVOKE INSERT, UPDATE, SELECT ON TB INFO FROM Cathy, group2;

Security System Catalog

All information on authority levels, privileges, and groups is recorded in the following
system catalogs:

¢ SYSAUTHUSER — authority level of each user
¢ SYSAUTHTABLE — privileges on tables

¢ SYSAUTHCOL — columns of a table to which a user has been restricted for
INSERT, UPDATE and REFERENCE privileges

SYSAUTH — group name, group creator, and number of group members
¢ SYSACL — user IP checking rules

©Copyright 1995-2012 CASEMaker Inc. 8-15

O\ Database Administrator’s Guide

The security system catalogs are owned by SYSTEM. No user including SYSADM can
modify system catalogs. See System Catalog Reference for more details on the
DBMaker system catalogs.

8-16 ©Copyright 1995-2012 CASEMaker Inc.

Concurrency Control 9

9-1

Concurrency Control

Transactions and concurrency control are described in this chapter. How DBMaker
maintains concurrent access and data accuracy in a multi-user environment with the
lock mechanism is also described. The Transaction Section presents the transaction
concept and the functions used in managing a transaction. Section Transaction
Isolation Levels describes the four transaction levels. Section Multi-User environment
describes the necessity of concurrency control in a database system. Finally, section

Locks explains concurrency control techniques used by DBMaker.

Transactions

In a database, a transaction is a work unit that is composed of one or more SQL
statements. It is an atomic operation. That means it should either complete a series of
statements entirely or do nothing at all. Serial, atomic, permanent, consistent, and

isolated are the properties of a transaction.

Transaction States

A transaction must be in one of the following states:

¢ Active — When a transaction starts to execute, it immediately goes into an active

state. In the active state, a transaction can perform various database operations.

©Copyright 1995-2012 CASEMaker Inc. 9-1

O\ Database Administrator’s Guide

¢ Partially Committed — When a transaction reaches its last statement in
DBMaker (such as COMMIT WORK), it enters into the partially committed
state. The transaction has completed its execution and can still be aborted if an
error occurs during the actual output. The result cannot be written to disk and a

hardware failure may preclude its successful completion.

¢ Committed — When a transaction has completed its execution successfully it

enters into the committed state.

¢ Failed — When a transaction cannot proceed to a normal conclusion, it enters
into the failed state. This may be caused by hardware or logic errors, or a user

abort of the transaction during an active state.

¢ Aborted — When a transaction has ended unsuccessfully, it enters into the
aborted state. In this situation, any change or effect that a transaction has applied

to the database must be rolled back.

The state diagram corresponding to a transaction is shown in Figure 9-1.

Commit

Partially

issue
‘commit work'
command

Begin
Transaction Error

Occurs

issue
'rollback work'
command or
serious error
occurs

Rollback
Aborted

Figure 9-1 The transaction states

9-2 ©Copyright 1995-2012 CASEMaker Inc.

Concurrency Control 9

Managing a Transaction

When connecting to DBMaker, a transaction starts automatically and enters the active
state. DBMaker will automatically begin a new transaction after the preceding

transaction has been terminated.

Every time a statement executes a transaction is committed automatically by
DBMaker. This is known as autocommit mode. In this mode, the lifetime of a
transaction equals the lifetime of a single SQL statement. That means when one
transaction is terminated at the end of an SQL statement, another begins with the

next SQL statement. Each SQL statement is an independent transaction.

To force a transaction to remain uncommitted until several SQL statements have been
executed, change to manual commit mode by issuing a SET AUTOCOMMIT OFF
command. In this mode, a transaction can only be committed by using the SQL
command COMMIT WORK. As many SQL statements as necessary can be executed
before ending the transaction. To end the transaction, issue a COMMIT WORK
command to commit changes, or issue a ROLLBACK WORK command to abort any

changes made and terminate the transaction.

To return to autocommit mode, issue a SET AUTOCOMMIT ON command. The
default transaction mode is AUTOCOMMIT ON.

NOTE Afier a transaction is terminated, all resources allocated are released.

Using a Savepoint

A savepoint is an intermediate point that can be arbitrarily declared within the context
of a transaction. A savepoint is used to rollback the work performed after a savepoint

has been declared within a transaction.

For example, a transaction with a series of statements is executed, and an error occurs
while executing the twentieth statement. If a savepoint is marked between the fifteenth
and sixteenth statements, the first fifteen statements can be preserved. A user can roll

back to the savepoint and begin issuing commands from the sixteenth SQL statement

©Copyright 1995-2012 CASEMaker Inc. 9-3

O\ Database Administrator’s Guide

after correcting the error. Figure 9-2 shows an example of how the user does not need

to abort the transaction and resubmit all the statements.

However, if the user does not mark a savepoint between the fifteenth and sixteenth
statements, the transaction must be aborted and the first fifteen statements

resubmitted. This is inconvenient and wastes time. A savepoint solves this problem.

statement 1;
valid statements after

statement 15; roll back to savepoint
savepoint SP1;

statement 16; invalid statements after

statement 20 roll back to savepoint
"~ error occurs
rollback to SP1;

statement 16;

Figure 9-2 Using Savepoints

The SAVEPOINT and ROLLBACK TO ... commands mark a savepoint and

rollback to a specific savepoint.

S Example 1
The SAVEPOINT command:

dmSQL> SAVEPOINT <savepoint name>;
S Example 2
The ROLLBACK TO ... command:

dmSQL> ROLLBACK TO <savepoint name>;

The user specifies the <savepoint_name>. After rolling back to a savepoint, the system

resources that were allocated after the savepoint, like locks, are released.

9-4 ©Copyright 1995-2012 CASEMaker Inc.

Concurrency Control 9

9-2

Transaction Isolation Levels

Transactions Concurrency Issues

Concurrently executing transactions in the same database, may exhibit certain
unwanted phenomenon. These are commons called dirty read, non-repeatable read

and phantom read.
The following discussion is based on the following data (unless otherwise noted).

A table tablel with column c1 having values 1, 3 and 5. Two transactions T1 and T2

execute concurrently in this table.

DIRTY READ

Definition: A transaction reads data written by a concurrent uncommitted

transaction.

Example
T1 T2

Insert 4

Select cl1<5

Commit or rollback

When T1 executes “select c1 <57, this result is returned: c1 = 1, 3, 4. However, this

result may be incorrect because T2 can rollback later.

NON-REPEATABLE READ

Definition: A transaction re-reads data that it had previously read and finds that the

data has been modified by another transaction.

©Copyright 1995-2012 CASEMaker Inc. 9-5

O\ Database Administrator’s Guide

9-6

S Example

T1 T2

Select cl<5
Update cl=2 where cl=1
Commit

Select cl<5

In the first select, the result c1 = 1, 3 is returned to T1.Next, T2 updates the 1 to a
value of 2 and commits this update. Later, T'1 executes the same query and the the
result 2, 3 is returned. T1 executeed the same statement twice but different values

were returned each time.

PHANTOM READ

Definition: Two reads of same predicate return different sets of items. The second

read returns at least one item not in the original set.

Example
T1 T2

Select cl1<5
Insert 4
Commit

Select cl1<5

First, the T1 select statement executes and the result c1 = 1, 3 are returned. Next T2
insert the value 4 and commits it. Later T'1 executes the same query statement , the
result 1, 3, 4 are returned. T1 executed the same statement twice but different results
were returned each time. Some items in the second result are not in the first result. In

this example, the value 4 in the second result is the phantom.

©Copyright 1995-2012 CASEMaker Inc.

Concurrency Control 9

The Four Transaction Isolation Levels

Irrespective of the three concurrency problems, the ANSI/ISO SQL defines four

transaction concurrent levels:

Isolation Level Dirty Read | Non-repeatable Read | Phantom Read
Read uncommitted | Possible Possible Possible

Read committed Not possible | Possible Possible
Repeatable read Not possible | Not possible Possible
Serializable Not possible | Not possible Not possible

Set Transaction Isolation levels in DBMaker

DBMaker provides three methods for setting the transaction isolation levels using the

dmconfig keyword, the ODBC function, and the SQL syntax in dmsg].

DMCONFIG KEYWORD

The related keyword is DB_ISOLV.

DB ISOLV {1,2,3,4}
1 : READ UNCOMMITTED

: READ COMMITTED

2
3 : REPEATABLE
4

READ

: SERIALIZABLE

The default value is 1.

The DB_ISOLYV is set to indicate that each transaction’s default isolation level. For
example, if DB_ISOLV = 3, each transaction’s default isolation level is Repeatable

Read.

©Copyright 1995-2012 CASEMaker Inc.

9-7

O\ Database Administrator’s Guide

ODBC FUNCTION

SQLSetConnectionOption is used for setting and SQLGetConnectionOption is used
for getting the current transaction isolation level.

SQLSetConnectOption (HDBC, SQL ATTR TXN ISOLATION, level)

Level : {

SQL TXN READ UNCOMMITTED,

SQL TXN READ COMMITTED,

SQI. TXN REPEATABLE READ,

SQL TXN SERIALIZABLE

}
SQLGetConnectOption (HDBC, SQL ATTR TXN ISOLATION, &level)

SQL SYNTAX
Type “set transaction isolation level [level]” in the command line.
[level]

{ READ COMMITTED
| READ UNCOMMITTED
| REPEATABLE READ
| SERIALIZABLE
}
o

Type “call getsystemoption(‘isolv’,?);” in the command line in the dmsqgl
will get information about isolation level .

S Example

The get information about the isolation level:

dmSQL> set transaction isolation level READ UNCOMMITTED;
dmSQL> call getsystemoption ('isolv',?):
OPTION_VALUE :SQL_TRANSACTION_READ UNCOMMITTED

9-8 ©Copyright 1995-2012 CASEMaker Inc.

Concurrency Control 9

9.3 Multi-User Environment

When more than one user is accessing a database, consider what can happen when

they try to access data simultaneously.

Sessions

A conmection is a communication pathway between a user and DBMaker. A

communication pathway is established using shared memory or a network.

Before using the database resources, establish a connection to DBMaker using the

following SQL statement.

S Example

To connect a user to a DBMaker database:

dmSQL> CONNECT TO database name user name password;

When a user connects to a DBMaker database, the specific connection is called a
session. A session lasts from the time a user connects to a DBMaker database until the

time the user disconnects from it. A session can only have one active transaction at a

time.

The Necessity of Concurrency Control

In a multi-user database system environment, more than one user can connect to a
database at the same time. This could possibly result in many transactions updating

the same database simultaneously.

If no concurrency control mechanism is used, several situations could result in data

inconsistency:
¢ The lost update problem
¢ The temporary update problem

¢ The incorrect summary problem

©Copyright 1995-2012 CASEMaker Inc. 9-9

O\ Database Administrator’s Guide

9-10

=

LoST UPDATE PROBLEM

A lost update problem occurs when two transactions update a data item at

approximately the same time.

Example

Transactions T1 and T2 read and modify the value of X but use different calculations
to modify the value. This results in the transactions each containing a different value
for X. T1 writes the value it holds for X to the database after it is read but before it is
written by T2. T2 then writes the value it holds for X to the database, overwriting the
value written by T1. The value written by T1 is lost:

T1 T2
read (X) ;
read (X) ;
X=X-N;
X =X+ M
write (X) ;
write (X) ;

TEMPORARY UPDATE PROBLEM

A temporary update problem occurs when a transaction updates a value, but is rolled

back after another transaction updates the same value.

Example

Transaction T'1 reads and modifies the value of X, writes it back to the database, and
then continues with other commands. While transaction T1 continues executing,
transaction T2 reads the value of X, modifies it to a new value, and writes it back to
the database. Transaction T'1 then fails before completion, and must roll back all
values to restore the database to its original status. The database management system
restores the original value of X, overwriting the value written by transaction T2. The
value of X calculated by transaction T2 exists only temporarily:

T1 T2

©Copyright 1995-2012 CASEMaker Inc.

Concurrency Control 9

read (X) ; read (X) ;
X=X -N;
write (X); X=X+ M

write (X) ;

rollback;

INCORRECT SUMMARY PROBLEM

An incorrect summary problem occurs when a transaction is calculating the aggregate

sum of a number of records while other transactions are updating those records.

Example

Transaction T1 calculates the aggregate sum using the values of X and Y at the same
time transaction T2 is modifying those values. Transaction T2 updates the value of X
before transaction T1 uses it to calculate the sum, and updates the value of Y after
transaction T'1 uses it to calculate the sum. This results in transaction T'1 using some
values to calculate the sum before they are updated, and using others after they are
updated. When both transactions complete, the value of the sum is incorrect with

respect to the values in the database:

T1 T2
sum = 0;
read (X) ;
X =X -N;
write (X) ;
read (X) ;

sum = sum + X;

read (Y) ;

sum = sum + Y;
read (Y) ;
Y=Y + N;

write(Y);

©Copyright 1995-2012 CASEMaker Inc. 9-11

O\ Database Administrator’s Guide

9-4

9-12

There are various techniques to solve concurrency problems, such as locks and time
stamps. The next section shows how the locking technique is applied in DBMaker to

control concurrent execution of transactions.

Locks

In this section, the lock concept is first presented. Then, the DBMaker lock
mechanism is introduced, including lock granularity and lock modes. Finally, dealing

with deadlock is demonstrated.

Lock Concept

In general, a multi-user database system uses several forms of locking to synchronize
the access of concurrent transactions. Before accessing the data objects, such as tables

and tuples, a transaction must lock those data objects.

DBMaker locking is fully automatic and does not require any user action. Implicit
locking occurs in all SQL statements; the users do not need to explicitly lock any data

objects in the database.

SHARED AND EXCLUSIVE LOCKS

In general, three types of locking are used to allow multiple-read with single-write

operations in a multi-user database.

¢ Share Locks (S) — A transaction involving a read operation on a data object. To
support a higher degree of data concurrency, several transactions can acquire share

locks on the same data object at the same time.

¢ Update Locks (U) — A transaction involving an intended to update operation
or update operation on a data object. This lock is compatible with Share locks
but is not compatible with Exclusive locks. An object can have just one Update

lock at a time

©Copyright 1995-2012 CASEMaker Inc.

Concurrency Control 9

¢ Exclusive Locks (X) — A transaction involving an update operation on a data
object. This transaction is the only one that can access the object until the

exclusive lock is released

TwO-PHASE LOCKING

The two-phase locking protocol is used to ensure the transactions are serialized. In the
two-phase locking protocol, each transaction must issue all lock requests before it can

issue any unlock requests.

The protocol can be divided into two phases:

¢ Expanding (growing) phase — This phase allows the transaction to issue any
new lock requests that are required. Unlock requests are not permitted in this

phase.

¢ Shrinking phase — This phase allows the transaction to release locks acquired in

the expanding phase. New lock requests are not permitted in this phase.

The two-phase locking protocol is currently used by DBMaker to provide concurrency

control by serializing transactions.

DEADLOCK

When two or more transactions are waiting for the release of data locked by other

transactions before it can proceed, a deadlock occurs.

Example

T1 is waiting for T2 to release the share lock of X, while T2 is waiting for T'1 to
release the share lock of Y. Therefore, deadlock occurs and the system will wait
indefinitely:
T1 T2
share lock (Y);
read (Y) ;
share lock (X);
read (X) ;

©Copyright 1995-2012 CASEMaker Inc. 9-13

O\ Database Administrator’s Guide

exclusive lock (X);
(Tl waits for T2) exclusive lock (Y);

(T2 waits for T1)

Lock Granularity

There are three granularity levels for data locks in DBMaker: relation (table), page,

and tuple (row). A relation contains several pages, and a page contains several tuples.

A lock applied on a higher level carries through to lower levels. For example, if a user
gets an exclusive lock (X lock) on a relation, all pages and tuples that are included in
this relation will have the X lock applied to them. Therefore, no user can access any
tuple or page from this relation. However, if a user gets an X lock on a tuple, another
user can get an X lock on another tuple simultaneously. There is no interference
between two objects at the same level when using the X lock. Figure 9-3 shows the
lock granularity (levels) in DBMaker.

RELATION

PAGE

TUPLE

Figure 9-3: Lock granularity

Using a higher lock granularity results in a lower degree of data concurrency, in
contrast, the higher lock granularity uses fewer system resources (such as shared
memory). Selecting the lock granularity level is a trade-off between concurrency and
resources. In DBMaker, the default lock granularity level is row, but if a different lock
granularity is required, it can be specified when creating a table. Refer to Chapter 5,

Storage Architecture for more information.

9-14 ©Copyright 1995-2012 CASEMaker Inc.

Concurrency Control 9

Lock Types

The main lock modes (types) supported in DBMaker are shared (S) , update (U) and
exclusive (X) locks. More than one user can have an S lock on a data object
simultaneously, but only one user can have an X lock or U lock on a data object. In

addition to S, U, and X locks, another lock mode called an inzention lock is supported.

When a data object is locked, the system will automatically assign an intention lock to
the next higher granularity object. For example, an S lock specified on a tuple will
generate an intention S (IS) lock on the page which includes this tuple, and an IS lock
on the relation which the tuple belongs to.

The supported intention lock modes are:

¢ IS—Indicates that the S lock is specified at a lower granularity
¢ TU—Indicates that the U lock is specified at a lower granularity
¢ IX—Indicates that the X lock is specified at a lower granularity

¢ SIX—Indicates that an S lock is specified at the current granularity and an X lock

is specified at a lower granularity. This is a combination of S and IX locks

¢ SIU—Indicates that an S lock is specified at the current granularity and an U

lock is specified at a lower granularity. This is a combination of S and IU locks

¢ UIX—Indicates that an U lock is specified at the current granularity and an X

lock is specified at a lower granularity. This is a combination of U and IX locks

The result from the compatibility of each of the lock modes is listed in Table 9-1. T
represents true, which means the matrix for each of the two lock modes are compatible
and can exist on a data object simultaneously. F represents false, which means the
matrix for each of the two lock modes are not compatible and cannot exist

simultaneously.

If lock requests on a data object conflicts with an existing lock on that object, this
request will not execute until the existing lock is released, or until the waiting time for
the lock request times out. If the error message 'Lock timeout' is returned to the user,

the waiting time for the lock has expired. The default waiting time is 5 seconds.

©Copyright 1995-2012 CASEMaker Inc. 9-15

O\ Database Administrator’s Guide

9-16

However, users can specify a different waiting time by setting the value of the
DB_LTimO keyword in the dmconfig.ini file to another value according to their

individual requirements.

Example

The following shows how to set the waiting time to 8 seconds:

DB LTimO = 8;

N IS S I |SIU |IX |U SIX |UIX |X
N T T T T T T T T T T
IS T T T T T T T T T F
S T T T T T F T F F F
g |T T T T T T F T F F
SIU |T T T T T F F F F F
X |T T T T F T F F F F
U T T T F F F F F F F
SIX |T T F T F F F F F F
UIX [T T F F F F F F F F
X T F F F F F F F F F

Table 9-1: Compatibility matrix for lock modes

Dealing with Deadlock

By analyzing the “wait for” graph, DBMaker automatically detects a deadlock
situation. If a deadlock is detected, a victim transaction is aborted to solve the

deadlock problem.

Example

DBMaker detects a deadlock when transaction T2 issues an X lock on Y. Transaction
T2 will be aborted to resolve the deadlock problem and the user executing transaction

T2 will receive the error message, “transaction aborted due to deadlock”:

©Copyright 1995-2012 CASEMaker Inc.

Concurrency Control 9

©Copyright 1995-2012 CASEMaker Inc. 9-17

O\ Database Administrator’s Guide

9-18 ©Copyright 1995-2012 CASEMaker Inc.

Triggers 10

10

Triggers

Triggers are a very useful and powerful feature of the DBMaker database server.
Triggers automatically execute predefined commands in response to specific events,

regardless of which user or application program generated them.

Triggers allow a database to be customized in ways that may not be possible with
standard SQL commands. The database can consistently control complex or
unconventional database operations without requiring any action on the part of users

or application programs.

Use triggers to:

¢ Implement business rules

¢ Create an audit trail for database activities
¢ Derive additional values from existing data
¢ Replicate data across multiple tables

¢ Perform security authorization procedures
¢ Control data integrity

¢ Define unconventional integrity constraints

Exercise restraint when using triggers to avoid forming complex interdependencies
within the database that may be difficult to follow and change. Use triggers only when
the desired functionality cannot be implemented using standard SQL commands and

integrity constraints.

©Copyright 1995-2012 CASEMaker Inc. 10-1

O\ Database Administrator’s Guide

10.1

10-2

Trigger Components

DBMaker stores trigger definitions in the system catalog.

Every DBMaker trigger has six main components:

¢ Trigger Name — a name that uniquely identifies the trigger

¢ Trigger Action Time — the time relative to when a trigger will be fired

¢ Trigger Event — a specific situation that occurs in the database in response to

some user action, such as inserting data into a table
¢ Trigger Table — the name of the table the trigger executes on

¢ Trigger Action — an SQL statement or stored procedure that is executed when

the trigger event occurs
¢ Trigger Type — the type of trigger

Each of these components must be present in all triggers. In addition, there is an
optional component, the REFERENCING clause.

Trigger Name

The trigger name uniquely identifies a trigger. Trigger names have a maximum length
of 128 characters and may contain letters, numbers, the underscore character, and the
symbols # and $. The first character cannot contain a number, and the name cannot

contain spaces.

Trigger Action Time

The trigger action time specifies whether it should fire before or after the SQL
statement that activates it. The trigger action time is specified by the BEFORE and
AFTER time keywords. The BEFORE keyword instructs the trigger to fire before the
trigger statement. The AFTER keyword instructs the trigger to fire after the trigger

statement. Only one trigger time can be specified for each trigger.

© Copyright 1995-2012 CASEMaker Inc.

Triggers 10

Trigger Event

The trigger event is the database operation that causes a trigger to operate, or fire. The
trigger event may be an INSERT, UPDATE or DELETE statement that operates on
the trigger table. There can be only one trigger event for each trigger statement.

However, multiple trigger events can be used to activate multiple triggers.

Trigger Table

The trigger event operates on the associated trigger table. The trigger table must be a
base table; it cannot be a temporary table, view or synonym. A trigger may only have

one trigger table.

Trigger Action

A trigger action is the command that a trigger executes when it fires. The trigger
action may be an INSERT, UPDATE, DELETE or EXECUTE PROCEDURE

statement. A trigger can only have a single trigger action.

Trigger Type

The trigger type specifies how many times the trigger will fire for each trigger event.
There are two types of triggers: row triggers and statement triggers. The FOR EACH
ROW option specifies a row trigger, which fires a trigger action once for each row

modified by the trigger event. The FOR EACH STATEMENT option specifies a

statement trigger, which fires a trigger action once for each trigger event.

REFERENCING Clause

The REFERENCING clause defines correlating names for the old and new values in a
column. This is primarily used when the default OLD and NEW names cannot be

used because of a name conflict with a table.

©Copyright 1995-2012 CASEMaker Inc. 10-3

O\ Database Administrator’s Guide

10.2 Trigger Operation

DBMaker checks to see if a trigger should be fired and will execute the defined triggers
each time a user or an application program causes a trigger event. Firing triggers from
within a database ensures that DBMaker handles data consistently across all
applications. This guarantees that when a specific event occurs, a related action is also

performed.

Users can create triggers to implement domain, column, referential, and
unconventional integrity constraints. However, these can also be done by declarative

integrity control. Triggers do not have an owner, but are associated with a table.

Event on Trigger Table

(INSERT, UPDATE, DELETE)

Trigger

Resulting Action
(INSERT, UPDATE, DELETE, EXECUTE)

Figure 10-1 Trigger event and action

10.3 Creating Triggers

The CREATE TRIGGER command creates a new trigger associated with a specific
table. Only a user with privilege on the trigger table can execute the command. The
user must also have the necessary object privileges for all objects referenced in the

trigger definition in order to successfully create a trigger.

10-4 © Copyright 1995-2012 CASEMaker Inc.

Triggers 10

Basic Requirements

All of the CREATE TRIGGER statements must contain at least the following:
+ A trigger name

¢ The trigger action time (before or after)

¢ The trigger event

¢ The trigger table

¢ The trigger type (row or statement)

¢ The trigger action

Security Privileges

All SQL statements in the trigger action operate with the same privileges as the owner
of the trigger table, and not with the privileges of the user executing the trigger event.

If the trigger exists, any user executing the trigger event will result in the trigger firing.

CREATE TRIGGER Syntax
OR REPLACE
FCREATuTRIGGERtrigger_name{BEFORE}»
AFTER—
— INSERT

DELETE

;
UPDATE o , ﬁ}

cloumn_name—
for_each_row_clause
—»f > (-sql_statement-) —e
for_each_statement_clause J

FOR EACH ROW clause

ON—table_name —»

©Copyright 1995-2012 CASEMaker Inc. 10-5

O\ Database Administrator’s Guide

NEW AS new_name

L—< OLD AS old_name
REFERENCING <

NEW AS new_name

OLD AS old_name

———— FOR EACH ROW \;—.
WHEN (search_condition)

FOR EACH STATEMENT clause

FOR EACH STATEMENT
Figure 10-2 Syntax for the CREATE TRIGGER Statement

OR REPLACE is used to re-create the trigger that already exists, that is to say, users

can use this clause to change the definition of an existing trigger without dropping it.

S Example

The following statement create or replace a trigger on table tb_staff:

dmSQL> CREATE OR REPLACE TRIGGER tr_staff_insert AFTER INSERT ON tb_staff
FOR EACH ROW WHEN (new.ID > 0)
(INSERT INTO tb salary(new.ID, new.Name,NULL,
NULL, NULL));

Specifying the Trigger Action Time

You can use the trigger time and trigger type in combination to create four triggers for
each table for the same event (INSERT, DELETE, or UPDATE). For each event the
BEFORE/FOR EACH ROW, AFTER/FOR EACH ROW, BEFORE/FOR EACH
STATEMENT and AFTER/FOR EACH STATEMENT combinations are possible.

10-6 © Copyright 1995-2012 CASEMaker Inc.

Triggers 10

A BEFORE/FOR EACH STATEMENT trigger executes once and only once before
the triggering statement is performed. That is before the occurrence of the trigger
event. An AFTER/FOR EACH STATEMENT trigger executes once and only once
after the triggering statement is complete. Note that BEFORE and AFTER statement

triggers are executed even if the triggering statement does not process any rows.

BEFORE OR AFTER INSERT OR DELETE TRIGGER EVENTS

The following examples show how to create triggers that fire before or after INSERT
or DELETE trigger events. The trigger action is represented by <sg/_statement>.

Example 1

To define four triggers for an INSERT event on table tb:

dmSQL> CREATE TRIGGER trl BEFORE INSERT ON tb FOR EACH STATEMENT <sql statement>
dmSQL> CREATE TRIGGER tr2 BEFORE INSERT ON tb FOR EACH ROW <sgl statement>
dmSQL> CREATE TRIGGER tr3 AFTER INSERT ON tb FOR EACH ROW <sql statement>
dmSQL> CREATE TRIGGER tr4 AFTER INSERT ON tb FOR EACH STATEMENT <sql statement>

Example 2
To define four triggers for a DELETE event on table tb:

dmSQL> CREATE TRIGGER trl BEFORE DELETE ON tb FOR EACH STATEMENT <sql statement>
dmSQL> CREATE TRIGGER tr2 BEFORE DELETE ON tb FOR EACH ROW <sql statement>
dmSQL> CREATE TRIGGER tr3 AFTER DELETE ON tb FOR EACH ROW <sql statement>
dmSQL> CREATE TRIGGER tr4 AFTER DELETE ON tb FOR EACH STATEMENT <sql statement>

BEFORE OR AFTER THE UPDATE TRIGGER EVENT

The situation is different for UPDATE events. Two types of UPDATE triggers can be
created: UPDATE <table> triggers, or UPDATE OF <column> triggers. An UPDATE
<table> trigger fires whenever the table is updated. An UPDATE OF <column> trigger
fires when specific columns are updated. Either one UPDATE <table> trigger or

©Copyright 1995-2012 CASEMaker Inc. 10-7

O\ Database Administrator’s Guide

10-8

multiple UPDATE OF <column> triggers can be created on a single table. UPDATE
OF <column> triggers may contain multiple columns, but columns in all UPDATE

OF <column> triggers in a table must be mutually exclusive.

Example 1

To create a column trigger tr_UpdateColumn on table tb_salary of columns basepay,
bonus that has five columns, id, name, basepay, and bonus:
dmSQL> CREATE TRIGGER Tr UpdateColumn AFTER UPDATE OF basepay,bonus ON tb salary
FOR EACH ROW
(INSERT INTO tb OldSalary VALUES (old.basepay, old.bonus));

If a second UPDATE column trigger tr_UpdateBonus that specifies column bonus is
created, the command will fail because bonus already appears in trigger
tr_UpdateColumn:
dmSQL> CREATE TRIGGER tr UpdateBonus AFTER UPDATE OF bonus,tax ON tb salary

FOR EACH ROW

(INSERT INTO tb oldTax VALUES (old.bonus, old.tax));
ERROR (6150): [DBMaker] the insert/update value type is incompatible with column
data type or compare/operand value is incompatible with column data type in
expression/predicate

If there are four columns in a table, you can create at most four UPDATE column

triggers or one UPDATE table trigger, for triggers of the same type (for instance, a
BEFORE/FOR EACH ROW trigger).

FOR EACH ROW / FOR EACH STATEMENT Clause

The FOR EACH STATEMENT clause specifies that a trigger will fire once and only
once for each trigger event. The trigger fires even if the trigger event statement does

not process any rows.

The FOR EACH ROW clause specifies that a trigger will fire once for each row that
the trigger event modifies. If the trigger event does not modify any rows, the trigger
will not fire. The OLD and NEW keywords are used to identify which values from

© Copyright 1995-2012 CASEMaker Inc.

Triggers 10

the trigger table are to be used in the trigger action. The OLD keyword indicates that
trigger table values from before the trigger event are used in the trigger action. The
NEW keyword indicates that trigger table values from after the trigger event are used

in the trigger action.

Example 1

The following statement shows how to create an UPDATE column trigger on table
tb_Sales. The totSales field is a calculated field derived from the two fields: unitPrice

and unitSale. Both unitPrice and unitSale are triggering columns.
dmSQL> CREATE TRIGGER tr TotalSale AFTER UPDATE OF unitPrice, unitSale
ON tb Sales FOR EACH ROW
(UPDATE tb Sales
SET totSales = new.unitPrice * new.unitSale);

Example 2

In this example, there are four triggers.

dmSQL> CREATE TRIGGER tr BeforeUpdatePro BEFORE UPDATE ON tb Orders
FOR EACH STATEMENT
(EXECUTE PROCEDURE checkPrivilege);

dmSQL> CREATE TRIGGER tr BeforeUpdate BEFORE UPDATE ON tb Orders
FOR EACH ROW
(INSERT INTO tb Old Value (old.customer, old.amount));

dmSQL> CREATE TRIGGER tr AfterUpdate AFTER UPDATE ON tb Orders
FOR EACH ROW
(INSERT INTO tb New Value (new.customer, new.amount));

dmSQL> CREATE TRIGGER tr AfterUpdatePro AFTER UPDATE ON Orders
FOR EACH STATEMENT

(EXECUTE PROCEDURE Log Time) ;

If a user executes an UPDATE statement that changes two rows of the tb_Orders

table, the effect and order of the execution is as follows:

©Copyright 1995-2012 CASEMaker Inc. 10-9

O\ Database Administrator’s Guide

1. Procedure checkPrivilege is called

2. Insert one row to tb_Old_Value table

3. Update one row

4. Insert one row to tb_New_Value table
Insert one row to tb_Old_Value table
Update one row

7. Insert one row to tb_New_Value table

8. Procedure Log_Time is called

Stored procedures cannot contain COMMIT, ROLLBACK, or SAVEPOINT
transaction control statements. Triggers can specify only a single triggered action,

which must be enclosed in parentheses.

Using the Referencing Clause

In row triggers, the <sg/_statement> (or action body) should indicate whether the
column values used are from before or after the trigger event. For example, to log the
old price and new price when updating the price of a sale item, use the keywords OLD
and NEW as shown in example 2 in the section “FOR EACH ROW / FOR EACH
STATEMENT Clause.”

However, in some rare cases the tables may contain columns with the names NEW or
OLD. If this is the case, use the referencing clause to define correlation names. The
reference clause allows for the creation of two prefixes that can be used with a column
name: one to reference the old value of the column, and one to reference the new
value. These prefixes are called correlation names. Use the keywords OLD and NEW

to indicate the correlation names.

10-10 © Copyright 1995-2012 CASEMaker Inc.

Triggers 10

S Example

dmSQL> CREATE TRIGGER tr_log_price AFTER UPDATE OF price ON New
REFERENCING OLD as pre NEW as post
FOR EACH ROW
(INSERT INTO logTbl
VALUES (item no, today(), pre.price,
post.price));

In this example, the triggering table name is NEW, so the correlation names pre and
post are used in the action body. Referencing clauses are only valid for row triggers,

and are not allowed in statement triggers.

If a trigger event is INSERT, there is no old value for the newly inserted record, so the
old value is not available. Similarly, if the trigger event is DELETE, there is no new
value for the deleted record, so the new value is not available. For an UPDATE event

trigger, both old and new values are available.

Using the WHEN Condition

A WHEN condition clause may precede a FOR EACH ROW triggered action to
make the action execution dependent on the result of a Boolean expression. The
WHEN clause consists of the keyword WHEN followed by a parenthetical
conditional statement. The WHEN clause follows an action time but precedes the
triggered action body. The WHEN clause is not allowed in the definition of a

statement trigger, it is only allowed in row trigger.

S Examplel

The following trigger logs a customer complaint into the tb_logComplain table when
a customer calls to complain about something. Assume the call code 'c' means it is a
complaint call.
dmSQL> CREATE TRIGGER tr log complain AFTER INSERT ON tb Customer Call

- FOR EACH ROW . N

©Copyright 1995-2012 CASEMaker Inc. 10-11

O\ Database Administrator’s Guide

WHEN (new.call code = 'c')
(INSERT INTO tb logComplain
VALUES (Today (), Cus Name)) ;

The WHEN clause is evaluated for each row when the WHEN condition is included
in a trigger definition. If the WHEN condition evaluates to TRUE for a row, the
triggered action is fired for that row. If the WHEN condition evaluates to FALSE or

unknown for a row, the triggered action is not fired for that row.

The result of WHEN condition only affects the execution of the triggered action, it

has no effect on the triggering statement.

S Example 2

To create three triggers to record all INSERT, UPDATE and DELETE operations on
table tb_staff:
dmSQL> CREATE TRIGGER tr_staff_insert AFTER INSERT ON tb_staff
FOR EACH ROW
(INSERT INTO tb_salary
VALUES (new.Id, new.Name, NULL, NULL, NULL));

dmSQL> CREATE TRIGGER tr staff update AFTER UPDATE ON tb staff
FOR EACH ROW
(INSERT INTO tb staff bak
VALUES (old.Id, old.Name,new.Id, new.Name));

dmSQL> CREATE TRIGGER tr staff upd AFTER DELETE ON tb staff
FOR EACH ROW
(INSERT INTO tb staff bak
VALUES (old.Id, old.Name,
NULL, NULL));

S Example 3

If a primary key is changed, all the foreign keys can be changed in cascade. Suppose
deptNo is the primary key on table tb_dept, id is foreign key on table tb_staff.
dmSQL> CREATE TRIGGER tr dept update BEFORE UPDATE OF deptNo ON tb dept
FOR EACH ROW
WHEN (NEW.deptNo <> OLD.deptNo)
(UPDATE tb staff SET tb staff.ID = NEW.deptNo

10-12 © Copyright 1995-2012 CASEMaker Inc.

Triggers 10

WHERE tb staff.ID = OLD.deptNo) ;
S Example 4

If the primary key is deleted, all the foreign keys can be deleted in cascade.
dmSQL> CREATE TRIGGER tr dept delete BEFORE DELETE ON tb dept

FOR EACH ROW

(DELETE FROM tb staff

WHERE tb staff.ID = OLD.deptNo) ;

S Example 5

If a primary key is updated, all the foreign keys can be set to NULL.
dmSQL> CREATE TRIGGER tr dept delete BEFORE UPDATE ON tb dept
FOR EACH ROW
(UPDATE tb staff set ID = NULL
WHERE tb staff.ID= OLD.deptNo);

S Example 6

If the number of parts in stock is lower than a given level, the parts should be
reordered. The part number and quantity will be recorded to a table called
tb_pending_orders for further action.

tb_Inventory: part_no int, parts_on_hand int, reorder_level int, reorder_qty int

tb_pending_orders: part_no int, qty int, order_date date

dmSQL> CREATE TRIGGER tr reorder AFTER UPDATE OF parts on hand ON tb Inventory
FOR EACH ROW
WHEN (new.parts on hand < new.reorder level)
(INSERT INTO tb pending orders
VALUES (new.part no, new.reorder qty, today()))

Specifying the Trigger Action

The trigger action is the SQL statement that is performed when the trigger event
occurs. The trigger action can be an INSERT, DELETE, UPDATE, or EXECUTE
PROCEDURE statement. No other statements are allowed. Stored procedures cannot
contain COMMIT, ROLLBACK or SAVEPOINT transaction control statements.

©Copyright 1995-2012 CASEMaker Inc. 10-13

O\ Database Administrator’s Guide

10.4

10-14

Triggers can specify only a single trigger action, which must be enclosed in

parentheses.

Example

The following statement creates a trigger on table tb_staff.

dmSQL> CREATE TRIGGER tr staff insert AFTER INSERT ON tb staff
FOR EACH ROW WHEN (new.ID > 0)
(INSERT INTO tb salary(new.ID, new.Name, NULL,
NULL, NULL));

In this example, the trigger name is tr_staff_insert. The AFTER option is specified,
which means this trigger will be fired after the INSERT statement executes on table
tb_staff. The triggering event is INSERT, the triggering table is tb_salary. The trigger

type is FOR EACH ROW. The SQL action that is triggered is INSERT.
dmSQL> CREATE TRIGGER tr salary Del AFTER DELETE ON tb salary

FOR EACH ROW

(INSERT INTO tb oldsalry

VALUES (Old.name));

In the above example, the trigger tr_salry_Del will add the deleted customer name
into the tb_old_salry table when one deletes a record from the tb_salary table. You

cannot create a trigger on a temporary table, view or system table.

Modifying a Trigger

A trigger cannot be modified, but its definition can be replaced. When you want to

modify a trigger definition, use the ALTER TRIGGER statement.

© Copyright 1995-2012 CASEMaker Inc.

Triggers 10

ALTER TRIGGER Syntax
BEFORE
+«— ALTER TRIGGER — trigger_name — REPLACE WITH —C }—»
AFTER
INSERT \
DELETE ON — table_name —»

UPDATE \f

oF f /
column_name j
for_each_row_clause ——
—— j (— sql_statement —) ——
for_each_statement_clause

FOR EACH ROW clause

OLD AS old_name j
NEW AS new_name
REFERENCING

NEW AS new_name

OLD AS old_name

———— FOR EACH ROW }—4
WHEN (search_condition)

FOR EACH STATEMENT clause

FOR EACH STATEMENT

Figure 10-3 Syntax for the ALTER TRIGGER command

©Copyright 1995-2012 CASEMaker Inc.

10-15

O\ Database Administrator’s Guide

10.5

10-16

Replacing a Trigger Action

To replace a trigger action, use the statement ALTER TRIGGER #_name REPLACE
WITH...

Example 1

If a manager quits then their data needs to be deleted from the tb_manager table. To

create a trigger on the tb_staff table:
dmSQL> CREATE TRIGGER tr staff del AFTER DELETE ON tb staff
FOR EACH ROW
(DELETE FROM tb manager WHERE Id = old.Id)

Example 2

It is possible to add another condition to the triggered action, such as “delete the data
from tb_manager table only when the employee is a project manager.” To replace a

trigger action on the tb_staff table and add a condition:
dmSQL> ALTER TRIGGER tr_staff_del REPLACE WITH AFTER DELETE ON tb_staff
FOR EACH ROW
(DELETE FROM tb manager
WHERE Id = old.Id
AND title = 'Project Mananger')

Alternatively, the trigger can be dropped and recreated.

Dropping a Trigger

The DROP TRIGGER statement can be used to delete a trigger from the database.

IF EXISTS ’—\
»—DROP TRIGGERLT trigger name——FROM—table_name—a

Figure 10-4 Syntax for the DROP TRIGGER statement

© Copyright 1995-2012 CASEMaker Inc.

Triggers 10

Dropping the Trigger

Deleting a table will cause triggers referencing the table to be deleted. When a table
schema is altered, DBMaker tries to execute the trigger according to the new table
definition the next time the trigger is executed. If the specified column in a triggering
event or action is dropped, the trigger execution and statement will fail. The only
solution is to drop the trigger or modify the trigger definition according to the new
table schema. Drop a trigger by specifying the name of the trigger to delete and the

associated table.

S Example 1
To drop the myTrigger trigger from myTable table with DROP TRIGGER

command:
dmSQL> DROP TRIGGER myTrigger FROM myTable;

S Example 2

To drop the myTrigger trigger from myTable table with DROP TRIGGER IF

EXISTS command:
dmSQL> DROP TRIGGER IF EXISTS myTrigger FROM myTable;

S Example 3

To create a trigger named tr_staff_upd for table tb_staff:
dmSQL> CREATE TRIGGER tr staff upd AFTER UPDATE ON tb staff
FOR EACH ROW
(DELETE FROM tb salary WHERE id = old.id)

If the column id in table salary is dropped or the type is changed, an execution error
will occur when the triggering statement (update on tb_staff) is performed causing the

DBMS to attempt to fire trigger tr_staff_upd.

10.6 Using Triggers

There are several ways to use triggers.

©Copyright 1995-2012 CASEMaker Inc. 10-17

O\ Database Administrator’s Guide

Stored Procedures in Action Body

One of the most powerful trigger features is the ability to use a stored procedure as a
trigger action. The EXECUTE PROCEDURE statement calls a stored procedure,
enabling data to pass from the triggering table to the stored procedure and then

execute the procedure.

S Example

To create a trigger and use the EXECUTE PROCEDURE statement:

dmSQL> CREATE TRIGGER tr sales update AFTER UPDATE OF price ON tb Sales
FOR EACH ROW
(EXECUTE PROCEDURE
logPrice (item no, new.price, old.price));

Users can pass values to a stored procedure in the argument list. If the stored
procedure call is part of the action for a row trigger, users can use the OLD and NEW
correlation values to pass the column values it. If the stored procedure is part of an

action statement trigger, only constants can pass to the stored procedure.

Within a trigger action, you can update non-triggering columns in the triggering
table, with or without a stored procedure. A stored procedure fired by a trigger cannot
contain transaction control statements, like BEGIN WORK, COMMIT WORK,
ROLLBACK WORK, SAVEPOINT or DDL statements.

The stored procedure as a trigger action cannot be a cursory procedure that returns

more than one row.

Trigger Execution Order

The column numbers in the triggering columns determine the order of trigger
execution. The trigger execution begins with the trigger with the smallest triggering
column number and proceeds in order to the highest number. In the following

example a = columnl, b = column 2, ¢ = column 3 and d = column 4.

10-18 © Copyright 1995-2012 CASEMaker Inc.

Triggers 10

S Example

The operation UPDATE t1 SET b =b + 1, ¢ = ¢ + 1 will fire both triggers. Trigger
trigl, having a lower triggering column number than trig2, will be executed first. The

following assumes four columns named a, b, c and d from table t1.
dmSQL> CREATE TRIGGER trigl AFTER UPDATE OF a,c ON tl
FOR EACH STATEMENT (UPDATE t2 set cl=cl+l)

dmSQL> CREATE TRIGGER trig2 AFTER UPDATE OF b,d ON tl
FOR EACH STATEMENT (UPDATE t2 set c2=c2+1)

Security and Triggers

First, the user must have permission to run the trigger event; otherwise, the user
cannot trigger the event. However, the user does not have to have permission to run
the triggered action because the SQL statements in the triggered action operate under
the domain privilege of the trigger owner. Once a trigger is created successfully, the
trigger creator has privilege to execute the triggered action. Any one else who can issue

the triggering statement can also fire the trigger.

S Example

User B can update on both tables T1 and T2, and user A can update T1, but not T2.
Now user B creates a trigger on update T1, and the action updates T2. When user A
updates T1, the triggered action (update T2) is executed successfully since the
triggered action is running under the domain privilege of user B. This security rule
simplifies execution and eliminates the requirement for the user to have more

privileges to execute the triggered action.

Cursors and Triggers

UPDATE or DELETE statements within a cursor act differently than a single update

or delete statement. The entire trigger will be executed with each update or delete with

the WHERE CURRENT OF clause.

For example, if four rows are changed with a cursor, the BEFORE/FOR EACH
STATEMENT, BEFORE/FOR EACH ROW, AFTER/FOR EACH STATEMENT

©Copyright 1995-2012 CASEMaker Inc. 10-19

O\ Database Administrator’s Guide

10.7

10-20

and AFTER/FOR EACH ROW triggers will be executed once for each row for a total

of four times.

Cascading Triggers

Executing one trigger may cause another trigger to also be executed. You can use
cascading triggers to enforce referential integrity. DBMaker supports a maximum of

64 cascading triggers.

Example 1

To first delete a customer from the tb_customer table, trigger the action to delete
customer related records in the tb_order table, which in turn will trigger the action to

delete order related records in the tb_item table:
dmSQL> CREATE TRIGGER tr casl AFTER DELETE ON tb customer
FOR EACH ROW
(DELETE FROM tb orders WHERE cust num = old.cust num);

dmSQL> CREATE TRIGGER tr cas2 AFTER DELETE ON tb orders
FOR EACH ROW
(DELETE FROM tb items WHERE order num = old.order num);

In DBMaker, if users create recursive triggers, it will not return an error at trigger
creation time. However, users will get an error when the recursive triggers execute and

meet the maximum limit of cascading trigger levels.

Enabling and Disabling Triggers

When a trigger is created, the trigger is in enabled mode, which means the triggered

action executes when the trigger event occurs.
Sometimes users may need to disable a trigger:

¢ When users have to load a large amount of data, disabling the triggers temporarily

will speed up the loading operation

¢ When the objects referenced in a trigger are unavailable

© Copyright 1995-2012 CASEMaker Inc.

Triggers 10

S Example 1

To disable trigger Mytrigger for table Mytable:
dmSQL> ALTER TRIGGER Mytrigger ON Mytable DISABLE;

S Example 2

To enable trigger Mytrigger on table Mytable:
dmSQL> ALTER TRIGGER mytrigger ON mytable ENABLE;

In summary, a trigger has two possible modes:
¢ Enabled — Trigger is enabled when created and triggered action fires when the

event occurs.

¢ Disabled — Disabled trigger does not execute, even if the event occurs.

10.8 Create Trigger Privileges

To create a trigger for a table, a user must be the table owner or DBA. The trigger
creator must have privileges to all objects referenced in the CREATE TRIGGER

statement to be successful.

In DBMaker, a trigger has no owner; it is associated with a table. The table owner and
DBA have all privileges associated with a trigger. They can create, drop, or alter the
triggers.

The SQL statements in the trigger action operate under the domain privileges of the

trigger owner, not the domain privileges of the user executing the trigger event.

©Copyright 1995-2012 CASEMaker Inc. 10-21

O\ Database Administrator’s Guide

10-22 © Copyright 1995-2012 CASEMaker Inc.

Stored Commands 11

11 Stored Commands

A stored command is a compiled SQL DML statement stored in the database. A
stored command is precompiled in an executable format. The same command can be
executed without compiling and optimizing. It is possible to create a stored command
for any frequently used SQL statement, achieving better performance. Stored
commands are considered a subset of stored procedures that only contain one SQL

statement without program logic.

11.1 Creating Stored Commands

Use the CREATE COMMAND statement to create a stored command.

e CREATE o REPLACEL, COMMAND—— command_name ——AS —»
select_statement
insert_statement *\‘—'
update_statement j
delete_statement
Figure 11-1 Syntax for the CREATE COMMAND statement

OR REPLACE is used to re-create the stored command that already exists, that is to

say, users can use this clause to change the definition of an existing stored command.

©Copyright 1995-2012 CASEMaker Inc. 11-1

O\ Database Administrator’s Guide

Input parameters in the SQL statement can be used when creating a stored command.
The actual value of the input parameters for a stored command can be assigned at the

time of execution.

S Example 1

To create a stored command named sc_student_insert for the SQL DML statement
using a table with the definition tb_student (id INT, score INT, name CHAR(32)):
dmSQL> INSERT INTO tb student VALUES (1, ?, ?);

S Example 2

Alternatively use CREATE COMMAND:
dmSQL> CREATE COMMAND sc_student_insert AS INSERT INTO tb_student VALUES
(ll ?l ?)§

S Example 3

Alternatively use CREATE OR REPLACE COMMAND:
dmSQL> CREATE OR REPLACE COMMAND sc_student_insert AS INSERT INTO tb_student
VALUES (1, 2, ?);

S Example 4

To create stored commands for other DML statements:
dmSQL> CREATE COMMAND sc student select AS SELECT id,name FROM tb student;
dmSQL> CREATE COMMAND sc_student_update AS UPDATE tb_student SET id = id+l WHERE

score > ?;
dmSQL> CREATE COMMAND sc student delete AS DELETE FROM tb student WHERE score
> 2

After creating a stored command, a user with permission can execute it directly using
dmSQL or in an application program. If the stored command has input parameters,
its value can be determined using parameter marks, constants, NULL, DEFAULT, or
built-in functions (built-in functions can't have arguments), when executing the stored
command. When executing stored commands, the number of stored command input

parameters should equal the number of input parameters.

11-2 ©Copyright 1995-2012 CASEMaker Inc.

Stored Commands 11

11.2

11.3

11.4

Executing a Stored Command

Use the EXECUTE COMMAND statement to execute a stored command.

«— EXECUTE COMMAND command_name —<—>—-
u()

)
value j

Figure 11-2 Syntax for the EXECUTE COMMAND statement

Example 1
dmSQL> EXECUTE COMMAND sc_student insert (200, 'john');

Example 2
dmSQL> EXECUTE COMMAND sc student insert (DEFAULT, ?);

Example 3
dmSQL> EXECUTE COMMAND sc_student_insert (?, NULL);

Example 4
dmSQL> EXECUTE COMMAND sc student insert (?, ?);

A stored command may be dropped when it is no longer wanted.

Rebuilding a Stored Command

Use the REBUILD COMMAND statement to rebuild a stored command.
REBULDCOMMAND ~ —— — command_name

Figure 11-3 Syntax for the REBUILD COMMAND statement

Example
dmSQL> REBUILD COMMAND sc student insert;

Dropping a Stored Command

Use the DROP COMMAND statement to drop a stored command.

©Copyright 1995-2012 CASEMaker Inc. 11-3

O\ Database Administrator’s Guide

11.5

=

=)

IF EXISTS
e— DROP COMMANDQ— command_name ——e

Figure 11-4 The syntax of DROP COMMAND statement

Examplel
dmSQL> DROP COMMAND sc_student_insert;

Example 2
dmSQL> DROP COMMAND IF EXISTS sc student insert;

Stored Command Security

Stored commands are treated like database schema objects. So users must consider

security and object privileges when creating or using them.

Only the creator or users that have the RESOURCE privilege can create a stored
command. A user can only create a stored command from an SQL DML statement if

the user has privileges to execute the SQL DML statement.

Example

User joe with resource privilege wants to create a stored command sc_CheckDate with

the following syntax:
dmSQL> CREATE COMMAND sc CheckDate AS SELECT FirstName, LastName, Hiredate FROM
SYSADM.tb staff WHERE HireDate > ‘1995-01-01';

The tb_staff table is owned by SYSADM, so the system administrator must first grant
select permission to user joe on the table SYSADM.tb_staff before user joe can create

the stored command.

A user must have the execute privilege for a stored command to execute it. In order to
allow a stored command to be used by others, the user can grant the execute privilege
on a stored command. However, only users with the necessary privileges (DBA,
SYSADM, the creator of the stored command, or others granted the privilege) may

grant or revoke execute privileges for stored commands.

©Copyright 1995-2012 CASEMaker Inc.

Stored Commands 11

The DBA has execute privilege for all stored commands in a database. The owner of a
particular stored command has execute, grant and revoke privileges for that stored

command. Only the owner of stored command can drop it.

Granting Execute Privilege

COMMAND
«— GRANT — EXECUTE — ON { 1 executable_name —»

PROCEDURE j

Xguser_name 34/‘
group_name
PUBLIC —/‘

Figure 11-5 Syntax for the GRANT EXECUTE privilege
Example

To grant John the EXECUTE privileges for commands on sc_student_insert:
dmSQL> GRANT EXECUTE ON COMMAND sc student insert TO John;

Revoking Execute Privileges

COMMAND j‘
+«— REVOKE — EXECUTE — ON { — executable_name —»

PROCEDURE j

> FROM '/ —————
user_name

group_name
PUBLIC

Figure 11-6 Syntax for the REVOKE EXECUTE privilege

©Copyright 1995-2012 CASEMaker Inc. 11-5

O\ Database Administrator’s Guide

11.6

11.7

S Example

To revoke the EXECUTE bprivileges from John for sc_student_insert :
dmSQL> REVOKE EXECUTE ON COMMAND sc_student_insert FROM John;

Lifecycle of a Stored Command

A stored command will be invalid if one of the related tables in the stored command is
dropped or altered. If any programs were written previously using old column

information, it may cause unpredictable results at time of execution.

The benefit of stored command is improved performance when repeatedly executing a
SQL command. DBMaker also considers when the execution plan should be
refreshed, such as UPDATE STATISTICS. When the UPDATE STATISTICS
command is issued, all execution plans for the stored command will be updated to

achieve better performance.

Getting Information for Stored
Commands

Information about stored commands is found in the system table SYSCMDINFO.
Table 11-1 lists the columns of the SYSCMDINFO table and their values.

COLUMN NAME VALUE COMMENT
MODULENAME [Module name that the |This column is used by an ESQL
stored command application or stored procedure. It
belongs to can be ignored if it is a pure stored
command.
CMDNAME Stored command name [none
CMDOWNER Stored command owner |none
STATEMENT Original SQL string none
NUM_PARM Number of parameters |none
STATUS 0,1o0r2 0 - invalid stored command. It
cannot be executed.
1 — Valid stored command. It can

©Copyright 1995-2012 CASEMaker Inc.

Stored Commands 11

COLUMN NAME VALUE COMMENT

be executed

2 — The stored command needs to
be rebound. It can be executed after
internal rebinding.

Table 11-1: Details of the SYSCMDINFO table

Retrieve stored command information using the following statement in dmSQL:
dmSQL> SELECT * from SYSCMDINFO;

©Copyright 1995-2012 CASEMaker Inc. 11-7

O\ Database Administrator’s Guide

11-8 ©Copyright 1995-2012 CASEMaker Inc.

Stored Procedures 12

12

12.1

Stored Procedures

A stored procedure is a special kind of user-defined function. DBMaker supports
stored procedures written in three languages: ESQL/C, Java and SQL. Once a stored
procedure is created, it is stored in the database as an executable object. This allows
the database engine to bypass repeated SQL compilation and optimization, increasing
the performance of frequently repeated tasks. The stored procedure is executed either
as a command in interactive SQL, or invoked in application programs, trigger actions

or other stored procedures.

Stored procedures accomplish a wide range of objectives including improving database
performance, simplifying application writing and limiting or monitoring access to a

database.

Because stored procedures are stored in the database as executable objects, they are
available to every application running on the database. Several applications can use the

same stored procedure. This reduces application development time.

ESQL Stored Procedures

An ESQL stored procedure is an ESQL/C program. Stored procedures can perform
any function a C application can, including calling other C functions and system calls.

Therefore, a C compiler is required for writing stored procedures.

An ESQL/C program for a stored procedure consists of a CREATE PROCEDURE
statement, a declare section if needed, and the code section. If your program does not

use any host variables, the declare section can be omitted.

©Copyright 1995-2012 CASEMaker Inc. 12-1

O\ Database Administrator’s Guide

S Example

To create a stored procedure called sp_Aphone with one input parameter, one output

parameter, and a return value (status):
EXEC SQL CREATE PROCEDURE sp Aphone (CHAR (13) name, CHAR(13) phone OUTPUT)
RETURNS STATUS;
EXEC SQL BEGIN CODE SECTION;
EXEC SQL SELECT PHONE FROM TBL WHERE NAME = :name INTO :phone;

EXEC SQL RETURNS STATUS SQLCODE;

EXEC SQL END CODE SECTION;
}

The structure of this program will be explained in the following sections.

Create Procedure Syntax

In the head of a procedure definition is a CREATE PROCEDURE statement. The
syntax for the CREATE PROCEDURE statement is:

— OR REPLACE 7\

— module_name, procedure_name
o CREATE— PROCEDURE{ 54
/ procedure_name

(e>7)j{procedure return_, resultsf

7procedure nam

<procedure_parameters> clause

12-2 ©Copyright 1995-2012 CASEMaker Inc.

Stored Procedures 12

IN

e data_type parameter_name OUT >)

INPUT-
— OUTPUT ——

<procedure_return_result > clause

STATUS

fSTATUSf>—< 7

—data_tupe —result_name—

o—RETURNS

Figure 12-1 Syntax for the CREATE PROCEDURE statement

OR REPLACE is used to re-create the stored procedure if it already exists, that is to

say, users can use this clause to change the definition of an existing stored procedure

Please note that if replace procedure aborted, the originally stored procedure already

be dropped.

S Example

These examples show the syntax of the CREATE PROCEDURE statement.

dmSQL> CREATE PROCEDURE sp examplel (INTEGER n IN) RETURNS STATUS;

dmSQL> CREATE PROCEDURE sp example2 (INTEGER nl IN, INTEGER n2 OUTPUT) RETURNS
CHAR (12) nm;

dmSQL> CREATE PROCEDURE sp example3 (CHAR(10) parl OUTPUT, SMALLINT par2)
RETURNS STATUS, TIMESTAMP retl, FLOAT ret2;

dmSQL> CREATE OR REPLACE PROCEDURE sp example4 (CHAR(10) parl OUTPUT, SMALLINT
par2) RETURNS STATUS, TIMESTAMP retl, FLOAT ret2;

In a CREATE PROCEDURE statement the procedure name and the name and type

of any I/O parameters must be provided.

©Copyright 1995-2012 CASEMaker Inc. 12-3

O\ Database Administrator’s Guide

Using Parameters

If parameters are required, a list of type-name pairs for the parameters must be given
in parentheses. IN/OUT (or INPUT/OUTPUT) parameter attributes must be put
after each type-name pairs. If there is no parameter attribute, IN will be used by
default. Input parameters are used to pass a value to a procedure. In example 1, there
is one input parameter name. Every time the procedure is executed, a value for the

input parameter must be provided.

Output parameters are used to get a single result, not a result set, after the procedure is
executed. In example 1, procedure sp_Aphone has an output parameter, phone. The
output parameter must have a buffer assigned to it to receive the result. After the
procedure executes, the phone number for the name inputted can be retrieved from

the buffer.

The result list is required for a stored procedure to retrieve a result set of tuples from
the database. If the procedure does not return selected results then there is no need for
the result list. The keyword RETURNS is used to start the result list. It is a list of

name type pairs.

The STATUS keyword indicates an integer value be returned after the procedure

executes.

2 Example

To execute a procedure with one input parameter and a value:
EXEC SQL CREATE PROCEDURE sp Select (FLOAT ifl) RETURNS STATUS,

FLOAT fl,

DOUBLE db;

EXEC SQL BEGIN CODE SECTION;

EXEC SQL RETURNS STATUS SQLCODE;

EXEC SQL RETURNS SELECT f1, db FROM t8 WHERE fl < :ifl into :fl, :db;
EXEC SQL END CODE SECTION;

12-4 ©Copyright 1995-2012 CASEMaker Inc.

Stored Procedures 12

DBMaker now supports the following data types for input and output parameters:
INTEGER, SMALLINT, CHAR(), DATE, TIME, TIMESTAMP, FLOAT,
DOUBLE and REAL.

Return Select Statement

A procedure can return a result set using the host variable mechanism to pass
information to the user executing the stored procedure. In the code of the stored
procedure use the RETURNS keyword to instruct the preprocessor to generate a host
variable related to C code. The RETURNS keyword precedes the select statement that

produces the result set.

Example

There are two RETURNS in this example, one in the create procedure statement and
the other in the select statement forming a pair. If there is to be a result set returned,
declare output parameters with RETURNS in the create procedure statement and put
the RETURNS keyword in the select statement:

EXEC SQL CREATE PROCEDURE sp Allphone RETURNS CHAR(12) name, CHAR(12) phone;

{
EXEC SQL BEGIN CODE SECTION;
EXEC SQL RETURNS SELECT NAME, PHONE FROM TBL INTO :name, :phone;
EXEC SQL END CODE SECTION;

Module Names

When a user creates a stored procedure DBMaker will use the owner name and
procedure name as the default dynamic link library name. The user can call or drop
his or her stored procedures using only the procedure name. Any user can call another

user’s procedure using the full procedure name: owner.procedure_name.

A user can also specify a module name in the CREATE PROCEDURE syntax to
change the default dynamic link library name. If a module name is specified in the
CREATE PROCEDURE syntax, users will need to call or drop the procedure with
the full procedure name; module_name.owner.procedure_name, even if the user created

it.

©Copyright 1995-2012 CASEMaker Inc. 12-5

O\ Database Administrator’s Guide

12-6

Variable Declaration

The host variables in stored procedures are declared in the same way as in ESQL/C.
The declare section in a stored procedure must be put before the code section, not in
ESQL/C programs. C variables can be placed before or after the declare section, but

need to be before the code section.

Code Section

All statements should be in the code section except the variable declaration. Any non-
declaration statement before the code section may cause problems resulting in compile
errors or wrong results being returned. Statements after the CODE SECTION will

not be executed.

Configuration Settings for Stored Procedures

When a stored procedure is created, a corresponding dynamic link library is built and
stored on the server. By default, the library file is placed in the DBMaker server’s
working directory. The database administrator can set a preferred path to place the
library files for stored procedures using the configuration keyword DB_SPDir.

The keyword DB_SPLog is used by client users to set the directory they prefer to
receive error message files and trace log files, transmitted from the database server

while creating or executing stored procedures.

Example 1

To set the default path of dynamic link library files for stored procedures to

/usrl/dbmaker/data/SP add the following line in the dmconfig.ini file:
DB SPDIR=/usrl/domaker/data/SP

Example 2

To set the stored procedure log file directory to c:\usr\jerry\data\SP add the following
line in the dmconfig.ini file:
DB SPLOG=c:\usr\jerry\data\SP

©Copyright 1995-2012 CASEMaker Inc.

Stored Procedures 12

=

Creating a New Stored Procedure from File

First, write the stored procedure and save it to a file, then use DBMaker tools like

dmSQL or DBATool to insert this new stored procedure into the database.

+——CREATE PROCEDURE FROM file_name

Figure 12-2 Syntax for the CREATE PROCEDURE FROM <file_name> statement

Example

To create a procedure using multiple files:

dmSQL> CREATE PROCEDURE FROM ‘procl.ec’;

dmSQL> CREATE PROCEDURE FROM ‘.\esql\sp\proc2.ec’;

dmSQL> CREATE PROCEDURE FROM ‘c:\users\jerry\sp\proc3.ec’;

The previous examples show how to create stored procedures using dmSQL.

Alternatively, use JDBAT ool
1. Click the object Stored Procedure in the Tree.

2. Click the Create button. The Introduction window of the Create Stored
Procedure wizard is displayed.

3. Import a stored procedure by selecting the Import button.

4. Selecting Import opens the Open window. Files can be imported from any source,
including the SPDIR directory of other databases on the server or network drives.
Select the desired file by typing in the path in the File name field, or browse
through the directory tree until the correct path is found.

Imported files must be ASCII format files that contain C++ code.
5. Select Open to open the file.

6. The Create Stored Procedure window will reappear if the imported file contains
properly formatted (ASCII) text. Select Save As to store the stored procedure to
another location, or select OK to compile and store the stored procedure in the
database.

NOTE [fthere are any errors when creating a stored procedure, they will be shown in the

lower part of the window.

©Copyright 1995-2012 CASEMaker Inc. 12-7

O\ Database Administrator’s Guide

12-8

Executing Stored Procedures

You can invoke a stored procedure in dmSQL, a C program (ODBC or ESQL),

another stored procedure, or using a trigger action.

DMSQL

«—CALL 4>— file_name
owner_name.

Figure 12-3 Syntax for the CALL statement within dmSQL

({ })
:call_parameter

Example 1

To execute a stored procedure in dmSQL:

dmSQL> CALL sp examplel (3); // execute procedure sp examplel
dmSQL> CALL SYSADM. sp example2 (5, ?); // execute SYSADM's procedure
sp_example2

dmSQL/Val> 100; // input the value of parameter

dmSQL> ? = CALL SYSADM. sp example2 (5, 100); // execute procedure p2 and get
// returned status

Example 2

If the procedure returns a result set, dmSQL automatically handles the output
parameters and displays the result set on the screen. The result set appears on the
screen as if you had typed a SELECT statement using dmSQL:
dmSQL> call sp Aphone ('jeff');

STATUS PHONE

0 408-255-2689

dmSQL> call sp Allphone;

NAME PHONE
Jerry 02-775-8615
Jeff 408-255-2689

©Copyright 1995-2012 CASEMaker Inc.

Stored Procedures 12

ESQL

HCALL% }ﬁle_name
:status = owner_name. (i ’ :)
:call_parameter

Figure 12-4 Syntax for the CALL statement within ESQL

Example

To execute a stored procedure in ESQL:

EXEC SQL :s = CALL sp examplel (3);

EXEC SQL CALL SYSADM. sp example2 (5, :n2) INTO :nm;

EXEC SQL :s = CALL jack. sp example3 (:parl, 7) INTO :retl, :ret2;

The syntax used in an ESQL program is similar to dmSQL. Use host variables to

receive the Status, output parameter, and result set values.

EXECUTING NESTED STORED PROCEDURES

Invoked a nested ESQL/C stored procedure happens in exactly the same way as in
any ESQL/C program. There is one exception: regular ESQL programs cannot use the
RETURNS keyword, but stored procedures can when invoking another stored

procedure.

Assume stored procedure sp_Allphone returns a multiple tuple result set. A regular
ESQL program must use a cursor to fetch the tuples when invoking this procedure as
shown in the last section. Another stored procedure sp_another can use the same
method to fetch tuples, examine data and return the entire result set of the called

stored procedure to the caller directly from within the current stored procedure.

Example

To call a statement from within the sp_another stored procedure:
EXEC SQL RETURNS CALL sp Allphone INTO :oName, :oPhone;

When a stored procedure returns another stored procedure’s result set, the caller
should have exactly the same result set list, or the first n result columns from the called

procedure.

©Copyright 1995-2012 CASEMaker Inc. 12-9

O\ Database Administrator’s Guide

EXECUTING STORED PROCEDURES IN ODBC PROGRAMS

You can also call a stored procedure in an ODBC program by binding parameters for
a procedure and using columns to return the result set. In an ODBC program, you
can bind partial columns of the result set. After the procedure executes, output
parameters are returned in the host variables. Use a fetch, like a SELECT command,

to get the result set.

S Examplel

Procedure sp_procl declaration:

dmSQL> CREATE PROCEDURE sp procl (CHAR(12) pl, CHAR(12) p2 OUTPUT) RETURNS INTEGER
rl;

{

EXEC SQL BEGIN CODE SECTION;

EXEC SQL SELECT c2 FROM tl WHERE cl = :pl INTO :p2;

EXEC SQL RETURNS SELECT cl FROM t2 INTO :rl;

EXEC SQL END CODE SECTION;

}

S Example 2

ODBC program that calls sp_procl:
SQLPrepare (cmdp, (UCHAR*) "call sp procl(?, ?)", SQL NTS);

strcpy (bpname, "12345");

SQLBindParameter (cmdp, 1, SQL PARAM INPUT OUTPUT, SQL C CHAR, SQL CHAR,
20, 0, &pl, 20, NULL);

SQLBindParameter (cmdp, 2, SQL PARAM INPUT OUTPUT, SQL C CHAR, SQL CHAR,

20, 0, §p2, 20, NULL);

SQIBindCol (cmdp, 1, SQL C LONG, &i, sizeof(long), NULL);
SQLExecute (cmdp) ; /* get p2 x/

while ((rc=SQLFetch (cmdp)) !=SQL NO DATA FOUND) /* fetch result set */

12-10 ©Copyright 1995-2012 CASEMaker Inc.

Stored Procedures 12

12.2

TRACING STORED PROCEDURE EXECUTION

DBMaker provides trace functionality to help users trace the execution of stored

procedures for debugging.

Example

Using the TRACE command:

EXEC SQL TRACE ON; // Start TRACE

EXEC SQL SELECT cl FROM tl INTO :varl;

EXEC SQL TRACE (“warl = %d\n”, varl); // TRACE the value of varl
EXEC SQL TRACE OFF; // END OF TRACE

Turn on and use the TRACE function to place variables for tracing and print
messages. After the stored procedure executes, all trace information will be written to a
file named _spusr.log in the DB_SPLog keyword directory found in the dmconfig.ini

file on the client machine.

JAVA Stored Procedures

There are a number of scenarios where it makes sense to use Java stored procedures.
Given Java's popularity today, it is certainly possible that members of a development
team are more proficient in Java than ESQL. DBMaker supports Java stored
procedures to give Java programmers the ability to code in their preferred language.
For experienced ESQL developers, using Java allows you to take advantage of the Java
language to extend the functionality of database applications. Using Java also allows

you to reuse existing code and dramatically increase productivity.

DBMaker supports a java method as a java stored procedure. DBMaker replaces the
URL argument of DriverManager.getConnection(url, ...) with
jdbc:default:connection. You can use all java classes to implement a Java method as a
Java stored procedure, including all JDBC classes. DBMaker has new syntax to register

related .jar files, and create, execute, and drop a Java stored procedure.

The syntax for the CREATE JAVA PROCEDURE statement is:

©Copyright 1995-2012 CASEMaker Inc. 12-11

O\ Database Administrator’s Guide

OR REPLACE—\‘ module_name procedure_name~—
O—CREATELF PROCEDURE—\/ >}>
procedure_name———
RN

- ,
—C P
procedure_parameters

RETURNS STATUS
Y

\—RETURNS STATUS{
data_type

—»LANGUAGE JAVA—»— FROM—>»

variable_name —

—»— © —package class method —(—# —_)— ‘= -
— argtype —

/—owner. java_sourcecode_jar_file—

+\ owner.related_jar file) e
——java_sourcecode_jar_file ' }

related_ jar_file
Figure 12-5 Syntax for the CREATE JAVA STORED PROCEDURE statement

S Example 1

DBMaker supports java method xx.yy.AA(String) in /home/ust/mary/sp/aa.jar, but
/home/usr/john/sp/bb.jar is still needed to run method AA(String):

For example: To register aa.jar and bb.jar files into database, first, you must put user

sysadm’s /home/usr/mary/sp/aa.jar into /home/sysadm/spdir/jar/SYSADM/.

DB_SPDIR is defined in dmconfig.ini as “/home/sysadm/spdir”, so the user must
move the jar file into DB_SPDIR/jar/uppercase_username/ directory before adding
the jar file in to the database.

® Example 2

You have a java method xx.yy.AA(String) in aa.jar, but you still need bb.jar to run
method AA(String):

To register aa.jar and bb.jar files into database
>>ADD JARFILE xaa aa.jar;
>>ADD JARFILE xbb bb.jar;

12-12 ©Copyright 1995-2012 CASEMaker Inc.

Stored Procedures 12

NOTE Users must move the physical jar files, i.e. aa.jar and bb.jar, into directory
DB_SPDIR/jarluppercase_username/ before executing the “add jarfile” syntax.
DB_SPDIR is the keyword to define the DBMaker stored procedure directory in
dmconfig.ini.

To create a java stored procedure “JSP_AA(char(10) parl)” by the java method AA(String)
>>CREATE PROCEDURE JSP AA (char (10) parl) RETURNS STATUS IANGUAGE JAVA FROM
‘xx.yy.RA(String)’, xaa, xbb;

To execute a java stored procedure “JSP_AA”
>>EXECUTE PROCEDURE JSP AA (‘aaaaaa’);
>>CALL JSP AA (‘bbb’);

To drop a java stored procedure “JSP_AA”
>>DROP PROCEDURE JSP RA;

To deregister aa.jar and bb.jar files from database
>>REMOVE JARFILE xaa;
>>REMOVE JARFILE xbb;

The related Create Procedure syntax in JAVA

To register a .jar file into the database:
ADD JARFILE logical file name physical jarfile name;

To deregister a .jar file into the database:
REMOVE JARFILE logical file name;

To create a java stored procedure with CREATE PROCEDURE command:
CREATE [OR REPLACE] PROCEDURE procedure-name
[(procedure-parameter [, procedure-parameter ...])]
{
[RETURNS STATUS]
| [RETURNS [STATUS,] procedure-result [,procedure-result ...]]
}
LANGUAGE JAVA FROM ‘package.class.method([‘ argtypel[,argtype..] ‘1)’ ,
[owner.]java-sourcecode-jar-file [, owner.related-jar-file];

OR REPLACE is used to re-create the procedure if it already exists, that is to say,

users can use this clause to change the definition of an existing procedure.

©Copyright 1995-2012 CASEMaker Inc. 12-13

O\ Database Administrator’s Guide

To execute a java stored procedure:

EXECUTE PROCEDURE [owner.]procedure-name;

EXECUTE PROC [owner.]procedure-name;

[? =] CALL [owner.]procedure-name [(procedure-parameter-value [, procedure-
parameter-value ...])]

To drop a java stored procedure:
DROP PROCEDURE [owner.]procedure-name;

To load/unload procedure:
UNLOAD PROCEDURE/PORC FROM [owner patt.]proc patt TO unload filename;
LOAD PROCEDURE/PORC FROM unload filename;

To load/unload jar file:
UNLOAD JARFILE FROM [owner patt.]jarfile patt TO unload filename;
LOAD JARFILE FROM unload_filena.me;

NOTE Users must move the physical jar files into the new
DB_SPDIR/jarluppercase_username/ directory before loading jar files.

Executing Java Stored Procedures

Explanations using the Java stored procedures are delivered using the following

examples.

S Example 1 (INPUT parameter)
Insert one tuple into the table tb_staff using a Java stored procedure.

1. Werite a java method addEmployee(int,String) to insert one tuple into the table
tb_staff. Then compile the Java method and zip the class into an AA jar file.
public static void addEmployee (int id, String name)
{
Connection conn = DriverManager.getConnection("'jdbc:default:connection™);
PreparedStatement pstmt = conn.prepareStatement (“insert into tb staff
values(?,?)”);
pstmt.setInt (1, empid);
pstmt.setString (2, name);
pstmt.execute() ;
}

12-14 ©Copyright 1995-2012 CASEMaker Inc.

Stored Procedures 12

2. Create a Java stored procedure for the Java method: addEmployee(int,String).

To execute the SQL statement to add the NEW jar file:
ADD JARFILE logical AA AA.jar;

To execute one of the following SQL statements to create the Java stored procedure:
CREATE PROCEDURE JSP addEmp (int id, char(10) name) RETURNS STATUS LANGUAGE JAVA
FROM ‘xx.yy.addEmployee (int,String)’, logical AA;

or:
CREATE OR REPLACE PROCEDURE JSP addEmp (int id, char(10) name) RETURNS STATUS
LANGUAGE JAVA FROM ‘xx.yy.addEmployee (int,String)’, logical RA;

3. Run the Java stored procedure.

To execute the SQL statement to run the java SP:
EXECUTE PROCEDURE JSP addEmp (1234, ‘jeff’);

Example 2 (OUTPUT parameter)

Select one employee name from the tb_staff with the predicator (empid) using a Java

stored procedure.

1. Werite a Java method oneEmployee(int,byte[]) to get one employee name from the
table tb_staff with the predicator (emp id). Then compile the Java method and zip
the class into the BB.jar file.

public static void oneEmployee (int id, byte[] name)

{

Connection conn = DriverManager.getConnection("'jdbc:default:connection™);
PreparedStatement pstmt = conn.prepareStatement (“select name from
tb staff where id = ?7);
pstmt.setInt (1, id);
ResultSet rs = pstmt.executeQuery();
Rs.next () ;
String empName = rs.getString(l);
Name = empName.getBytes () ;
}

2, Create a Java stored procedure for the Java method: oneEmployee(int,String).

To execute the SQL statement to add the NEW jar file:
ADD JARFILE logical BB BB.jar;

©Copyright 1995-2012 CASEMaker Inc. 12-15

O\ Database Administrator’s Guide

12-16

To execute the SQL statement to create the java SP:
CREATE PROCEDURE JSP oneEmp (int id, char(10) name OUTPUT) RETURNS STATUS
LANGUAGE JAVA FROM ‘xx.yy.oneEmployee (int,byte[])’, logical BB;

3. Run the Java stored procedure.

To execute the SQL statement to run the java SP:
EXECUTE PROCEDURE JSP_oneEmp (1234, ?);

Example 3 (Resultset)
Select one resultset from the table tb_staff using a Java stored procedure.

1. Werite a Java method rsEmployee() to get one employee name from the table
tb_staff. Then compile the Java method and zip the class into a CC.jar file.
public static ResultSet rsEmployee ()
{
Connection conn = DriverManager.getConnection("'jdbc:default:connection™);
Statement stmt = conn.createStatement () ;
ResultSet rs = stmt.executeQuery (“select id, name from tb staff”);
Return rs;

}

2, Create a Java stored procedure for the Java method: rsEmployee(int,String).

To execute the SQL statement to add the NEW jar file:
ADD JARFILE logical CC CC.jar;

To execute the SQL statement to create the java SP:
CREATE PROCEDURE JSP rsEmp RETURNS STATUS, int outId, char(10) outName LANGUAGE
JAVA FROM ‘xx.yy.rsEmployee()’, logical CC;

3. Run the Java stored procedure.

To execute the SQL statement to run the Java stored procedure:
EXECUTE PROCEDURE JSP_rsEmp () ;

4. Fetch the result set using a general fetch (or extended fetch) method.

Input/Output Argument

The Java stored procedure input/output argument for DBMaker supports the
following data types:

©Copyright 1995-2012 CASEMaker Inc.

Stored Procedures 12

BINARY
CHAR

REAL
SMALLINT
TIMESTAMP
TIME

VARCHAR
FLOAT
DOUBLE
INTEGER
DATE
DECIMAL

They are seven basic Java types and arrays that DBMaker supports:

‘ JAVA TYPE ‘ ARRAY
‘ byte ‘ byte []
‘ short ‘ short []
‘ int ‘ int []

‘ long ‘ long []
‘ float ‘ float []
| double | double []
| char | char[]

The following classes are also supported:

‘ JAVA CLASS ‘ ARRAY
‘ Byte ‘ Byte[]
| Short | Short[]
‘ Integer ‘ Integer|]
| Long | Long[]
| Float | Float[]

©Copyright 1995-2012 CASEMaker Inc. 12-17

O\ Database Administrator’s Guide

12.3

12-18

| Double | Double[]
| Character | Character][]
| String | String[]

SQL Stored Procedures

Using SQL statements to create stored procedures rather than ESQL and Java is

sometimes a better approach.

An SQL stored procedure is a stored procedure with logic implemented using only
SQL statements. The SQL stored procedure contains a set of SQL statements that can
be stored on a server. Once on the server, clients can avoid executing many individual
statements by making use of the SQL stored procedure. SQL stored procedures
contain permanent stored procedures and temp stored procedures.For more
information on SQL stored procedures please see DBMaker SQL Stored Procedure
User’s Guide.

Architecture

SQL stored procedures contain compound statements. These are bounded by the
keywords BEGIN and END. The following example shows an SQL stored procedure
statement.

BEGIN #block header

Variable declarations

Condition declarations

Cursor declarations

Condition handler declarations

Assignment, flow of control, SQL statements and other compound statements

END; #block end

This example shows how SQL stored procedures consist of one or more component
declarations and statements that make a block. Blocks support nesting within a single
SQL stored procedure. Some components declarations are options: variable,

condition, and handler, however, when present they must precede assignment, flow

©Copyright 1995-2012 CASEMaker Inc.

Stored Procedures 12

control, SQL and other compound statements. Note that cursor declarations may

appear anywhere block.

Create SQL Stored Procedure Syntax

CREATE SQL STORED PROCEDURE FROM FILE

OR REPLACE— odule_name procedure_name-—
o—CREATE—X 'fPROCEDURE*< }V
procedure name———
> , Y
p- ({ })4—/‘>>
procedure_ parameters

> , b
N RETURNS{ 3)J»
data_type variable _name—

—»—LANGUAGE SQL—»

—»—BEGIN—»

4>—<— sp_declare_main }<— sp_statement_ mainJ

—»—END—e
Figure 12-6 Syntax for the CREATE SQL Stored Procedure statement

OR REPLACE is used to re-create the procedure if it already exists, that is to say, you

can use this clause to change the definition of an existing procedure.

NOTE Not support executing CREATE OR REPLACE COMMAND syntax and in stored

procedure.

NOTE Not support CREATE OR REPLACE PROCEDURE syntax while setting
AUTOCOMMIT OFF.

SQL stored procedure can be created using an external file (*.sp). Use the dmSQL
command line tool to create SQL stored procedures by referencing external files as

shown in the following example.

©Copyright 1995-2012 CASEMaker Inc. 12-19

O\ Database Administrator’s Guide

S Example 1

To create an SQL stored procedure by file reference:

dmSQL> CREATE PROCEDURE FROM ‘CRETB.SP’;

dmSQL> CREATE PROCEDURE FROM ‘.\SPDIR\CREIB.SP’;

dmSQL> CREATE PROCEDURE FROM ‘D:\DATABASE\SPDIR\CRETB.SP’;

S Example 2

To create or replace an SQL stored procedure by file reference:

dmSQL> CREATE OR REPLACE PROCEDURE FROM ‘CRETB.SP’;

dmSQL> CREATE OR REPLACE PROCEDURE FROM ‘.\SPDIR\CRETB.SP’;

dmSQL> CREATE OR REPLACE PROCEDURE FROM ‘D:\DATABASE\SPDIR\CRETB.SP’;

CREATE SQL STORED PROCEDURE IN SCRIPT

In DBMaker 5.3, users can create SQL stored procedures not only from files, but also
in dmSQL. The user can call and drop the SQL stored procedure of his own, and can
execute SQL stored procedures on which the privilege has been granted to him. For

more information, please refer to the chapter 6 in “SQL stored procedure”.

SQLSP contains more than one SQL statements, and each statement is end of ;. So
dmSQL must support block delimiter. Block delimiter can be a serial of a-z, A-Z, @,
%, *, and contains two characters at least and seven characters at most. In block
delimiter, ;" doesn't denote end of the input. Users must set block delimiter before

write SQL stored procedure in dmSQL, otherwise, it will return error.

S Example:

To create stored procedure syntax in script:
dmSQL> set block delimiter QQ;
dmSQL> @@
2> create procedure sp in script2
3> language sql
4> begin
5> insert into tl values(1l);
6> end;
7> @@
dmSQL> set block delimiter;

12-20 ©Copyright 1995-2012 CASEMaker Inc.

Stored Procedures 12

Using Parameters

SQL values are passed to and from SQL stored procedures via parameters.

Parameters can be useful in SQL stored procedures when implementing logic that is
conditional on a particular input or set of input scalar values or when you need to

return one or more output scalar values but do not want to return a result set.

Variable Declaration

Local variable support in SQL stored procedures allows you to assign and retrieve SQL

values in support of SQL stored procedure logic.

Variables in SQL Stored procedures are defined with the DECLARE statement. Use
DECLARE to define items local to a routine, in other words, local variables,
conditions, handles and cursors. DECLARE must directly follow a BEGIN as part of
a BEGIN ... END compound statement. No other statements may precede a
DECLARE statement. Declarations must follow this order: variables and conditions

must be declared first, next declare cursors and finally declare handlers.

Cursors

Used in SQL stored procedures, cursors allow defining of result sets and then
performing complex logic on each row within the set. Note that a result set is simply a
set of data rows. Using the same method, SQL Stored procedures can also define result

sets and return them directly to the caller or a client application.

Think of a cursor as a pointer to one row within a set of rows. The cursor can point

any row in the result set, however it may only reference a single row at any given time.

The DECLARE CURSOR statement first defines a cursor then the following SQL
statements are used to manipulate the cursor: OPEN, FETCH and CLOSE.

Assignment Statements

Assignment statements are used to assign values to SQL variables and parameters.

Values can be assigned to variables using a SET statement or a CURSOR FOR

©Copyright 1995-2012 CASEMaker Inc. 12-21

O\ Database Administrator’s Guide

12-22

SELECT FROM statement. Additionally, a variable may have a default value that was
set when the variable was declared. Literals, expressions, query results, and special
register values can all be assigned to variables. Variable values can further be assigned
to SQL stored procedure parameters, other variables in SQL stored procedures, and
can be referenced as parameters within SQL stored procedure statements that executed

within the routine.

The SET Variable statement assigns values to local variables, output parameters, and
new transition variables. The SET Variable statement is under transaction control.

SET assignment statements accept simple and complex expressions.

NOTE String data type variable assignments must be less than 1024 bytes.

SIMPLE EXPRESSIONS

Simple expressions are classified by numeric, character, timestamp and binary data
types. The numeric data types are: INTEGER, BIGINT, SMALLINT, DOUBLE,
FLOAT, REAL and DECIMAL. The character data types are: CHAR, NCHAR,
VARCHAR and NVARCHAR. Timestamp data types are: DATE, TIME and
TIMESTAMP.

A simple expression includes operators (+, -, *, /) variables, constants, values and
strings. Simple expressions have much greater implementation efficiency than complex

expressions. In particular, multi-loop statements greatly improve execution speed.

COMPLEX EXPRESSIONS

Complex expressions include all the same assignment values found in simple
expressions, besides, SQL functions, such as built-in SQL functions and user-defined
SQL functions, also is included.

Control Flow Statements

SQL control statements support variables and flow of control statements for
controlling the sequence of statement execution. Statements such as IF and CASE are

used to conditionally execute blocks of SQL control statements. Statements such as

©Copyright 1995-2012 CASEMaker Inc.

Stored Procedures 12

WHILE and REPEAT are used to repetitively execute a set of statements until a task is

completed.

SQL control statements fall into the following categories: variable related statements,
conditional statements (CASE and IF), loop statements (FOR, LOOP, WHILE and
REPEAT), goto statements, return statements, transfer of control statements
(ITERATE and LEAVE), labels and SQL stored procedure compound statements.

Returning Result Sets

Cursors can be used to do more than iterate through rows of a result set. In SQL

stored procedures, cursors can also return result sets to the calling program.

Return Status of SQL Stored Procedure

Status code reflects whether an stored procedure is successfully executed. User cannot

define status code in an stored procedure.
Statues code:

-1: the SP execute error

0: the SP execute OK

1: the SP excute have warning

If you want to return status of SP, you should add ‘RETURN STATUS’ before
‘LANGUAGE SQL.

Example:

Call another SQL stored procedures:
CREATE PROCEDURE call test
RETURNS STATUS

LANGUAGE SQL

BEGIN
DECLARE cur CURSOR WITH RETURN FOR select * from call tb;
OPEN cur;

END;

CREATE PROCEDURE CASE TEST 1(IN inval INT, OUT outvall INT, OUT outval2 INT)

©Copyright 1995-2012 CASEMaker Inc. 12-23

O\ Database Administrator’s Guide

LANGUAGE SQL
BEGIN
SET outvall = 1;
SET outval2 = 2;
END;
CREATE PROCEDURE calll (IN inval INT, OUT outvall INT, OUT outval2 INT)
LANGUAGE SQL
BEGIN
CALL CASE TEST 1(inval, outvall, outval2);
END;

Executing SQL Stored Procedures

SQL stored procedures are executed using the CALL statement. CALL statement can
be executed using graphical user interface tools like the JDBA Tool or directly from
DBMaker’s Command Line Tool, dmSQL.

The executable CALL statement calls a procedure. This statement can be embedded in
an application program, issued using dynamic SQL statements, or dynamically

prepared.

®— CALL— procedure_name)) }—o
var_name

Figure 12-7 Syntax for the CALL statement within dmSQL

12.4 Dropping a Stored Procedure

IF EXISTS —\
e DROP PROCEDUREL/—procedure_name—o

Figure 12-8 Syntax for the DROP PROCEDURE statement:

12-24 ©Copyright 1995-2012 CASEMaker Inc.

Stored Procedures 12

12.5

12.6

Example 1

The first statement drops the stored procedure sp_procl the second statement drops

stored procedure userl.sp_proc2.
dmSQL> DROP PROCEDURE sp procl;
dmSQL> DROP PROCEDURE userl.sp proc2;

Example 2

The first statement drops the stored procedure sp_procl if exists, the second

statement drops stored procedure userl.sp_proc2 if exists.
dmSQL> DROP PROCEDURE IF EXISTS sp procl;
dmSQL> DROP PROCEDURE IF EXISTS userl.sp proc2;

Getting Procedure Information

Example 1

To using dmSQL to get procedure information from the system table

SYSPROCINFO:
dmSQL> SELECT * FROM SYSPROCINEO;

Example 2

To use dmSQL to get procedure information from system table SYSPROCPARAM:
dmSQL> SELECT * FROM SYSPROCPARAM;

NOTE ODBC functions SQLProcedure() and SQLProcedureColumns() are used to

get procedure and parameter information for programs.

Security

Only the owner or a user with DBA or higher authority can initially execute a stored
procedure. Other users can execute the procedure when the execution privilege has
been granted to them or a group that the user is a member of. Only owner or a user
with DBA or higher authority can grant EXECUTE PROCEDURE bprivilege on a

stored procedure for other users.

©Copyright 1995-2012 CASEMaker Inc. 12-25

O\ Database Administrator’s Guide

COMMAND
+«— GRANT — EXECUTE — ON { 1 executable_name —»

PROCEDURE j

» To /
user_name
X@"’"}‘/
PUBLIC

Figure 12-9 Syntax for the GRANT EXECUTE privileges statement

The owner or a user with DBA or higher authority can also revoke execute privilege

on a stored procedure for other users.

COMMAND
+«— REVOKE — EXECUTE — ON «C }— executable_name —»
PROCEDURE

> FROM '/
user_name

group_name
PUBLIC

Figure 12-10 Syntax for the REVOKE EXECUTE privileges statement

S Example 1

userl creates a stored procedure called sp_procl and grants the execute privilege to

user2 using dmSQL:
dmSQL> GRANT EXECUTE ON PROCEDURE sp procl TO user2;

S Example 2

user] creates a stored procedure called sp_procl and grants the execute privilege to
PUBLIC using dmSQL:
dmSQL> GRANT EXECUTE ON PROCEDURE sp procl TO PUBLIC;

S Example 3

user] revokes the execute privilege from user2 using dmSQL:

12-26 ©Copyright 1995-2012 CASEMaker Inc.

Stored Procedures 12

dmSQL> REVOKE EXECUTE ON PROCEDURE sp procl FROM user2;

Example 4

userl revokes the execute privilege from PUBLIC using dmSQL:
dmSQL> REVOKE EXECUTE ON PROCEDURE sp procl FROM PUBLIC;

©Copyright 1995-2012 CASEMaker Inc. 12-27

O\ Database Administrator’s Guide

12-28 ©Copyright 1995-2012 CASEMaker Inc.

Coding User-Defined Functions 13

13

13.1

Coding User-Defined
Functions

DBMaker allows programmers to build their own user-defined functions (UDF).
Once a UDF has been written in DBMaker, it is treated as a new built-in DBMaker
function with the same usages. Creating a new user-defined function is straight

forward and follows the general procedure outlined below.

To create a user defined function:
1. Write a user defined function in C (UDF Interface)
a) Write the include statement
b) Write the function header
c) Write the arguments that the function passes
d) Define allocated memory if necessary
e) Define an error code, if desired
2. Build the dynamic link library for the UDF
3. Create the UDF in DBMaker, with the data array to be passed to the UDF

UDF Interface

The first step in creating a UDF is coding it in C. The following sections give an
example of a UDF in C, and describe each of the elements of the code that are
particular to a DBMaker UDF.

©Copyright 1995-2012 CASEMaker Inc. 13-1

O\ Database Administrator’s Guide

Example

If you want to create a new UDF, INT2STR(), to convert integer data to a string, you

should build a dynamic link library to include it.

The following C source code, template.c, gives a snapshot of code of the INT2STR()
UDEF:

13-2 ©Copyright 1995-2012 CASEMaker Inc.

Coding User-Defined Functions 13

Including libudf.h

DBMaker defines some constants, data types and common interfaces, which are
needed in UDF coding.

Programmers should include libudf.h before any UDF coding;
#include "libudf.h"

Passing Parameters

The arguments of a UDF used in an SQL command are packaged into the args
parameter of the UDF coded in C language. Through the args array, a UDF gets the
input data. args is also called the UDF control block, which is always used as the first
argument of the common interface provided by DBMaker. Some common interfaces,

such as the BLOB Common Interface, will be introduced later.

Each UDF header in a C function should follow the form:
int FUNCTION NAME (int narg, VAL args[])
{

}

NOTE wrgs/] points to an array. Functions passing only one argument should use the

pointer form: *args.

narg specifies how many arguments the function passes. For example, if a UDF
MYSUBSTRING (c1, 2, c3) is called in an SQL command, cl information is passed
by args/0], c2 by args[1] and c3 by args/2]. The value of narg, specifying the array size,
is 3.

Example 1

Using the value of c1 as 'abedefghijklmn', rgs/0] would be:
args[0].type = CHAR TYP

args[0].len =14

args[0] .u.xval = "abcdefghijklmn"

Example 2

Using the value of ¢2 as integer 30, args/1]/ would be:

©Copyright 1995-2012 CASEMaker Inc. 13-3

O\ Database Administrator’s Guide

In addition to CHAR_TYP and INT_TYP, BIN_TYP, FLT_TYP, OID_TYP,
BLOB_TYP, DEC_TYP and NULL_TYP constants are defined in libudf.h:

> Example 3
Through NULL_TYP, the programmer can know whether the input data is NULL:

The complete data structure of VAL, as defined in libudf.h:

13-4 ©Copyright 1995-2012 CASEMaker Inc.

Coding User-Defined Functions 13

The structure dec_t, used for DECIMAL type, in libudf.h:
typedef struct
{
i8 pre;
i8 sca;
i8 dgt[20];
i8 exp;
i8 junk;
} dec t10;
typedef dec tl10 dec t;

A UDF not only passes input data through VAL type, but also returns output data

through it. How to return data is discussed later.

Allocating Memory Space

In C functions, you may need to allocate memory and free it before leaving the
function. Returned values, such as a string or temporary BLOB ID, need to allocate
memory, hold it in the UDF function, and have DBMaker assist in freeing memory

space.

Example
In the following example of a UDF UDFAllocMem, arg is the UDF control block, ppr

is the pointer to get the allocated memory block, and 74 is the desired allocated size.

This function allocates memory and holds it until DBMaker takes care of it:
int UDFAllocMem (VAL *arg, char **ppt, int nb);

DBMaker knows to free the memory after a result is returned by using args/0].u.xval, a
pointer to memory space allocated by _UDFAllocMem().
if (rc = _UDFAllocMem(args, &ptag, 10))
return rc; /* return error code */
memcpy (ptag, "0123456789", 10);
args[0] -type = CHAR TYP;
args[0]-len = len;
args[0]-u.xval = ptag;

©Copyright 1995-2012 CASEMaker Inc. 13-5

O\ Database Administrator’s Guide

13.2

13-6

Returning Results

There are two types of returned values: one is an error code and the other is the result
of the UDF through the argument type VAL. Error codes are returned to DBMaker
but their values are hidden from the user; only an error message will be displayed. The

following describes how error codes are returned.

The header of UDF in a C function follows the form:
int FUNCTION NAME (int narg, VAL args([]);

If FUNCTION_NAME() returns a non-zero value there is something wrong, if a 0 is

returned it means that the function worked properly.

Before returning from the UDF, call _RetVal() to pass the imported result from the

UDF to DBMaker with the following declaration:
int RetVal (VAL *arg, VAL rtn);

The first argument arg is the UDF control block, and the second one 72 is the value

returned. The following code returns integer 30:

int rc; /* error code */
VAL rtn;

rtn.type = INT TYP;

rtn.len = 4;

rtn.u.ival = 30;
rc = RetVal(arg, rtn); /* pass result back to DBMaker 7
return rc; /* return error code (0 means no error) */

Building UDF Dynamic-Link
Library

DBMaker provides a library dmudf£.lib to link with the UDF source file to build the
dynamic-link library. Since the dynamic-link library is different on Microsoft

Windows and UNIX environments, both cases are discussed separately.

©Copyright 1995-2012 CASEMaker Inc.

Coding User-Defined Functions 13

DLL in Microsoft Windows Environment

DBMaker also provides the template.c source code in the /udf_templates directory
and the template make files udf42.mak (for Microsoft VC++ version 4.2), udf50.mak
(for Microsoft VC++ version 5.0), or udf60.mak (for Microsoft VC++ version 6.0) for
WIN32 users to reference. Users can follow the format of a template C source file to
write their UDF.

In the following statements, the udf60.mak is used.

1. Ensure where to include the dmudf.lib file and then use the IDE that Visual C++
provides to modify the required changes.

2. Copy udf60.mak template make file into the desired directory and rename it with

a make file name.

3. Choose <Open Workspace> from the <File> menu to open the make file project
workspace.
4. Choose <File View> from the <Project Workspace> menu and click template.c. To

remove the template click Delete

5. Choose <Project> item in the tool bar, choose < Add to project >, <Files>, and,
insert your own .c file into the make file of the project workspace.

6. In the <Project> -> <Settings>, choose WIN32 Debug for this example. In the
Project Settings <General>, you can change output directories. In the template
make file, set 60Deb as the intermediate and output directories.

7. In the Project Settings <Link> item, in Category item <General>, change the
output .dll file name directly in <Output file name>. Also, change the link path of
the dmudf lib file DBMaker supports in the <Object/Library modules> to the
working directory.

After completing the steps above, you can build your own dll make file. Using similar
steps, you can also build a WIN32 Release version dll file.

Users of VC++, can also create a dll make file using the same steps but setting the
structure member alignment to be 4 bytes. In the VC ++ 6.0 IDE project workspace,
choose the C/C++ menu item, and then in the Category dialog box, choose <Code
Generation>. You can find the structure member alignment option, and then choose 4
bytes as the result.

©Copyright 1995-2012 CASEMaker Inc. 13-7

O\ Database Administrator’s Guide

Use the make file template to note the setting when writing a collect dIl. If you do not
want to use template.c as the default C filename within the make file, remove
template.c from udf60.mak and insert your C file into the udf60.mak project

workspace.

S Example

In the DBMaker template.c, remember to include the libudf.h file provided, and to
export your functions. Use the export function method from the VC++ programmer
guidebook or the following:

__declspec (dllexport) datatype YOUR_FUNCTION NAME(......)

Alternatively, create a def file in the project workspace to export your functions and
note that the function name for the UDF must be in UPPER CASE, in C source

code.

After finishing the above, you can build a debug/release version dll file, thus creating
a udf60.dll file.

UDF so File in UNIX

A so file, or UNIX dynamic library, can be created.

S Example

Write UDF C source code, in the example the file is named udf.c. After completion,
use the UDF function in a UNIX based OS

$ cc —c udf.c

$ 1d -o libudf.so udf.o -Im

$ dmsqlt

dmSQL> CREATE FUNCTION libudf.INT2STR(INT) RETURNS CHAR(10);

NOTE The options of the Id command in the above example can vary in UNIX. It may
be —G, —shared, or something else. Please refer to your UNIX manual or man

pages to check how to use the Id command in building a shared library.

13-8 ©Copyright 1995-2012 CASEMaker Inc.

Coding User-Defined Functions 13

13.3

Creating, Using, and Dropping
UDF

The next step for a user-defined function is to create it within DBMaker. The
following sections outline the syntax for creating, querying, and dropping a UDF.

Creating a UDF

Syntax
dmSQL> CREATE FUNCTION <udf dll_name.function name> (<function datatype>) RETURNS
<function_output _datatype>;

Querying a UDF

Syntax
dmSQL> SELECT <function_name> (<related table_column_name>)
FROM <related_table>;

Dropping a UDF

Syntax
dmSQL> DROP FUNCTION <function name>;

Example

The following demonstrates how to use a UDF file.

Example 1

Using a database named DMDEMO containing a table, tb_UDF, with the table
schema, number INT, name CHAR(10):
dmSQL> SELECT * FROM tb UDF;

number name
10 1
20 2
30 3

©Copyright 1995-2012 CASEMaker Inc. 13-9

O\ Database Administrator’s Guide

13-10

3 rows selected

Using the example template.c DBMaker supports, we can now build a udf60.dll

successfully.

In the dmconfig.ini file, add one line to the DMDEMO section:
[DMDEMO]

DB DBDir = D:\UDFDEMO

DB_FODIR = D: \UDFDEMO\FO

DB LBDIR = D:\UDF\60Deb ; add this line

For more information on DB_LbDir, refer to Keywords in dmconfig.ini. Set
DB_LbDir or place the udf60.dll in the <DBMaker home directory>\shared\udf,
since it is the UDF default directory.

Example 2

Start the database DMDEMO, and then create the UDF function. In the example,
the <udf dll_name> is udf60, the <finction_name> is INT2STR, <function_datatype>

is INT, and <function_outpur_daratype> is CHAR(10):
dmSQL> CREATE FUNCTION udf60.INT2STR (INT) RETURNS CHAR(10);

The UDF function INT2STR returns the following results. The <function_name> is
INT2STR, <related_table_column_name> is number according to the schema of

tb_UDF and the <related_table> is tb_UDFEF:
dmSQL> SELECT INT2STR (number) FROM tb UDF;

INT2STR (number)

3 rows selected

Example 3

Another UDF function, e.g., STR2INTY(), in the same dynamic-link file:
dmSQL> CREATE FUNCTION udf60.STR2INT (CHAR (10)) RETURNS INT;

©Copyright 1995-2012 CASEMaker Inc.

Coding User-Defined Functions 13

13.4

dmSQL> SELECT STR2INT (name) FROM tb UDF;

STR2INT (name)

3 rows selected

Example 4

When dropping a UDF function, simply drop the UDF function name, there is no
need to attach the UDF dll name. When dropping a UDF function, wait until the
database has terminated, then the UDF function will be cleaned up. Before the

database is terminated, the function will continue to exist.
dmSQL> DROP FUNCTION INT2STR;

Create XML Validate UDF

Flexml

Kristoffer Rose’s flexml, distributed under the GNU General Public License, is an

XML process generator. It takes a DTD file and generates a LEX file. Flexml is
available at http://flexml.sourceforge.net.

GENERATING THE LEX FILE
S flexml name.dtd

ADDING CUSTOMIZED YY_INPUT

The original LEX input is a FILE input stream. The LEX file must be modified to use.
UDF Blob as an input source. The following example demonstrates this modification

by adding customized YY_INPUT.

©Copyright 1995-2012 CASEMaker Inc. 13-11

http://flexml.sourceforge.net/

O\ Database Administrator’s Guide

S Example

Modify the definition section of the LEX file by adding YY_INPUT as shown below.
The definition section is located at the beginning of the file and between the “%{“ and

1%” markers
“1% k

Next, add the UDF function to the end of the LEX file as shown below:

13-12 ©Copyright 1995-2012 CASEMaker Inc.

Coding User-Defined Functions 13

BUILD DLL/SO

flex name.l

cc —c -DBUILD_DLL lex.name.c —Idbmaker-installed-dir/include

CREATE UDF
CREATE FUNCTION dllname.udfname(BLOB) returns int;

©Copyright 1995-2012 CASEMaker Inc. 13-13

O\ Database Administrator’s Guide

13-14

CREATE COLUMN WITH CHECK CONSTRAINT
CREATE TABLE table-name(c1 XMLTYPE CHECK udfname(value) = 1);

DBMaker DTD Validation UDF Generator

Command line tool for generating a validation UDF for the specified DTD. The
DTD filename is required. If not specified, an error is generated. The output directory
is optional. If not specified, the files are created in the current working directory. The
prefix is optional. If specified, the generated file uses the prefix in the filename. If not

specified, the DTD filename without a file extension is used.
$ dmxmludfmk -dtd dtd-file-name [-o output-directory] [-p prefix]

Several files are generated as follows;
¢ Lex file:< user-specified-prefix.[>
¢ Yacc file:<user-specified-prefix.y>
¢ UDF function file: <user-specified-prefix> udf.c and <user-specified-prefix> udf.h
¢ The UDF function is named as <user-specified-prefix>_VALIDATE

¢ hash.c and hash.h provide hash functions

¢ Makefile on UNIX platforms or Makefile.msvc on Windows platforms

Example 1

Make <user-specified-prefix>.so ; for UNIX

Example 2

Nmake /f Makefile.msvc ;for Windows visual studio 2005 or 2008
Example 3

nmake /f Makefile.msvc COMPILER=VC60 ;for Windows visual studio 6.0

Example 4
nmake /f Makefile.msvc OSTYPE=$OSTYPE ; for cygwin environment

Please note that dmxmludfmk supports ASCII, and BIGS5, gb, shift]JIS, and utf8 while

flexml supports content replacement for internally defined DTD only entities.

©Copyright 1995-2012 CASEMaker Inc.

Coding User-Defined Functions 13

13.5

Default Validator

I_VALIDATE is provided as a default validator for checking the XML’s syntax.
I_VALIDATE does not provide validation against the DTD or the XMLSchema.
I_VALIDATE is part of libmedia library.

UDF BLOB Common Interface

Today, multimedia is important and useful to users. DBMaker supports a common
interface to access BLOBs using a file handle method, so programmers can easily write
UDFs for BLOB type data. FILE, LONG VARCHAR, and LONG VARBINARY are
the data types used to store BLOB data in a database.

Many of the new features in DBMaker need a temporary BLOB to process temporary
results. DBMaker supports temporary BLOBs for programmers to write a UDF more
easily. A programmer can open a permanent BLOB, read the data, execute a
conversion function or something else, save the result in a new temporary BLOB and
return it back in a UDF. The API fetches this temporary BLOB as a normal BLOB

column.

BLOB Common Interface Functions

DBMaker provides BLOB common interface functions for programmers to write
UDFs. A DBA should set the DB_FODir in the dmconfig.ini file for the temporary
BLOB file before starting a database. A temporary BLOB will be created in an external

represents one character of either [0-9, A-Z]. All file names matching the format will

be deleted when the database is shut down and restarted.

_UDFBBOPEN()

Opens a BLOB using bbObj and returns a handle through pHandle. bbObj can be
retrieved by Arg[i], using the BLOB with the input argument of the UDF. The
function returns 0 if it successfully opens the BLOB, otherwise an error code will be

returned:
int UDFBbOpen (VAL *Arg, BBObj bbObj, i31 *pHandle);

©Copyright 1995-2012 CASEMaker Inc. 13-15

O\ Database Administrator’s Guide

13-16

_UDFBBREAD()

This function reads the BLOB that belongs to the specified handle. Before calling this
function, allocate a buffer, (pBuf), with szBuf using the function _UDFAllocMem()
to get the read data. The returned data will be stored in pBuf and the size actually read

is in szRead. If szBuf is non-positive, no characters are read:
int UDFBbRead (VAL *Arg, i31 handle, i31 szBuf, i31 *szRead, char
*pBuf) ;

_UDFBBSEEK()

This function is used to set the position of the next output operation in a BLOB. The
new position is at the offset bytes from the beginning, the current position, or the end
of the file, according to the ptrname using the SEEK_BB_BEG, SEEK_BB_CUR, or
SEEK_BB_END value defined in libudf.h. The function only works between the
period of _UDFBbOpen() and _UDFBbClose(), but not _UDFBbCreate() and

_UDFBbClose():
int UDFBbSeek (VAL *Arg, 131 handle, 163 offset, 116 ptrname);

_UDFBBCUROFFSET

The function returns the current position of an open BLOB or the offset in a BLOB
by pOffset, but it will return at most 2G - 1 even when the current offset is greater
than or equal to 2 G.

int UDFBbCurOffset (VAL *Arg, i31 handle, i31 *pOffset);

_UDFBBCUROFFSETEX

Unlike _UDFBbCurOffset, this function always returns the actual current position of

an open BLOB or the offset in a BLOB by pOffset:
int UDFBbCurOffsetEx (VAL *Arg, i31 handle, 163 *pOffset);

_UDFBBCLOSE()

Closes the BLOB opened by _UDFBbOpen() or created by _UDFBbCreate():
int UDFBbClose (VAL *Arg, i31 handle);

©Copyright 1995-2012 CASEMaker Inc.

Coding User-Defined Functions 13

_UDFBBCREATE()

Creates a temporary BLOB and returns a handle for _UDFBbWrite(). The caller
should prepare the space for the BBODbj structure pointed to by pBbObj and written
by _UDFBbCreate(), _UDFBbWrite() and _UDFBbClose(). BBOb;j is used to
identify this temporary BLOB. For example if you want to delete the temporary
BLOB called _UDFBbDrop() using the BBObj argument.

If successtul, pHandle will recurn a BLOB handle similar to the handle of the opened
file written by _UDFBbWrite() and closed by _UDFBbClose().

Alternatively, specify the temporary BLOB to be created in file (BB_TEMP_FO) or in
memory (BB_TEMP_MEM) . If the caller specifies the temporary BLOB in memory, it
does not mean that the temporary BLOB will be created in memory - a memory
limitation may prevent this. The temporary BLOBs in memory might be converted to
files by the operating system if the original temporary BLOBs in memory or the input
data are over the size limit. Programmers should not depend on this feature when

coding,.
The function returns 0 if it is successful and an error code will be returned otherwise.

Before reading the new temporary BLOB, you must close it using _UDFBbClose(),
then reopen it using _UDFBbOpen(). _UDFBbSeek() cannot be used on temporary

BLOB:s unless they are closed and reopened for reading :
int UDFBbCreate (VAL *Arg, BBObj *pBbObj, i31 *pHandle, i31 Opt);

_UDFBBWRITE()

After using _UDFBbCreate() to make a temporary BLOB, write data to it using
_UDFBbWrite(). The handle is from _UDFBbCreate(), pBuf points to input data
and its length is szBuf. The function returns 0 if it is successful, otherwise, an error

code will be returned:
int UDFBbWrite (VAL *Arg, i31 handle, i31 szBuf, char *pBuf);

_UDFBBDROP()

Normally you do not drop a temporary BLOB if it will be returned from a UDF; the
system will control its life cycle. If you do not return the created BLOB, you'd better

©Copyright 1995-2012 CASEMaker Inc. 13-17

O\ Database Administrator’s Guide

13-18

use this function to drop the temporary BLOB. This function cannot work on a
permanent BLOB; doing so will return the ERR_BLOB_INV_BLOB error. The

function returns 0 if it is successful, otherwise, an error code will be returned:
int UDFBbDrop (VAL *Arg, BBObj bbObj) ;

_UDFBBSIZE()

This function returns the data size of a BLOB by pLen. BbObj can be a permanent
BLOB or a temporary BLOB. But it will return at most 2G - 1 even if the size is
greater than or equal to 2 G. The function returns 0 if it is successful, otherwise, an

error code will be returned:
int UDFBbSize (VAL *Arg, BBObj bbObj, i31 *pLen);

_UDFBBSIZEEX()

Unlike _UDFBbSize, this function always returns the actual data size of a BLOB by
pLen. BbObj can be a permanent BLOB or a temporary BLOB. The function returns

0 if it is successful, otherwise, an error code will be returned:
int UDFBbSizeEx (VAL *Arg, BBObj bbObj, 163 *pLen);

Example

The following demonstrates how to create the user-defined function, MYCONVERT

with input in varchar format and output as a temporary BLOB.

To create the user-defined function, MYCONVERT:

1. Build a dynamic library in UNIX using myudf.c, (the source code follows later):
cc —-g -c myudf.c

1d -G -o myudf.so myudf.o

2. Start the database.

3. At the dmSQL prompt, enter:
dmSQL> CREATE FUNCTION myudf.myconvert (VARCHAR(100)) // input string

2> RETURNS LONG VARCHAR; // output BLOB
dmSQL> SELECT myconvert (cl) FROM mytable; // output temp BLOB

The source code for the UDF MYCONVERT:
#include "libudf.h"

©Copyright 1995-2012 CASEMaker Inc.

Coding User-Defined Functions 13

©Copyright 1995-2012 CASEMaker Inc. 13-19

O\ Database Administrator’s Guide

/* error handle */
if (fgCreate)
{
_UDFBbClose(args, handle); /* close created temp BLOB */
trc = _UDFBbDrop(args, tmpobj); /* drop it because of failure */
if (trc > rc)
rc = trc;
}
return rc;
}
else

return _RetVal (args, args[0]);

}/* MYCONVERT () */

Troubleshooting Errors

Use the following to troubleshoot errors when writing a BLOB UDF using the BLOB

common interface.

ERROR (327): THE BLOB COLUMN IS NOT OPENED OR
CREATED YET

The function must use _UDFBbOpen() to open the BLOB or _UDFBbCreate() to
create a new temporary BLOB, before using other BLOB function interfaces.
ERROR (328): THE OFFSET OF BLOB COLUMN IS INVALID
When a UDF using _UDFBbSeek() seeks to offset by a length greater than the length
of the BLOB.

ERROR (331): THIS BLOB WAS NOT IN CREATED STATE

_UDFBbWrite() can only work on a temporary BLOB created by _UDFBbCreate()
and must not be closed. For example, if you use it on BLOB opened by
_UDFBbOpen(), this error will occur.

13-20 ©Copyright 1995-2012 CASEMaker Inc.

Coding User-Defined Functions 13

13.6

ERROR (330): THIS BLOB WAS NOT IN OPENED STATE
_UDFBbRead() can only work on a BLOB (including temporary BLOBs) opened by
_UDFBbOpen().

ERROR (332): THE BLOB OBJECT IS NOT CLOSE YET

Whenever _UDFBbOpen() or _UDFBbCreate() are used to open a BLOB,
programmers should call _UDFBbClose(), to close the opened BLOB.

ERROR (322): NO FILE OBJECT DIRECTORY IN CONFIGURATION
FILE; CANNOT INSERT FILE OBJECT

If temporary BLOBs are used, the keyword DB_FODir in the dmconfig.ini file must
be set. If not set, attempting to create a temporary BLOB may fail and this error

occurs.

UDF related dmconfig.ini
keywords

DB_StrSz

In addition to DB_LbDir and DB_FODir, there is also a related keyword DB_StrSz

in dmconfig.ini file
DB _STRSZ=<value>

This keyword indicates the length of returned data of the STRING type, used only by
user-defined function (UDF). Since UDFs can only return data of a fixed size, these
keywords can limit the size of STRING data, in order to avoid receiving strings that
are to long. The default value is 255, and the valid range is from 1 to 4,096. It can be

used on a client or server, the client has a higher priority.

©Copyright 1995-2012 CASEMaker Inc. 13-21

O\ Database Administrator’s Guide

13-22 ©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

14

14.1

Database Recovery,
Backup, and
Restoration

In every database management system, the possibility of a hardware or software failure
always exists. A DBMS may fall victim to failures without warning. After a failure
occurs, 2 DBMS should have some method of recovering the information. This is one

of the main advantages a DBMS has over the old file-based systems they replaced.

DBMaker incorporates advanced data protection features to prevent data loss and
downtime due to failures. These features allow DBMaker to ensure the reliability of a
database and the consistency of data by providing recovery, backup, and restoration

features.

Types of Database Failures

Database failures can be divided into two types: system failures and media failures.
When either of these types of failure occurs, there is the possibility of data
inconsistency or data loss in a database. A DBMS should provide facilities for

recovering from failures and for replacing a damaged database with a backup copy.

©Copyright 1995-2012 CASEMaker Inc. 14-1

O\ Database Administrator’s Guide

14.2

14-2

System Failures

A system failure, known as an instance failure, is a failure from the main memory in a
computer system. System failures may be caused by a power failure, an application or
operating system crash, a memory error, or other reason. The result is the unexpected
termination of DBMS.

Applications and active transactions can terminate abnormally when a system failure
occurs. Since the exact state of a transaction in progress or a transaction that has not
been completely written to disk cannot be reliably be determined after a system
failure, these types of transactions require recovery. The most common method of

protection against system failures is the use of a transaction log, or a journal file.

Media Failures

Media failure (e.g., disk failure) is a failure of the disk storage system of a computer
system. Media failures are usually caused by physical trauma to the disk itself, such as a
head crash, fire, or exposure to vibration or g-forces outside its physical operating

limits.

There is nothing to prevent the loss of data on an affected disk when a media failure
occurs. One or more files may be physically damaged because of the failure, requiring
restoration of the database. However, the database can be successfully restored if it

provides backup and restoration facilities.

Recovery from Database
Failures

The goals of recovery after a database failure are to ensure committed transactions are
reflected in the database, ensure uncommitted transactions are not reflected in the
database, and to return to normal operation as quickly as possible while insulating

users from problems caused by the failure.

DBMaker uses journal files and checkpoints to achieve these goals. The journal files
and checkpoints work together ensuring all transactions are recovered in the shortest

time, with the least little effect on users.

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

Journal Files

Journal files provide a real-time, historical record of all changes made to a database,
and the status of each change. In the event of a system failure, the historical record of
changes maintained in the journal file allows DBMaker to recover and redo changes
made by transactions that completed but were not written to disk, or undo changes

made by transactions that terminated abnormally.

If a database is running in backup mode, the journal files will also store additional
information that DBMaker can use to restoration. This information will remain in the
journal files until they are backed up; after you back up the journal files DBMaker will

free this space for use by new transactions.

During the restoration process, DBMaker adds information from the backup journal
files to a backup copy of the database. Therefore, only the journal files that contain
changes made to the database between full backups require backup.

Checkpoint Events

A checkpoint is a system event that brings the database to a clean state. DBMaker
writes all journal records and all dirty data pages from its internal memory buffers to
disk, and reclaims journal blocks that are no longer required for backup or recovery
purposes. DBMaker can reclaim journal blocks that contain non-active transactions

that completed before the start of the oldest active transaction.

Startup time after an instance failure is reduced after taking a checkpoint. DBMaker
writes the time of the last checkpoint and a list of all transactions active at the time of
the checkpoint to the journal file header. During database recovery, DBMaker uses
this information to determine which transactions should be undone, which should be

redone, and which should be ignored.

DBMaker will automatically take a checkpoint when the journal files are full to try to
reclaim some journal blocks to reuse. If the checkpoint cannot reclaim enough space
to complete the current transaction, the transaction will be aborted. DBMaker will
also automatically take a checkpoint when the database starts and shuts down, and

when an online backup is performed.

©Copyright 1995-2012 CASEMaker Inc. 14-3

O\ Database Administrator’s Guide

14-4

Database administrators can manually initiate a checkpoint by executing the
CHECKPOINT command. The optimal interval between two checkpoints depends
on the frequency of database activity, the average size of transactions, and the size and
number of journal files. Since these factors may vary significantly from database to
database, the optimal interval is best determined through experience. Manual
checkpoints reduce the amount of time required to start, terminate, and backup a

database, as well as the possibility that a full journal will be encountered.

Checkpoints may require a significant amount of time to complete, depending on the
size and number of transactions since the last checkpoint. Any transactions that are

active when a checkpoint occurs need to wait for DBMaker to calculate which journal
records it can reclaim, but do not need to wait while DBMaker actually writes journal

records and dirty data pages to disk.

Recovery Steps

DBMaker provides support for automatic recovery when the database is started after a
system failure or when an error occurs during startup. During the recovery process,

DBMaker always performs two separate steps: redo and undo.

The latest Checkpoint Crash here
time
I
Journal records in disk >
Redo Phase: Reapply changes The last journal record
recorded in the Journal

before crash

Undo Phase: Abort uncommitted transactions

The first step in the recovery process is to redo (or reapply) all changes made to the
database that are recorded in the journal. This step is necessary since it is possible for a
transaction to have completed before the system failure, without having all the changes
made by the transaction written to the database. However, these changes are stored in
the journal, and can be written to the database during this step. After this step, the
database contains the changes made by all committed transactions and the changes

made by all uncommitted transactions.

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

The second step in the recovery process rollbacks (i.e., undoes) the changes made by
transactions that were not completed before system failure occurred. This step is
necessary since the exact state of a transaction in progress cannot be reliably
determined in the event of a system failure. These incomplete transactions must be
removed since a transaction is self-contained by definition and must either complete
successfully and change the data, or fail and leave the data unchanged. At the end of
this step, the database contains the changes made by all committed transactions, but

does not contain any changes made by uncommitted transactions.

DBMaker also supports starting a database after a media failure or after a system
failure, which causes inconsistencies in a database that cannot be repaired during the
automatic recovery process. In these cases, the database fails to start and you would
normally need to restore your database from a backup. However, if you have never
backed up your database, you can force the database to start by setting the forced-start
mode using the DB_ForcS keyword in the dmconfig.ini file. This allows you to start
the database and unload the unaffected data. For more information on the forced-start

mode, see Forcing Database Startup.

Forcing Database Startup

DBMaker automatically performs recovery operations if errors occur when a database
starts normally. If the database cannot start up, there may be some disk errors. Disk
errors require the database be restored from the most recent backup to repair it. If the
database has no backups and cannot start, use the forced startup mode provided by
DBMaker.

DBMaker supplies a forced startup option for this situation. To set the forced startup
mode on, use the DB_ForcS keyword in the dmconfig.ini file. Setting this keyword to
1 enables forced startup mode, and setting it to 0 disables it. When forced startup

mode is on, DBMaker skips errors when starting the database.

If the database still cannot be started, there is one remaining alternative provided in
the procedure below. However, before performing this procedure, backup all data and

journal files.

©Copyright 1995-2012 CASEMaker Inc. 14-5

O\ Database Administrator’s Guide

1 4-3

14-6

2 To start a database when it will not start in force start database mode:

1. Set the Forced Startup Mode to off in dmconfig.ini (DB_ForcS = 0)
2. Set the Start Mode to New Journal Mode in dmconfig.ini (DB_SMode = 2)
3. Restart the database

4. Reset Start Mode back to normal in dmconfig.ini (DB_SMode = 1)

DBMaker provides the option to use a new journal to force the database to start
without any recovery operations. Therefore, if errors serious enough to prevent the

database from starting have occurred, the database may be in an inconsistent state.

After starting the database with this method, check the consistency of the database.
For more information on database consistency checking, refer to section 6.12 Checking

Database Consistency.

Types of Backups

Backups are used to protect a database from media failures or other media errors. After
a media failure, one or more database files may be damaged and unusable. Use the

most recent backup to replace the damaged files and reconstruct the database.

Database backups consist of backup sequences. A backup sequence consists of a full
backup, all the differential backups associated with the full backup and incremental
backups performed after the full backup.

Full Backups

A full backup is any backup that creates a copy of all data and journal files, providing a
copy of the entire database at one point in time. A backup copy of the dmconfig.ini
file can be created as well; preserving any custom configuration settings there may be
for a database. The database administrator may perform a full backup while the

database is online or offline.

Full backups archive the entire database, therefore requiring a large amount of storage

space. However, a database can be restored relatively quickly using a full backup. A

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

full backup can be used to restore a database to the point in time the full backup was

performed.

A valid full backup will be assigned a full backup ID. The full backup ID is a time and
date stamp. The backup ID ensures that full backups, differential backups and
incremental backups are correctly associated in a backup sequence. Please note that a
differential backup records only data that has changed since the most recent full
backup. The differential base is necessary when restoring from a differential backup. A
differential backup alone is insufficient for rebuilding a database. All incremental
backups between the current valid full backup and the next belong only to the current
valid full backup. Trying to restore incremental backups against previous (and any
other) sequences will fail. Backup sequences are managed by DBMaker. Repairing a
database, restoring a database, starting a database in new journal mode, or changing

the backup mode will require a new valid full backup.

There are three primary methods of performing full backups. The first is by using the
backup server, and is discussed in more detail in section 14.6 Backup Server. Full
backups by backup server may be performed with dmSQL or with the JServer
Manager utility. The second method uses an interactive full backup. Full backup
interactively does not require that the Backup Server be started. JServer Manager is the
recommended method of performing this type of full backup. For directions on how
to perform a full backup interactively, refer to the /Server Manager User’s Guide. The
third method for performing a full backup is offline full backup. Refer to section 14.5,
Offline Full Backups, for more information.

Differential Backups

Differential backups help us save some time and disk space. Unlike a full backup that
simply copies all files, differential backups use a different approach.

A given differential backup is based on the most recent full backup. This full backup is
the differential’s base. A differential base must exist before a differential backup is

created.

Differential backups contain only data that has changed since the time that the
differential base backup was created. A single differential base is typically used for

©Copyright 1995-2012 CASEMaker Inc. 14-7

O\ Database Administrator’s Guide

14-8

several successive differential backups. Later, should a database restore become
necessary, both the full backup (the differential base backup) and a differential backup

is needed.

Data files (all DB files and BB files) are included during differential backups. Journal
files, because they change frequently, differential backups copy only useful journal
blocks.

A differential backup records only the data that has changed since the most recent full
backup. This allows users to make more frequent backups because differential database
backups are smaller than full backups. Making frequent backups decreases the risk of

data loss. Consider using differential database backups when:

¢ Only a relatively small portion of the database has changed since the last full
backup. Differential backups are particulatly effective when the same data is

modified many times.
¢ Frequent backups are desired but not frequent full backups

Minimizing roll forward time of a transaction journal backups when restoring a

database

There are two methods for performing differential backups. The first uses backup

server. Configuration of several keywords is necessary before starting the database. See
Section 14.6, Backup Server. The second method is called on-line differential backups.
The JServer Manager utility is recommended for this method and details are explained

in the /Server Manager User’s Guide.

Incremental Backups

An incremental backup is any backup that creates a copy of only the journal files that
have changed since the last incremental, differential or full backup. Incremental
backups may only be performed after a full backup or a differential backup has been
performed. Performing a new full backup starts a backup sequence. Subsequent
incremental backups are part of that sequence and may not be used with any other full
or differential backup. Note that an incremental backup is composed of journal files
which record all transactions since the backup mode (DB_BMODE) is on. When

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

DBMaker Database is running on normal mode (DB_SMODE = 1), before doing an
incremental backup, a full backup or a differential backup must has been done; when
on replication mode (DB_SMODE = 4) , an incremental backup can be done without
a full backup or a differential backup. The incremental backup file sequence provides a
copy of the changes made to the database since the last full backup. The database

administrator can perform an incremental backup only while a database is online.

Incremental backups archive only journal files, so they require only a small amount of
storage space. However, it may take more time than a full backup to restore a database
since the DBMS must rollover all transactions in the backup journal files. Use the
incremental backups together with a full and differential backup to restore a database
to any point in time between the previous full backup or differential backup and the

time the last incremental backup was completed.

There are two methods for performing Incremental Backups (there is a third method
Incremental backup to current, which is considered a different type of backup). The
first method is Incremental backup by backup server. Backup server must be started
on the database to be able to use this method. For more information on performing
incremental backup by backup server, refer to section 14.6 Incremental Backups. The
second method is incremental backup interactively. This type of Incremental backup
does not require that backup server be started. The recommended method of
performing incremental backup interactively is with the JServer Manager utility.

Incremental backup interactively is explained in the /Server Manager User’s Guide.

Offline Backups

An offline backup is any backup that must be performed after a database has been shut
down. The database administrator must schedule a time to shut down the database,
and notify all users so they can disconnect from the database. Offline backups can be
inconvenient for users, since they must remember to complete all active transactions
and disconnect from the database before it is shut down. The database administrator

can perform only full backups while offline.

A DBMS does not need to provide the capability to backup a database offline, since
you can backup the database with operating system commands after it is shut down.

The database administrator may perform an offline backup using this method, or by

©Copyright 1995-2012 CASEMaker Inc. 14-9

O\ Database Administrator’s Guide

14-10

using JServer Manager, an easy-to-use graphical tool that performs offline backups

without resorting to using operating system commands.

Online Backups

An online backup is any backup that is performed while a database is running. The
database administrator does not have to shut down the database, and users do not
need to disconnect. Online backups are more convenient for users, since no action is
required on their part. The database administrator can perform full, differential and

incremental backups while online.

A DBMS must provide the capability to backup a database online, since it is still
running and still has users connected. DBMaker allows for online backups to be
performed manually using dmSQL and operating system commands, but also provides
JServer Manager, an easy-to-use graphical tool that allows online backups to be

performed without resorting to operating system commands.

Online Incremental to Current Backups

DBMaker also supports an additional backup type called online incremental to

current.

The difference between an online incremental backup and an online incremental to
current backup in a database with multiple journal files is minor, but important. In an
online incremental backup DBMaker will backup all journal files that have been used
since the last backup, excluding the active journal file. In an online incremental to
current backup DBMaker will backup all journal files that have been used, including
the active journal file. This means that an online incremental backup can restore a
database up to the point in time the last committed transaction was written to the last
full journal file, while an online incremental to current backup can restore a database

up to the point in time the active journal file was backed up.

In a database with only a single journal file, an online incremental backup and an
online incremental to current backup are the same. In this case, the only journal file is
the active journal file. DBMaker will backup this single journal file in both types of

incremental backup.

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

14.4

Online Incremental to current backups may be performed with the JServer Manager
Utility. For directions on how to perform an incremental backup to current, please

refer to the [Server Manager User’s Guide.

Backup Modes

Backup mode determines whether DBMaker can perform online incremental backups,
and the type of data that will be backed up during an incremental backup. It also
determines when DBMaker will free journal blocks that belong to inactive
transactions for use by other transactions. DBMaker has three backup modes:

NONBACKUP, BACKUP-DATA, and BACKUP-DATA-AND-BLOB.

BACKUP | TABLESPACE | USER USER SYSTEM

MoDE BACKUP DEFINED DEFINED TABLESPACE
MoODE TABLESPACE | TABLESPACE | (DATA AND

(DATA) (BLOB) BLOB)

No No No No

Backup

Backup Yes No Yes

Data

Backup Backup BLOB | Yes No Yes

Dataand | Off

BLOB g ckup BLOB | Yes Yes Yes
On

NONBACKUP Mode

NONBACKUP mode provides no protection for any data that was inserted or
updated since the last full backup. In this mode, online incremental backups cannot
be performed. A database can use the journal to fully recover from instance failure, but
a media failure may result in loss of data. Journal blocks not in use by an active
transaction can be reused immediately after a checkpoint, but once they are
overwritten, the database may only be restored to the point in time of the last full

backup.

©Copyright 1995-2012 CASEMaker Inc. 14-11

O\ Database Administrator’s Guide

14-12

BACKUP-DATA Mode

BACKUP-DATA mode provides protection for data (excluding BLOB data) that was
inserted or updated since the last full backup. In this mode, a database administrator
can perform an online incremental backup, but only non-BLOB data will be stored in
the backup files. A database can use the journal to fully recover from instance failure,
and can partially recover from media failure. Although the last backup can be used to
restore the database to the point in time of the media failure, any changes to BLOB
data will be lost. Journal blocks not in use by an active transaction can only be reused

after a checkpoint has taken place and the journal file has been backed up.

BACKUP-DATA-AND-BLOB Mode

BACKUP-DATA-AND-BLOB mode provides protection for all data (including
BLOB data) that was inserted or updated since the last full backup. In this mode, a
database administrator can perform an online incremental backup, and all data will be
stored in the backup files. A database can use the journal to fully recover from instance
failure, and can fully recover from disk failure. The last backup may be used to
completely restore the database to the point in time of the media failure, including all
BLOB data. Journal blocks not in use by an active transaction can only be reused after

a checkpoint has taken place and the journal file has been backed up.

Tablespace BLOB Backup Mode

DBMaker normally applies the backup mode setting to the entire database; this means
all tablespaces in the database will be in the same backup mode. If the database is in
BACKUP-DATA-AND-BLOB mode, DBMaker will record all changes to data
(including BLOB data) in the journal. Recording BLOB data in the journal can

quickly exhaust journal space, producing frequent backups and large backup file sizes.

This may be necessary if all BLOB data is critical, but in many cases, non-critical
BLOB data may be backed up at the same time. Situations like this make it difficult
for the database administrator to decide which backup mode you should choose. To
prevent this type of situation from occurring, DBMaker allows the database

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

administrator to modify the database backup mode for individual tablespaces when

creating them.

To backup BLOB data in a specific tablespace, use the BACKUP BLOB ON option
when executing the CREATE TABLESPACE command. To avoid backing up BLOB
data in a specific tablespace, use the BACKUP BLOB OFF option when executing the
CREATE TABLESPACE command.

The backup mode of each tablespace will then depend on the combination of database

backup mode and tablespace backup mode as follows:

¢ If the database is running in BACKUP-DATA-AND-BLOB mode and a
tablespace was created with the BACKUP BLOB ON option, DBMaker will
backup BLOB data in that tablespace

¢ If the database is running in BACKUP-DATA-AND-BLOB mode and a
tablespace was created with the BACKUP BLOB OFF option, DBMaker will not
backup BLOB data in that tablespace

¢ If the database is running in BACKUP-DATA mode, DBMaker will not backup
BLOB data regardless of whether a tablespace was created with the BACKUP
BLOB ON or BACKUP BLOB OFF option

DBMaker uses the BACKUP BLOB ON mode by default for newly created
tablespaces. All changes to BLOB data in that tablespace will be recorded in the
journal file when the database is in BACKUP-DATA-AND-BLOB mode.

NOTE A new full backup is required after a tablespace is changed to read-only because
data files in read-only tablespaces are not backed up during differential backups.

Backup File Object Mode

In addition to backing up regular and BLOB data in the database, users may choose to
back up file objects. File objects are backed up only during automatic full
backupsinitiated by the backup daemon. Users should first start the backup server, set
the full backup schedule, and set the backup directory. For more information full
backup settings refer to section 14.6, Backup Server.

©Copyright 1995-2012 CASEMaker Inc. 14-13

O\ Database Administrator’s Guide

14-14

There are two types of file objects: user file objects and system file objects. The
database administrator may choose to back up user file objects, system and user file
objects, or neither. The dmconfig.ini keyword DB_BkFoM specifies the Backup
Mode of File Objects.

¢+ DB_BkFoM = 0: Do not backup file objects
¢ DB_BkFoM = 1: Backup system file objects only
* DB_BkFoM = 2: Backup both system and user file objects

When backing up file objects (DB_BkFoM = 1, 2), the backup server copies all
external files of file objects to the “FO” subdirectory under the directory specified by
DB_BkDir keyword. The schedule follows the full backup schedule specified by
DB_FBkTm and DB_FBkTYv.

Example

An excerpt from a dmconfig.ini file containing related keywords is shown below:
[1yDB]

DB BkSvr = 1 ; starts the backup server

DB FBKTm = 01/05/01 00:00:00 ; begins from midnight at May 1, 2001.

DB _FBKTV = 1-00:00:00 ; interval is every one day.

DB BkDir = /home/dbmaker/backup ; backup directory

DB BKFoM = 2 ; backup both system and user file objects

Since the Backup Mode of File Objects is 2, the backup server will copy all external
database file objects to the “/home/dbmaker/backup/FO” directory. If the FO

subdirectory does not exist, the backup server will create it.

The files in FO subdirectory are renamed with a sequential number. For example, if
the name of the original external file is “/DBMaker/mydb/FO/ZZ000123.bmp”, the
backup server would copy it to the FO subdirectory and rename it
'f00000000344.bak’, meaning it is the 344" file object. The mapping between the
source full file name and its new name is recorded in the file object mapping list file,
dmFoMap.his. For more information about the file object mapping list file, refer to

section 14.7, Backup History Files

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

The backup server will also move the previous version of file objects to the FO
subdirectory under the old backup directory specified by DB_BkOdr.

Database administrators should consider that enabling file object backup requires
more time for a full backup. The cost of complete full backup includes (1) copying the
previous full backup if DB_BkOdr is set; (2) copying all database files; (3) copying all
journal files; and (4) copying all file objects if DB_BkFoM is set. Also, ensure that
there is enough disk space in the backup directory specified by DB_BkDir for all
backup files to avoid backup failure.

Compressing Backup Files

Database files can become very large and a large amount of free space is required to
store backup files. DBMaker now supports compressing backup files. To enable or
disable this feature, you can set the keyword DB_BKZIP in dmconfig.ini, or change
BKZIP with the system procedure SetSystemOption while the database is running.

¢ DB_BKZIP = 1: Compresses the backup files
¢+ DB_BKZIP = 0: Backup files are not compressed (default)

The compression format is GZIP, so you can use any GZIP-compatible tool to read

the compressed file.

NOTE FO files are not compressed, even if you set DB_BKZIP to enable compressing
backup files.

Setting the Backup Mode

DBMaker provides several different methods to set the backup mode. The method
you choose depends on whether your database is online or offline, and whether you
are more comfortable editing the configuration file directly, using the dmSQL

command line utility, or using the JServer Manager graphical udility.

Modifying the backup mode of a database to provide a higher level of backup
protection (i.e. from NONBACKUP to BACKUP-DATA mode, or from BACKUP-
DATA to BACKUP-DATA-AND-BLOB mode) has an effect on journal usage. The

journal begins recording changes to data that was previously not recorded before

©Copyright 1995-2012 CASEMaker Inc. 14-15

O\ Database Administrator’s Guide

14-16

modifying the backup mode. As a result, it is necessary to perform a full backup or
differential backup when you change the backup mode. This provides a starting point

for the backup journal files to update during the restoration process.

No extra steps are required when modifying the backup mode of a database to provide
a lower level of backup protection (i.e. from BACKUP-DATA or BACKUP-DATA-
AND-BLOB mode to NONBACKUP mode) since the journal simply stops recording
changes to data. DBMaker will use the previous full backup or differential backup as a
starting point for the backup journal files to update during the restoration process.
However, some changes to data may be lost if the database is restored after changing

to a lower level of backup protection.

The database administrator may change the backup mode of the database while offline
using the dmconfig.ini file or JServer Manager. Since the backup mode affects journal
usage, an offline full backup must be performed before starting the database with the
new backup mode setting. Backup modes may be changed from one mode to another
without restriction when offline, providing a full backup is made when going from a
lower level of backup protection to a higher level. For more information on

performing an offline full backup, see Offline Full Backups later in this chapter.

A database administrator can change the backup mode of a database online using
dmSQL. Since the backup mode will affect journal usage, backup mode must be
changed from a lower level of backup protection to a higher level (i.e., from
NONBACKUP to BACKUP-DATA mode, or from BACKUP-DATA to BACKUP-
DATA-AND-BLOB mode) between the start and finish of a full backup period.
During runtime, users can’t directly change backup mode from NONBACKUP to
BACKUP-DATA-AND-BLOB mode, or from BACKUP-DATA-AND-BLOB to
BACKUP-DATA mode. However, users can change backup mode from BACKUP-
DATA-AND-BLOB to NONBACKUP mode at any time.

Example

To use dmSQL to change the backup mode online:
dmSQL> begin backup;

dmSQL> set data backup on;

dmSQL> end backup datafile;

dmSQL> end backup journal;

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

or:

dmSQL> begin backup;
dmSQL> end backup datafile;
dmSQL> set data backup on;
dmSQL> end backup journal;

DBMaker does not allow the database to go from a higher level of backup protection
to a lower level unless it is changed to NONBACKUP mode first. To change from
BACKUP-DATA-AND-BLOB to BACKUP-DATA mode, first change to
NONBACKUP mode and then follow the rules above for changing from a lower level
of backup protection to a higher level. The backup mode may be changed from
BACKUP-DATA-AND-BLOB or BACKUP-DATA to NONBACKUP at any time;
it does not need to be done between the start and finish of a full backup period.

USING THE DMCONFIG.INI CONFIGURATION FILE
If the database is offline, change the backup mode directly using the DB_BMode

keyword in the dmconfig.ini file. The next time the database is started, the new
backup mode will be used. If the database is online, changing the value of the
DB_BMode keyword will have no effect until the database is shut down and restarted.
Remember to perform an offline full backup if the backup mode is going to be
changed from NONBACKUP to BACKUP-DATA or BACKUP-DATA-AND-
BLOB mode or from BACKUP-DATA to BACKUP-DATA-AND-BLOB mode.

S To set the backup mode using the dmconfig.ini file:
1. Open the dmconfig.ini file on the database server using any ASCII text editor.

2. Locate the database configuration section for the database.

3. Change the value of the DB_BMode keyword to one of the following values:
0 - NONBACKUP mode
1 - BACKUP-DATA mode

2 - BACKUP-DATA-AND-BLOB mode

4. Restart the database to begin using the new backup mode.

©Copyright 1995-2012 CASEMaker Inc. 14-17

O\ Database Administrator’s Guide

14-18

If the DB_BMode keyword is not present in the database configuration section for the
database, you will have to add the DB_BMode keyword to that database
configuration section. You can add the keyword on a separate line anywhere between
the start of the database configuration section and the start of the next configuration
section; the order the keywords appear in is not important. If you do not specify a

value for DB_BMode, the default value of 0 (NONBACKUP mode) will be used.

USING DMSQL

If the database is online and you are comfortable using the dmSQL command line
utility, you can change the backup mode using the SQL SET command. You must
execute this command during an online full or differential backup. The new backup
mode will be enabled as soon as the command is executed.

To set the backup mode using the dmSQL command line utility

1. Connect to the database to change the backup mode using dmSQL.

2. Begin an online full backup using the BEGIN BACKUP command.

3. Change the backup mode during the full backup period by issuing one of the
following SET commands at the dmSQL command prompt:

dmSQL> set backup off;

dmSQL> set data backup on;

dmSQL> set blob backup on;
4. Complete the online full backup.

The SET BACKUP OFF command corresponds to NONBACKUP mode, the SET
DATA BACKUP ON corresponds to BACKUP-DATA mode, and the SET BLOB
BACKUP ON command corresponds to BACKUP-DATA-AND-BLOB mode.

USING JSERVER MANAGER

If the database is offline, you can change the backup mode using the JServer Manager
graphical utility. JServer Manager will automatically change the value of the
DB_BMode keyword in the dmconfig.ini file. The next time you start the database,

the new backup mode will be used. If the database is online, changing the value of the

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

14.5

DB_BMode keyword will have no effect until the database is shut down and restarted.
You must remember to perform an offline full backup if you are going from
NONBACKUP to BACKUP-DATA or BACKUP-DATA-AND-BLOB mode or
from BACKUP-DATA to BACKUP-DATA-AND-BLOB mode. For directions on
how to set the backup mode offline using the JServer Manager graphical utility refer to
the [Server Manager User’s Guide.

Offline Full Backups

Offline full backups use operating system commands to back up the database.
DBMaker provides this option, however, backup server is recommended. Offline full
backups necessitate the database be shut down, furthermore, managing the backup

sequence is a more complex process.

To perform an offline full backup, you must have read permission on the database
files from the operating system, and write permission on the backup directory from
the operating system. If you have to shut down the database first, you must have DBA
or SYSADM security privileges.

You can perform an offline full backup regardless of the backup mode; the database
may be running in NON-BACKUP, BACKUP-DATA, or BACKUP-DATA-AND-
BLOB mode. Using an offline full backup, you can restore the database to the point

in time the database was shut down.

Note that offline full backup using JServer Manager does not back up file objects. File
objects must be copied manually. Be sure to exactly replicate the file and directory
structure if restoring a database from an offline full backup. For directions on how to
petform an offline full backup using JServer Manager, refer to the /Server Manager
User’s Guide.

OFFLINE FULL BACKUP USING DMSQL

To perform an offline full backup using dmSQL:

1. Notify all users that the database will be shut down at a specified time and ask
them to disconnect before that time.

©Copyright 1995-2012 CASEMaker Inc. 14-19

O\ Database Administrator’s Guide

1 4-6

14-20

2. If the database is running, shut it down using the TERMINATE DB command. If
there are any errors while shutting down the database, restart the database, correct
the problem, and shut it down again.

3. Examine the dmconfig.ini file and list all relevant files and directories, including
the file object directory, which require backup.

4. Use operating system commands or utilities to copy the database files, including
data files, journal files, file objects, and the dmconfig.ini file, to the backup
directory or backup device.

Backup Server

Although DBMaker provides methods for backing up databases manually, you must
still remember to perform backups on a regular basis. To help, Backup Server provides

a convenient way to fully automate online full, differential and incremental backups.

NOTE Backup Server can only perform an online backup, since only afier database

startup, Backup Server can startup.

Backup Server runs in the background and performs online full, differential and
incremental backups on a set schedule, as journal files become full, or both. This
flexibility is possible because Backup Server and the database server communicate to
determine when a backup should occur, the type of incremental backup to perform,
and which backup options to change. Backup Server starts at the same time as the
database server, and continues running until you either stop it or shut down the

database server.

When performing full backups, Backup Server will copy the last full backup from the
backup directory to the old directory. Then, it will copy all database files including
journal files and dmconfig.ini to the backup directory, over writing the previous full

backup.

When performing differential backups, Backup Server copies only data files (DB and
BB). Journal files are excluded because they change too frequently. During differential
backups, only useful journal blocks are copied. Additionally, data files in read-only

tablespaces are excluded from differential backups.

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

When performing incremental backups, Backup Server will copy necessary journal

files to the backup directory.

There are several options used to configure Backup Server. These options control the
filename format of the backup files, the location of the backup directory, the location
of the old directory, the schedule Backup Server uses to perform backups, the interval
and the maximum number of differential backups to retain after a full backup, the

amount a journal file must fill before Backup Server performs an incremental backup,

and the way Backup Server saves backup files.

Backup Server also allows backup-related configuration settings to be made during the
run time with the dmSQL SetSystemOption stored procedure, that is to say, BKSVR,
BKDIR, BKITV, DBKTV, BKTIM, BKFUL, BKFOM, BKZIP, BKCMP, BKRTS,

BKCHK, FBKTM, FBKTV, DBKMX, BKODR, BKFRM can be changed during the

run time with the SetSystemOption system stored procedure.

Starting Backup Server

Backup Server is a daemon and its life cycle is as long as the database server. Users do
not have to explicitly start Backup Server after setting the DB_BkSvr keyword, since
DBMaker will automatically start Backup Server while starting the database. Backup
Server is disabled by default. Backup Server will only be started when the database is

starting in muti-user mode.

Backup Server has two states: inactive and active. Users can control the state of backup
server with DB_BkSvr. When DB_BkSvr is set to 0, the Backup Server is inactive.
Backup Server will not respond to any backup request, namely the Backup Server will
not perform any backup; when DB_BKSvr is set to 1, the Backup Server is active.
Backup Server will response to a variety of backup requests, and then users can do any

backup.

To activate the backup server, there are three methods: setting the value of the
DB_BkSvr keyword to 1 in the dmconfig.ini file, changing BkSvr to 1 with ca//
sesystemoption(‘bksvr’,’I") after the database is started and using Run Time Setting in

Jserver Manager to change the backup setting when the database is running.

©Copyright 1995-2012 CASEMaker Inc. 14-21

O\ Database Administrator’s Guide

14-22

Before doing backup with Backup Server, users need to set some parameters to specify

how to do a backup. For example, backup directory, compact backup mode and so on.

The following is how to set these parameters:

* Users can set related keywords in dmconfig.ini before starting the database. The

next time users start the database, backup server will use these keywords to

initialize associated parameters.

¢ If the database has been started, users can use Run Time Setting in Jserver
Manager to alter values of parameters. Additionally, users can set parameters with
call SetSystemOption(‘option_name’, ‘value'). Please note that individual parameters
only can be set with set syntax, such as set backup OFF; set data backup ON; set
blob backup ON.

When Backup Server is activated, and the appropriate backup parameters are set in the
dmconfig.ini configuration file, you can call the system stored procedure
SetSystemOption to begin a backup. The stored procedure can be used by any client

tool or user application.

The syntax to do online full, differential and incremental backup is:
dmSQL> Call SetSystemOption (‘STARTBACKUP','1’); //do full backup
dmSQI> Call SetSystemOption ('STARTBACKUP’,'2’); //do incremential backup
dmSQL> Call SetSystemOption ('STARTBACKUP’,'3’); //do differential backup

STARTING BACKUP SERVER USING DMCONFIG.INI

If the database is offline, you can enable Backup Server directly using the DB_BkSvr
keyword in the dmconfig.ini file. The next time you start the database, Backup Server
will also start. If the database is online, changing the value of the DB_BkSvr keyword
found in the dmconfig.ini configuration file will have no effect until the database is
shut down and restarted.

To start Backup Server using the dmconfig.ini file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor.

2. Locate the database configuration section for a database to enable Backup Server.

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

3. Ensure the backup mode of the database is either BACKUP-DATA or BACKUP-
DATA-AND-BLOB mode. The database is in BACKUP-DATA mode if the value
of DB_BMode is set to 1, and it is in BACKUP-DATA-AND-BLOB mode if the
value of DB_BMode is set to 2.

4. Change the value of the DB_BkSvr keyword to 1 to enable Backup Server.

5. Restart the database to begin using Backup Server.

STARTING BACKUP SERVER USING DMSQL

When a database is online, the Backup Server can be dynamically enabled using the

dmSQL command line tool as shown below.
dmSQL> Call SetSystemOption(‘BKSVR’,’1’);

Users can change BkSvr with Call SetSystemOption(‘BkSvr’, ‘I). To change BkSvr and
the value of DB_BkSvr in the dmconfig.ini configuration file at the same time, users
can using Call SetSystemOptionW{ option’, value)). If the database is offline, the next

time it is started, Backup Server will also start.

When Backup Server is activated, and set the appropriate backup parameters in the
dmconfig.ini configuration file, you can call the system stored procedure
SetSystemOption to begin a backup, which stored procedure can be used by any

client tools and user applications.

dmSQL> Call SetSystemOption (‘STARTBACKUP','1’); //do full backup

dmSQL> Call SetSystemOption ('STARTBACKUP’,'2’); //do incremential backup
dmSQL> Call SetSystemOption ('STARTBACKUP’,'3’); //do differential backup

The syntax to change an incremental backup interval is:
dmSQL> Call SetSystemOption (‘bkitv’, ‘Interval’)

STARTING BACKUP SERVER USING JSERVER MANAGER

When the database is online, users can enable Backup Server with Run Time Setting
in Jserver Manager graphical utility. JServer Manager automatically changes the value
of the DB_BkSvr keyword in the dmconfig.ini configuration file. When the database
is running, users also can change the backup setting with Run Time Setting in the

Jserver Manger graphical utility. Jserver Manger automatically changes the

©Copyright 1995-2012 CASEMaker Inc. 14-23

O\ Database Administrator’s Guide

14-24

corresponding keyword values in dmconfig.ini. For directions on starting Backup

Server while online using JServer Manager, refer to the [Server Manager User’s Guide.

Differential Backup Filename Format

This is the differential backup filename format:
DTimeStamp_DataFileName.dif(2)

D — Required differential backup identification

TimeStamp — Number of seconds since January 1, 1970 (00:00:00 GMT)
DataFileName — The data file’s database name

.dif — File extension used for differential backup files. If no corresponding
differential backup source file exists for a particular full backup, the file extension

name must be .dif2.

Here is an example. A first differential backup is performed at 2009/12/01 14:11, then
differential backup filenames are generated like this:
D1259647860_DBNAME.BB.dif, D1259647860_DBNAME.DB.dif,
D1259647860_DBNAME.SBB.dif and D1259647860_DBNAME.SDB.dif. The
journal filename is D1259647860_DBNAME.JNL.

Incremental Backup Filename Format

Backup filename format is <I><TimeStamp><_><DB_BKFRM>, e.g.,
11234567890_%2F%4N%4B.JNL. The total length of the filename cann’t exceed
256 characters. The timestamp is a system 10 digits valid time numeric data, and the
<DB_BKFRM> may include both text constants and format sequences (e.g., escape

sequences), that represent special character strings.

An incremental backup file name must consist of at least three special character
strings: the full backup id, the database name, and the backup identification number.
Backup Server assigns a full backup ID when naming incremental files in a backup
sequence. When restoring a database, DBMaker uses the full backup ID to correctly

recreate the backup sequence. The database name correctly identifies the database to

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

which an incremental backup file belongs. The backup identification number

identifies the relative position of the incremental backup file in the backup sequence.

Format sequences have three parts: the escape character, the length value, and the

format character. Valid format sequences are:

%[x]F — The full backup ID. The variable x may have values 1 through 4 where the

values represent the following formats;

1: full backup id shown as YYYYMMDD, e.g., 20010917
2: full backup id shown as MMDD, e.g., 0917

3: full backup id shown as MMDDhhmm, e.g., 09171305
4: full backup id shown as DDhhmmss, e.g., 17130558
%[n]B — Backup identification number

%[n]N — Journal file belongs to this database

The escape character identifies the start of the format sequence, and is represented by
the % symbol. If you want to include the % symbol as a text constant in the backup
filename format, you must use two % symbols together (i.e. %9%). A single digit or
one of the valid format characters shown above must immediately follow the %
symbol. If any other characters follow the % symbol the backup filename format is

invalid, and DBMaker will return an error.

The length value # is an integer value between one and nine that determines the
length of the character string generated by the format sequence. If the format sequence
returns a string that can be represented in fewer characters than the length value
provides then zeros will be appended to it. The database name has zeroes added to the
right of the name, while all other values have zeroes added to the left. If the format
sequence returns a string that requires more characters than the length value provides,
it will be truncated. The database name is truncated from the right, while all other
values are truncated from the left. The square brackets enclosing the length value
indicate the length value is optional; do not include the square brackets when entering
the format sequence. If you do not provide a value for the length, Backup Server will

use the full length of the character string generated by the format sequence.

©Copyright 1995-2012 CASEMaker Inc. 14-25

O\ Database Administrator’s Guide

14-26

The format character identifies the type of special character string the format sequence
will return. The format character must be F, B, or N; using any other character will
result in an invalid backup filename format, and DBMaker will return an error. A
valid format character that does not immediately follow either the escape character or

the escape character and a single digit will be treated as a text constant.

Date and time values are taken from the system. These values will only be correct if
the system date and time are correct. The value for the backup identification number
is the ordinal position of the backup journal file in the backup sequence. DBMaker
automatically provides this number for each journal file that is backed up by Backup

Server.

DBMaker provides several different methods to set the backup filename format. The
method you choose depends on whether you are more comfortable editing the

configuration file directly or using the JServer Manager graphical utility.

USING DMCONFIG.INI TO SET BACKUP FILE NAME FORMAT

If the database is offline, you can set the backup filename format used by Backup
Server directly using the DB_BkFrm keyword in the dmconfig.ini file. The next time
you start the database, Backup Server will apply this backup filename format to all
backup journal files. If the database is online, changing the value of the DB_BkDir
keyword will have no effect until the database is shut down and restarted.

To set the backup file format using the dmconfig.ini configuration file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor

2. Locate the database configuration section for a database.

3. Change the value of the DB_BkFrm keyword to a string containing the format to
use for the backup filename format.

NOTE 7The string may contain any valid format sequences and text constanss, but the total
length of the resulting filename must not exceed 256 characters.

4. Restart the database to begin using the new backup filename format.

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

USING DMSQL To0 SET BACKUP FILE NAME FORMAT

The procedure SetSystemOption can be used to change the backup filename format

while the database is running. The general syntax for the command is:
dmSQL> Call SetSystemOption (‘bkfrm’, ‘name’)

S Example

To change the backup filename format to 11234567890_%2F%4N%4B.JNL, enter

the following line at the dmSQL command prompt.
dmSQL> Call SetSystemOption (‘bkfrm’, ‘11234567890 %2F%4N%4B.JNL');

SETTING BACKUP FILE NAME FORMAT WITH JSERVER
MANAGER

The backup filename format can be set for offline or online databases using JServer
Manager’s graphical utility. JServer Manager will automatically change the value of the
DB_BkFrm keyword in the dmconfig.ini file. The next time you start the database,
Backup Server will apply this backup filename format to all backup journal files. For
directions on how to set the backup file format using JServer Manager, refer to the

JServer Manager User’s Guide.

Backup Directory

The backup directory specifies where the Backup Server will place backup files.
DBMaker supports single backup file path and multiple backup file paths for users.
Backup server will automatically create BkDir. However, you should choose one or
more backup directory on a different disk than the database files to prevent the loss of
both the database and the backup files in the event of a media error.

The backup directory is specified by the DB_BkDir keyword in the dmconfig.ini file.
The value of the DB_BkDir keyword may contain either a full or a relative path to the
backup directory. If you do not specify a backup directory, the Backup Server will
automatically create a default backup directory named backup under the database
directory. The database directory is specified by the DB_DbDir keyword in the
dmconfig.ini file. The total length of the backup directory path must not exceed 256

characters in length.

©Copyright 1995-2012 CASEMaker Inc. 14-27

O\ Database Administrator’s Guide

However, if the database is running on replication mode (master or slave), BKDIR
should be single path. If you set BKDIR multi-path, the only first is used and path size
is ignored. Furthermore, it is not a good idea to allow the Backup Server to create and
use the default backup directory if you have more than one database in the same
directory. In this case, the backup history information from one database may
overwrite or append to the backup history information from another database,
rendering one or both of the backups unusable. To avoid this type of problem you can
put each database in a different database directory, or explicitly specify a backup
directory for each database. Placing each database in a different database directory is
the preferred method, since this allows you to see exactly which files belong to which

database.

DBMaker provides several different methods to set the backup directory. The method
you choose depends on whether your database is online or offline, and whether you
are more comfortable editing the configuration file directly or using the JServer

Manager graphical utility.

USING DMCONFIG.INI TO SET BACKUP DIRECTORY

If the database is offline, you can set the backup directory used by Backup Server
directly using the DB_BkDir keyword in the dmconfig.ini file. The next time you
start the database, Backup Server will use this directory as the backup directory. If the
database is online, changing the value of the DB_BkDir keyword will have no effect
until the database is shut down and restarted.

2 To set the backup directory using the dmconfig.ini configuration file:
1. Open the dmconfig.ini file on the database server using any ASCII text editor.

2. Locate the database configuration section for a database.

3. Change the value of the DB_BkDir keyword to a string containing the name of an
existing directory to set the backup directory.

4. Restart the database to begin using the new backup directory.

14-28 ©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

USING DMSQL TO SET BACKUP DIRECTORY ON LINE

The procedure SetSystemOption can be used to change the backup directory while the

database is running. The general syntax for the command is:
dmSQL> Call SetSystemOption (‘bkdir’, ‘path’);

Path is the full path of the new backup directory. The length of the string in path

should not exceed 256 characters.

S Example

To change the directory path to E:/storage/database/backup/WebDB, enter the

following line at the dmSQL command prompt.
dmSQL> Call SetSystemOption (‘bkdir’, ‘E:/storage/database/backup/WebDB’) ;

USING JSERVER MANAGER TO SET BACKUP DIRECTORY

If the database is offline, you can set the offline backup directory used by Backup
Server using the JServer Manager graphical utility. JServer Manager will automatically
change the value of the DB_BkDir keyword in the dmconfig.ini file. The next time
you start the database, Backup Server will use this directory as the backup directory. If
the database is online, JServer Manager can change the backup directory immediately
with Run Time Setting or delay the change undil the next time you restart the
database when the database making an interactively backup. In either case, JServer
Manager will also make a copy of the backup history file in the new backup directory.
For directions on how to set the backup directory using JServer Manager, refer to the

JServer Manager User’s Guide.

Setting Multiple Backup Paths

DBMaker also supports multiple backup file paths for users. This function is useful
when a user tries to save to a backup path, but the backup path does not provide
enough space for the backup to be completed. If the multiple backup option is set
DBMaker will then shunt the remaining data to be backed up to secondary backup
locations so that the backup can be properly performed. Users are able to use multiple
backup paths on full, differential or incremental backups. DBMaker has the following

constraints when backing up information using multiple backup paths:

©Copyright 1995-2012 CASEMaker Inc. 14-29

O\ Database Administrator’s Guide

¢ When a database system attempts to backup files, it will try to store files in the
paths one by one for each file. For example, when storing a file to backup
directory 1 and the directory does not have enough space to store the file, then
the file is shunted to backup directory 2, and so on. If all backup directories are

full an error message will be returned.
¢ Only one backup directory can be used to backup files on the slave sites
¢ FOs must backup in the first backup directory

¢ The maximum number of backup paths is 32

S Example:
When setting multiple backup paths DBMaker conforms to the following structure:

DB BKDIR = <BKDIR 1> <SIZE 1> < BKDIR 2> <SIZE 2> < BKDIR 3> <SIZE 3>..

< BKDIR n > : the n’s backup path
< SIZE n > : the size of the n’s backup path

So when setting multiple backup paths for the database DB1 you need to set the paths
in DB_BKDIR.
DB BKDIR = /home/usr/domaker/bk 5000 /home2/backup 1000

When the available space in home/usr/dbmaker/bk is full the database will backup at
home2/backup.

Setting the Old Directory

The old directory is one directory or a group of directories (up to 32), and it is used to
saving a backup sequence which is one just before the last one You should choose it on
a different disk than the database files to prevent the loss of both the database and the

backup files in the event of a media error.

The old directory is specified by the DB_BkOdr keyword in the dmconfig.ini file. If

you do not specify it, the Backup Server will discard the previous backup sequence.

14-30 ©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

USING DMCONFIG.INI TO SET THE OLD DIRECTORY

You can set the old directory used by Backup Server directly using the DB_BkOdr
keyword in the dmconfig.ini file. The next time you start the database, Backup Server
will use this directory as the old directory. If the database is online, changing the value
of the DB_BkOdr keyword will have no effect until the database is shut down and

restarted.

USING DMSQL ToO SET THE OLD DIRECTORY

The procedure SetSystemOption can be used to change the old backup directory

while the database is running. The general syntax for the command is:
dmSQL> Call SetSystemOption (‘bkodr’, ‘path’)

Path is the full path of the new old backup directory. The length of the string in path

should not exceed 256 characters.

S Example

To change the old directory path to E:/storage/database/backup/WebDB, enter the

following line at the dmSQL command prompt.
dmSQL> Call SetSystemOption (‘bkodr’, ‘E:/storage/database/backup/WebDB’) ;

USING JSERVER MANAGER TO SET THE OLD DIRECTORY

If the database is offline, you can set the location for the previous backup using the
JServer Manager graphical utility. JServer Manager will automatically change the value
of the DB_BkODr keyword in the dmconfig.ini file. The next time you start the
database, Backup Server will use this directory as the backup directory. If the database
is online, JServer Manager can change the old backup directory immediately or delay
the change until the next time you restart the database. For directions on setting the
old backup directory while offline using JServer Manager, refer to the /Server Manager
User’s Guide.

Differential Backup Settings

The differential backup schedule specifies when Backup Server performs online

differential backups. The schedule includes initial backup time and interval time.

©Copyright 1995-2012 CASEMaker Inc. 14-31

O\ Database Administrator’s Guide

14-32

Initial backup time is the date and time when Backup Server will perform the first
differential backup. Interval time specifies the wait time between subsequent

differential backups.

The initial full backup time is specified by the DB_FBKTM keyword found in the
dmconfig.ini file. The value of the DB_FBKTM keyword must be a date and time in
this format: YY/MM/DD HH:MM:SS. There is no default value for initial backup
time; however when enabling Backup Server with JServer Manager a default value is

added to the dmconfig.ini file.

Interval time is specified by the DB_DBKTYV keyword found in the dmconfig.ini file.
The first differential backup is performed at DB_FBKTM + DB_DBKTYV. The value
of the DB_DBKTYV keyword must be time interval in the this format: D-
HH:MM:SS. There is no default value for interval time; however, when enabling
Backup Server with JServer Manager a default value of 1-00:00:00 is added to the

dmconfig.ini file.

Lastly, the keyword DB_DBKMX specifies the maximum number of differential
backups to retain after a full backup. Backup Server removes the oldest differential
backup when the number of differential backups, after a full backup, exceeds
DB_DBKMX. The system procedure SetSystemOption can be used to change
DBKMX while the database is running. Additional, the keyword DB_BKCHK
specifies whether check database before differential backup, the system procedure
SetSystemOption can be used to change BKCHK while the database is running.

USING DMCONFIG.INI TO CHANGE DIFFERENTIAL BACKUP
SETTINGS

When a database is offline, its backup schedule can be set using the DB_FBKTM and
DB_DBKTYV keywords found in the dmconfig.ini configuration file. The next time
the database is started; Backup Server uses these settings for the differential backup
schedule. If the database is online, changing the value of the DB_FBKTM and
DB_DBKTYV keywords has no effect until the database is shut down and restarted.

To set the backup schedule using the dmconfig.ini file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

2. Locate the database configuration section of the desired database

3. Change the value of the DB_FBKTM keyword to a date and time value using this
format: YY/MM/DD HH:MM:SS

4. Change the value of the DB_DBKTYV keyword to a time interval value using this
format: ndays-HH:MM:SS

5. Restart the database to activate the new backup schedule

USING DMSQL TO CHANGE DIFFERENTIAL BACKUP SETTINGS

The SetSystemOption procedure can be used to activate the Backup Server. The
syntax is:
dmSQL> CALL SETSYSTEMOPTION (‘BKSVR’,'l");

When Backup Server is activated, initiates a differential backup by calling the system

stored procedure SetSystemOption:
dmSQL> Call SetSystemOption (‘STARTBACKUP','3’);

The syntax to change the differential backup interval is:
dmSQL> Call SetSystemOption (‘dbktv’, ‘Interval’);

USING JSERVER MANAGER TO CHANGE DIFFERENTIAL BACKUP
SETTINGS

When the database is online, JServer Manager can immediately change the backup
schedule or optionally delay changes until the next time the database is restarted. For

more details please refer to the /Server Manager User’s Guide.

Incremental Backup Settings

The incremental backup schedule specifies the times when Backup Server will perform
an online incremental backup. The schedule is composed of two parts: the initial
backup time and the interval time. The initial backup time determines the date and
time Backup Server will perform the first incremental backup, and the interval time

determines the length of time to wait between subsequent incremental backups.

You can combine the incremental backup schedule with the journal trigger value to

backup your database both on a regular schedule and when journal files fill to a

©Copyright 1995-2012 CASEMaker Inc. 14-33

O\ Database Administrator’s Guide

14-34

specified percentage. If you do not specify an incremental backup schedule, Backup

Server will not backup the database on a regular schedule.

The initial backup time is specified by the DB_BkTim keyword in the dmconfig.ini
file. You must enter the value of the DB_BkTim keyword as a date and time in the
format YY/MM/DD HH:MM:SS. There is no default value for the initial backup

time.

The interval time is specified by the DB_BkItv keyword in the dmconfig.ini file. You
must enter the value of the DB_BkItv keyword as a time interval in the format D-
HH:MM:SS. There is no default value for the interval time. However, if you use
JServer Manager to enable Backup Server, JServer Manager will provide a default value

of 1-00:00:00 for you and write this value into the dmconfig.ini file.

DBMaker provides several different methods to set the incremental backup schedule.
The method you choose depends on whether your database is online or offline, and
whether you are more comfortable editing the configuration file directly or using the

JServer Manager graphical udility.

USING DMCONFIG.INI TO CHANGE INCREMENTAL BACKUP
SETTINGS

If the database is offline, you can set the backup schedule used by Backup Server
directly using the DB_BkTim and DB_BkItv keywords in the dmconfig.ini
configuration file. The next time you start the database, Backup Server will use these
settings for the incremental backup schedule. If the database is online, changing the
value of the DB_BkTim and DB_BkItv keywords will have no effect until the

database is shut down and restarted.

To set the backup schedule using the dmconfig.ini file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor
2. Locate the database configuration section for a database to change the backup
schedule

3. Change the value of the DB_BkTim keyword to a date and time using the
YY/MM/DD HH:MM:SS value format.

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

4. Change the value of the DB_BkItv keyword to a time interval using the
DDDDD-HH:MM:SS value format

5. Restart the database to begin using the new backup schedule

USING DMSQL TO CHANGE INCREMENTAL BACKUP SETTINGS

The procedure SetSystemOption can be used to change the incremental backup start
time and interval while the database is running. The general syntax to change the

incremental backup start time is:
dmSQL> Call SetSystemOption (‘bktim’, ‘StartTime’);

The general syntax to change the incremental backup interval is:
dmSQL> Call SetSystemOption (‘bkitv’, ‘Interval’);

StartTime is the time to start the first incremental backup, and has the format
YY:MM:DD HH:MM:SS. Interval is the time interval that incremental backups
occur, and has the format D-HH:MM:SS.

When Backup Server is activated, call the system stored procedure SetSystemOption
to initiate an incremental backup.
dmSQL> Call SetSystemOption (‘STARTBACKUP',’2');

S Example

To set the incremental backup interval to 1 hour, enter the following line at the

dmSQL command prompt.
dmSQL>Call SetSystemOption (‘bkitv’, ‘0-1:00:00");

USING JSERVER MANAGER TO CHANGE INCREMENTAL BACKUP
SETTINGS

When the database is online, JServer Manager can change the backup schedule
immediately or delay the change until the next time you restart the database. For
directions on how to set the incremental backup schedule using JServer Manager, refer
to the /Server Manager User’s Guide.

©Copyright 1995-2012 CASEMaker Inc. 14-35

O\ Database Administrator’s Guide

14-36

Journal Trigger Value Settings

The journal trigger value specifies the percentage a journal file must fill before Backup
Server will perform an online incremental backup. You can combine the journal
trigger value with the backup schedule to backup your database on a regular schedule

and when journal files fill to the specified percentage.

The journal trigger value is specified by the DB_BkFul keyword in the dmconfig.ini
file. The value of the DB_BkFul keyword may be an integer value in the range 50-
100, or zero. Values between 50 and 100 represent the percentage a journal file must
fill before Backup Server performs a backup. A value of zero causes Backup Server to
perform a backup whenever a journal file fills completely. Setting the value to 0 is
effectively the same as setting it to a value of 100, since both will cause Backup Server
to perform a backup whenever a journal file fills completely (100% full). If you do not

specify a value for the journal trigger value, Backup Server will use the default value of

90.

DBMaker provides several different methods to set the journal trigger value. The
method you choose depends on whether your database is online or offline, and
whether you are more comfortable editing the configuration file directly or using the

JServer Manager graphical utility.

USING DMCONFIG.INI TO CHANGE THE JOURNAL TRIGGER
VALUE

If the database is offline, you can set the journal trigger value used by Backup Server
directly using the DB_BkFul keyword in the dmconfig.ini file. The next time you
start the database, Backup Server will use this setting for the journal trigger value. If
the database is online, changing the value of the DB_BkFul keyword will have no

effect until the database is shut down and restarted.

To set the journal trigger value using the dmconfig.ini file:
1. Open the dmconfig.ini file on the database server using any ASCII text editor.

2. Locate the database configuration section for a database to change the journal
trigger value.

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

3. Change the value of the DB_BkFul keyword to an integer value between 50 and
100, or set it to zero.

4. Restart the database to begin using the new journal trigger value.

USING DMSQL TO CHANGE THE JOURNAL TRIGGER VALUE

The procedure SetSystemOption can be used to change the journal trigger value while
the database is running. The general syntax to change the incremental backup start
time is:

dmSQL> Call SetSystemOption (‘bkful’, ‘n’)

Where 7 is either 0 or 50-100. Setting 7 to 0 will trigger the backup server whenever a
journal file is full. Setting 7 between 50 and 100 specifies the percentage a journal file

fills to before the backup server activates.

S Example

To set the journal trigger value to 75 percent, enter the following line at the dmSQL

command prompt.
dmSQL> Call SetSystemOption (‘bkful’, ‘75);

USING JSERVER MANAGER TO CHANGE THE JOURNAL TRIGGER
VALUE

When the database is online, JServer Manager can change the journal trigger value
immediately or delay the change until the next time you restart the database. For
directions on how to set the journal trigger value using JServer Manager, refer to the

JServer Manager User’s Guide.

Compact Backup Mode Settings

Compact backup mode specifies whether Backup Server will backup entire journal
files or only full journal blocks when it performs an online incremental or differential
backup. This is possible since not every journal block contains data needed to restore a
database, so Backup Server will only backup the necessary journal blocks when it
performs a backup. This allows you to save storage space on your backup device, but it

also means restoring a database may take more time.

©Copyright 1995-2012 CASEMaker Inc. 14-37

O\ Database Administrator’s Guide

14-38

Non-Compact Mode:
Backup entire Journal files

/

Compact Mode:
Backup necessary Journal blocks

The compact backup mode setting is specified by the DB_BkCmp keyword in the

dmconfig.ini configuration file. The value of the DB_BkCmp keyword may be zero
or one. Setting the value to one enables compact backup mode, and setting it to zero
disables compact backup mode. If you do not specify a value for the compact backup

mode, Backup Server will use the default value of one (enabled).

DBMaker provides several different methods to set the compact backup mode. The
method you choose depends on whether your database is online or offline, and
whether you are more comfortable editing the configuration file directly or using the

JServer Manager graphical utility.

USING DMCONFIG.INI TO SET COMPACT BACKUP MODE

If the database is offline, you can set the compact backup mode setting used by
Backup Server directly using the DB_BkCmp keyword in the dmconfig.ini file. The
next time you start the database, Backup Server will use this setting for the compact
backup mode. If the database is online, changing the value of the DB_BkCmp
keyword will have no effect until the database is shut down and restarted.

To set the Compact Backup Mode using the dmconfig.ini configuration file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor

2. Locate the database configuration section for a database to change the journal
trigger value

3. Change the value of the DB_BkCmp keyword to one to enable compact backup
mode, or zero to disable compact backup mode

4. Restart the database to begin using the new journal trigger value

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

USING DMSQL TO SET COMPACT BACKUP MODE

The SetSystemOption procedure can be used to change the compact backup mode
while the database is running. A successful backup does not require every journal
block in a journal file. If this keyword DB_BKCMP is set to 1 the backup server will
only back up the journal blocks that require backup. The syntax is:

dmSQL> Call SetSystemOption (‘bkcmp’, ‘17);

USING JSERVER MANAGER TO SET COMPACT BACKUP MODE

When the database is online, JServer Manager can change compact backup mode
setting immediately or delay the change until the next time you restart the database.
For directions on how to set the Compact Backup Mode using JServer Manager, refer

to the /Server Manager User’s Guide.

Full Backup Schedule

The full backup schedule specifies the times when Backup Server will perform an
online full backup. The schedule is composed of two parts: the initial backup time and
the interval time. The initial backup time determines the date and time Backup Server
will perform the first full backup, and the interval time determines the length of time

to wait between subsequent full backups.

You can combine full and differential backup schedules with an incremental to backup
your database. If you do not specify a full backup schedule, Backup Server will not

perform full backups on a regular schedule.

The initial backup time is specified by the DB_FBkTm keyword in the dmconfig.ini
file. You must enter the value of the DB_FBkTm keyword as a date and time in the
format YY/MM/DD HH:MM:SS. There is no default value for the initial backup

time.

The interval time is specified by the DB_FBkTv keyword in the dmconfig.ini file.
Enter the value of the DB_FBkTv keyword as a time interval in the format D-
HH:MM:SS. There is no default value for the interval time.

Lastly, the keyword DB_BKCHXK specifies whether check database before full backup
and differential backup and the keyword DB_BKRTS specifies whether the backup

©Copyright 1995-2012 CASEMaker Inc. 14-39

O\ Database Administrator’s Guide

14-40

server includes the read-only tablespace files when performing a full-backup. To
enable or disable the two features, you can set the keyword DB_BKCHK and
DB_BKRTS in dmconfig.ini, or change BKCHK and BKRTS with the system

procedure SetSystemOption while the database is running.

USING DMCONFIG.INI TO SET THE FULL BACKUP MODE

If the database is offline, you can set the full backup schedule used by Backup Server
directly using the DB_FBkTm and DB_FBkTv keywords in the dmconfig.ini file.
The next time you start the database, Backup Server will use these settings for the full
backup schedule. If the database is online, changing the value of the DB_FBkTm and
DB_FBkTv keywords will have no effect until the database is shut down and

restarted.
To set the full backup schedule using the dmconfig.ini configuration file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor

2. Locate the database configuration section for a database to change the journal
trigger value

3. Set the configuration parameter DB_FBkTm to a value of the format
YY/MM/DD HH:MM:SS, and DB_FBKTY to a value of the format D-
HH:MM:SS

4. Restart the database to begin using the new full backup schedule

USING DMSQL TO SET THE FULL BACKUP SCHEDULE

The procedure SetSystemOption can be used to change the full backup start time and
interval while the database is running. The general syntax to change the full backup
start time is:

dmSQL> Call SetSystemOption (‘fbktm’, ‘StartTime’);

The general syntax to change the full backup interval is:
dmSQL> Call SetSystemOption (‘fbktv’, ‘Interval’);

StartTime is the time to start the first full backup, and has the format YY:MM:DD
HH:MM:SS. Interval is the time interval that full backups occur, and has the format
D-HH:MM:SS.

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

When Backup Server is activated, call the system stored procedure SetSystemOption

to initiate an full backup.
dmSQL> Call SetSystemOption (‘STARTBACKUP',’1’);

S Example

To set the full backup interval to 1 hour, enter the following line at the dmSQL

command prompt.
dmSQL> Call SetSystemOption(‘fbktv’, ‘0-1:00:00");

USING JSERVER MANAGER TO SET THE FULL BACKUP
SCHEDULE

You can set the full backup schedule with JServer Manager by using the start database
setup utility. JServer Manager will automatically change the value of the DB_FBkTm
and DB_FBkTv keywords in the dmconfig.ini file. The next time you start the
database, Backup Server will use this setting as the new full backup schedule. For
directions on how to set the full backup schedule using JServer Manager, refer to the

JServer Manager User’s Guide.

Backup Mode of File Objects

The Backup Mode of File Objects lets the database administrator decide whether
Backup Server will back up file objects during a full backup. It is also possible to
specify Backup Server to back up just system file objects or system and user file

objects.

It is possible to set the Backup Mode of File Objects in a number of ways. The
configuration keyword DB_BkFoM determines the setting during database startup,
but it may also be modified during runtime with dmSQL or the JServer Manager
utility.

The backup server will move all files from the previous backup to the old backup
directory specified by DB_BkOdr.

Starting file object backup will cause the database to require more time to complete a
full backup, depending on how many file objects are in the database. The total cost of
a complete full backup includes (1) copying the previous full backup if DB_BkOdr is

©Copyright 1995-2012 CASEMaker Inc. 14-41

O\ Database Administrator’s Guide

14-42

set; (2) copying all database files; (3) copying all journal files; and (4) copying all file
objects if DB_BkFoM is set. Be sure that enough disk space is available in the backup
directory specified by DB_BkDir (and DB_BkOdr if applicable) for all mentioned
backup files to avoid backup failure.

File objects are copied into an FO directory that is created in the backup directory at
the time a full backup is performed. File objects are renamed sequentially when they
are copied to the directory for backed-up file objects. The files in the /FO subdirectory
are renamed starting with the letters FO followed by a ten digit serial number. All
backup file objects are appended with the file extension .BAK. The mapping between
the source file name and path and the backup file name is recorded in the file object

mapping file dmFoMap.his.

THE BACKUP FILE OBJECT MAPPING FILE

The file object mapping file dmFoMap.his is created in the "DB_BkDir/FO"
directory. It is a pure ASCII text file that records the original external file name and
backup file name. The format looks like:

Database Name: DBSAMPLES

Begin Backup FO Time: 2013/04/12 09:21:32

FO Backup Directory: C:\DBMaker\5.3\SAMPLES\DATABASE\backup\FO\

[Mapping List]

s, fo0000000000.bak, * C:\DBMaker\5.3\SAMPLES\DATABASE\backup\FO\ZZ000001 .bmp"*
u, fo0000000001.bak, *C:\DBMaker\5.3\SAMPLES\DATABASE\backup\FO\image.- jpg"

s, To0000002345.bak, *'C:\DBMaker\5.3\SAMPLES\DATABASE\backup\FO\ZZ00AB32. txt"

The content before “[Mapping List]” is only a description for user reference. Each line
after "[Mapping List]" represents a record that shows the file object type (s = system
file object, u = user file object), the new file in /fo subdirectory and its original file

name and path. This mapping file is necessary for restoration of file objects.

SETTING THE BACKUP MODE OF FILE OBJECTS WITH
DMCONFIG.INI

The configuration file keyword DB_BkFoM determines the backup mode of file

objects:

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

¢ DB_BkFoM = 0: Do not back up file objects
¢ DB_BkFoM = 1: Back up system file objects only
¢ DB_BkFoM = 2: Back up both system and user file objects

If DB_BkFoM = 1 or 2, the backup server will copy all file objects to the /fo
subdirectory under the backup directory. The schedule follows the full backup

schedule.
S Example
An entry in a dmconfig.ini file for specifying the file object backup parameters.
[MyDB]
DB BkSvr = 1 ; starts the backup server
DB FBKTm = 01/05/01 00:00:00 ; begins at midnight, May 1, 2001.
DB _FBKTV = 1-00:00:00 ; interval is once every day.
DB BkDir = /home/dbmaker/backup ; backup directory
DB BkFoM = 2 ; backup both system and user file objects

Since the backup mode is 2, the backup server will copy all external files (user file
objects) and system file objects to the /home/dbmaker/backup/FO directory. If the
FO subdirectory does not exist, the Backup Server will create it.

USING DMSQL TO SET THE BACKUP MODE OF FILE OBJECTS

The procedure SetSystemOption can be used to change the backup mode of file
objects while the database is running. The general syntax to change the Backup Mode

of File Objects is:
dmSQL> Call SetSystemOption (‘bkfom’, ‘n’)

Where 7 is 0, 1, or 2. Setting 7 to 0 will turn the Backup Mode of File Objects to off.
Setting 7 to 1 configures backup server to back up all system file objects during a full
backup. Setting 7 to 2 configures backup server to back up all system and user file

objects during a full backup.

S Example

To configure Backup Server to perform a full backup on all user and system file

objects, enter the following line at the dmSQL command prompt.

©Copyright 1995-2012 CASEMaker Inc. 14-43

O\ Database Administrator’s Guide

14-44

dmSQL> Call SetSystemOption (‘bkfom’, ‘27);

SETTING THE BACKUP MODE OF FILE OBJECTS WITH JSERVER
MANAGER

The settings under the Backup File Object Mode effect how file objects are copied
during the full backup process. Selecting Do Not Backup File Objects disables file
backup during the full backup process. Selecting Backup System File Objects Only
backs up system file objects during automatic full backups. Selecting Backup System
and User File Objects will backs up both system file objects and user file objects
copied to the backup directory during automatic full backups. For directions on how
to set the Backup Mode of File Objects during database startup or with the Run Time
Settings dialog in JServer Manager, refer to the [Server Manager User’s Guide.

Inactivate Backup Server

DBMaker will automatically start Backup Server while starting the database. Backup
Server is disabled by default. You can control the state of backup server with
DB_BkSvr. When DB_BkSvr is set to 0, the backup server is inactive; when
DB_BKSvr is set to 1, the backup server is active. When you no longer want the
backup server is active, you can set the value of the DB_BkSvr keyword to 0 in the
dmconfig.ini file or change BkSvr with call setsystemoption(‘bksvr’,'0’) after the database

is started.

INACTIVATE BACKUP SERVER USING DMCONFIG.INI

If the database is offline, you can disable Backup Server directly using the DB_BkSvr
keyword in the dmconfig.ini file. The next time you start the database, Backup Server
will not start. If the database is online, changing the value of the DB_BkSvr keyword

will have no effect until the database is shut down and restarted.

To inactivate Backup Server using the dmconfig.ini file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor
2. Locate the database configuration section for a database to change the backup
mode

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

14.7

3. Change the value of the DB_BkSvr keyword to 0 to disable the Backup Server
4. Restart the database

INACTIVATE BACKUP SERVER USING JSERVER MANAGER

When the database is online, disabling Backup Server will have no effect until the
database is shut down and restarted. For directions on how to inactivate Backup

Server using JServer Manager, refer to the /Server Manager User’s Guide.

USING DMSQL TO INACTIVATE BACKUP SERVER

The procedure SetSystemOption can be used to change the state of backup server

while the database is running. The general syntax to change the tate of Backup Server:
dmSQL> Call SetSystemOption (‘bksvr’, ‘n’)

Where 7 is 0, or 1. Setting 7 to 0 will inactivate the backup server. Setting 7 to 2 will

activate the backup server.

Example

To inactivate the backup server, enter the following line at the dmSQL command
prompt.
dmSQL> Call SetSystemOption (‘bksvr’, ‘07);

INACTIVATE BACKUP SERVER USING JSERVER MANAGER

When the database is online, disabling Backup Server will have no effect undil the
database is shut down and restarted. For directions on how to inactivate Backup

Server using JServer Manager, refer to the [Server Manager User’s Guide.

Backup History Files

Automatic backups using the backup server can store the information about which
journal files were backed up, when they were backed up, and where the backup files
are located in the backup history file by automatically.

©Copyright 1995-2012 CASEMaker Inc. 14-45

O\ Database Administrator’s Guide

14-46

Locating the Backup History File

Backup history file is a text file located in the first directory of DB_BKDIR keyword
in the dmconfig.ini file. This file is created in the online backup path and is named
dmBackup. his. The file will automatically be used during restoration of a database,
but the offline backup is recorded with offBackup.his.

Understanding the Backup History File

Backup history files contain all information pertaining to the id number, file names,
and time and date that backups were made. DBMaker uses the backup history file to
track backup sequences and ensure the consistency of full, differential and incremental

backups within each sequence.

The following is the format of the backup history file:

<backup id>: file name —-> archive file name, time, event

This denotes that a file named file_name was copied to an archive file named
archive_file_name at time because of event. The event is a text string indicating the
reason for the backup. This string can be JOURNAL-FULL, TIME-OUT, ON-
LINE-FULL-BACKUP-BEGIN, ON-LINE-FULL-BACKUP, or ON-LINE-FULL-
BACKUP-END. The string JOURNAL-FULL indicates an incremental backup was
performed because the journal was full. The string TIME-OUT indicates a differential
or an incremental backup was performed because the scheduled backup interval has
elapsed. The string ON-LINE-FULL-BACKUPxxxx means it is a full backup.

Using the Backup History File

If journal full occurs frequently, lower the backup journal full percentage or shorten
the time interval. Also, find out if the backup interval is too short by checking the
backup history file. If the same journal file is backed up consecutively in the backup
history file, the time interval may be too short. This situation will waste disk space
because each file may only contain a few changed blocks. To avoid this, enable

compact backup mode or lengthen the backup time interval.

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

1 4-8

If many journal files are backed up every time, it may mean the time interval is too
long. This situation is more dangerous because of the possibility of losing more data

when a disk fails. To avoid this, users should shorten the backup time interval.

Performing full backups regularly will reduce recovery time after media failures even

when using Backup Server. This also reduces the amount of backup storage needed.

Understanding the File Object Backup History File

The file object backup history file, dmFoMap.his, keeps a record of all file objects that
have been backed up by setting the file object backup configuration parameter on.
dmFoMap.his is placed in the "<DB_BkDir>/FO" directory, is a pure ASCII text file

that records the original external file name and backup file name.

The following is the file format:

Database Name: MYDB

Begin Backup FO Time: 2001.5.13 2:33

FO Backup Directory: /DBMaker/mydb/backup/FO (i.e. DB BkDir/FO)
[Mapping List]

s, £00000000000.bak, "/DBMaker/mydb/fo/ZZ000001.bmp"

u, £00000000001.bak, "/home2/data/image.jpg"

s, fo0000002345.bak, "/DBMaker/mydo/fo/ZZ00AB32.txt"

In the first column, s or u represent system or user file objects, respectively. The
second column gives the backup name, and the third column gives the full name and
path of the original file object.

Backup on Replication
Databases

On both normal database and master, but not slave database, users can do full backup,
differential backup and incremental backup. The method is same as before. However,

JServerManager can’t do incremental backup interactively on master database.

©Copyright 1995-2012 CASEMaker Inc. 14-47

O\ Database Administrator’s Guide

14-48

Furthermore, it can’t clear incremental backup files when doing full backup

interactively on master database.

Please note that on a master database, potentially, many incremental backup files

ahead of a full backup is still remained in backup sequence for replication. Meanwhile
the replication server may not clear incremental backup files because of full backup, so
maybe a large number of files exist in DB_BKDIR if next full backup will not be done

on a long duration.

In one word, the replication sever must cooperate with the backup sever well, and they
can’t disturb each other. On the one hand, backup should not damage the replication,
in other words, replication server always can replication all transactions to slave sites
regardless of whether a full backup or a differential backup has been done or is being

done, on the other hand, replication can’t damage backup sequence.

It is doable to restore the master database with backup sequence. However, after the
master database restored, the database replication will not continue. If users want to
continue replicating the database, all slave databases must have been replaced by new
master database, that is to say, users must copy the master database files to replace all

slave databases files.

There are some constraints for backup on replication database:

¢ When the master database started up, BMODE and BKSVR must be on.

¢+ BMODE, BKSVR, BKDIR can’t be changed during runtime both on master and
slave databases, for example, call setsystemoption (‘bkdir’, new-bkdir’) will return

an error.

¢ Both on master and slave databases site, DB_BKDIR keyword in the
dmconfig.ini file should be single path. If Users set DB_BKDIR keyword is

multi-path, only the first path is used and the path size is ignored.

¢ On a master database, it is disable to do incremental backup interactively by

JServerManager.

¢ On aslave database, it is disable to do full backup, differential backup and

incremental backup.

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

1 4-9

Recovery Options

Restoring a database recreates the database as it existed at the time of the most recent

full backup plus changes as applied by the backed up journal files.

Analyzing Recovery Options

What recovery operations are available?

*

The answer to this question is determined by whether or not a database is in
BACKUP mode. If the database is operating in NONBACKUP mode, the only
option for restoration after a disk failure is to restore the most recent full backup
and restart the database. All work performed since the last full backup will be lost,
and must be re-entered. If this is the case, there is no need to answer the

following questions.

If the database is operated in BACKUP (BACKUP-DATA or BACKUP-DATA-
AND-BLOB) mode, several recovery options are available for reconstructing the
damaged database.

Preparing for Restoration

Before you restore a database after a disk error, answer the following questions:

*

*

What point in time do you want a database restored to?

If your answer is the time when the disk error occurs, backup all journal files of
the damaged database. These files will help DBMaker to restore the database to

the most current time.
What files have previously been backed up?

Find out where the most current full backup and all subsequent differential and
incremental backups are located. For example, suppose you perform a full backup
on the 30" day of every month, a differential backup every 15® day and an
incremental backup every 10 days. If your system is damaged on May 25", you
need the full backup from April 30", the differential backup from May 15" and

©Copyright 1995-2012 CASEMaker Inc. 14-49

O\ Database Administrator’s Guide

14-50

the incremental backups from May 10" and May 20", and the damaged journal
files from May 25", After locating these files, DBMaker can restore your database
to the state it was in before the failure on May 25". The valid backup sequence
that is composed of a group of full backup files and a series of differential backup
files and incremental backup files is essential for the restoration. The online
backup sequence is identified by a backup history file named dmbackup.his and
the offline backup sequence is identified by a backup file named offbackup.his.
This makes the backup history file especially important because DBMaker reads it

to get this information when restoring a database.

Performing a Restoration

When executing the restoration process, DBMaker will do the following actions:

*

*

Copying all full backup files; includes data files, blob files and journal files, to
the directory specified by the DB_DbDir keyword in the dmconfig.ini. This
operation will overwrite the original database files. So it is strongly
recommended that user can manually copy original database files to other place
before running the restoration tools, at least make sure the journal files to be
saved, to insure that if the restoration failed, there is also another chance for the

database to be restored to the most current time.

Applying the differential or incremental backup files or both into database.

When using restoration tools, users can specify:

*

Whether restore database section in system dmconfig.ini. To restore it, specify

the full path of restored dmconfig.ini.

If you want to use a backup sequence to restore the database to a location
different from the original, modify the keywords in the data file pazh, these
include DB_DBDIR, DB_DBFIL, DB_USRDB, and so on. If the backup
sequence is moved to another location or computer, consider the following
when restoring the database:

a) Database names in dmconfig.ini must be consistent with the backup
database name.

b) Set keywords BKDIR and others for data and blob files as needed.

©Copyright 1995-2012 CASEMaker Inc.

Database Recovery, Backup, and Restoration 14

c) The value of DB_JNFIL must be set if there is more than one jnl file. Ensure
that this value matches the number of jnl files in backup database.

d) If backup files are located in multiple folders the DB_BKDIR keyword
must be set to include all folders where backup files are located. The
dmbackup.his file must be located in the first BKDIR.

NOTE Users can copy an existing dmconfig.ini configuration file from the folder
where the backup sequence existed, then configure a new dmconfig.ini file by
modifying the relevant keywords.

i Backup full path of a backup history file dmBackup.his or offBackup.his if the
dmBackup.his or off Backup.his is not located in the default directory.

. Restore time (RTime). RTime denotes what time the database to be restored to,
it will determine whether the current backup sequence is available or not, and
which differential and incremental backup files will be applied to database. User
can specify it in restoration tools, or add keyword DB_RTime into system
dmconfig.ini or backup dmconfig.ini which will be restored. If RTime is not

specified, the default value is the current time.

DBMaker provides two methods to perform restoration. One is by JServer Manager

Tool and the other is by Rollover command line tool.

For more information on usage of the JServer Manager, please refer to /Server
Manager User Guide. And for more information on usage of the rollover command

line tool, please refer to next section 'use rollover to restore database'.

Restoring database by Rollover

User can also use the Rollover which is a command line tool to restore the database.

Its principle is same as the Restore Database of JServer Manager.

The usage of rollover is like:

rollover database_name [-i inifile] [-r rtime] [-h hisfile] [-m foMapfile] [-f FOtype]
There are five optional parameters in the square bracket:

-1 specifies full path of dmconfig.ini. If user specifies the dmconfig.ini to restore,

rollover will replace the database section in system dmconfig.ini with the

©Copyright 1995-2012 CASEMaker Inc. 14-51

O\ Database Administrator’s Guide

14-52

corresponding database section in specified dmconfig.ini, otherwise, DBMaker will

not restore dmconfig.ini.

-r denotes the time that database should be restored to. The option —r is the first
method to specify rtime, the second method is to add DB_RTIME keyword into
system dmconfig.ini or backup dmconfig.ini which will be specified to restore
database. If neither —r option nor DB_RTIME keyword, the rtime will be the current

time.

-h gives full path of dmBackup.his or offBackup.his. The default is
"DB_BKDIR/dmBackup.his" or “DB_BKDIR/offBackup.his”

-m gives full path of dmFoMap.his. The default is "DB_BKDIR/FO/dmFoMap.his"

-f specifies which type FO files to restore. There are four values, the value of 0
means no FO files to be restored; the value of 1 will restore system FO; value of 2 will

restore user FO and value of 3 will restore all FO. The default value is 3.

©Copyright 1995-2012 CASEMaker Inc.

Distributed Databases 15

15 Distributed
Databases

This chapter introduces the distributed database management functions provided by
DBMaker, including distributed databases, the distributed architecture, distributed
data access, distributed database object management, and distributed transaction

management.

15.1 Introduction to Distributed
Databases

Traditional client-server DBMS, as shown in Figure 15-1, locate the database on a
specific network computer, and the computer is responsible for handling all client

requests.

©Copyright 1995-2012 CASEMaker Inc. 15-1

O\ Database Administrator’s Guide

Site 2
Site 3
Communication .
Network Site 1
Sted —
Database
Site 5 1
\/

Figure 15-1 Traditional client/server database management system

Distributed databases, as shown in Figure 15-2, locate a copy of the database on
several network computers, and each can independently support clients. The
distributed database management system manages the databases on these computers,

so users can access the data transparently.

DBMaker supports a true distributed architecture to provide a complete and robust
distributed database management system (Distributed DBMS). It provides remote
database connections, distributed queries, and distributed transaction management.
DBMaker also provides table and database replication to keep data automatically up-
to-date.

15-2 ©Copyright 1995-2012 CASEMaker Inc.

Distributed Databases 15

15.2

-
Site 3 Site 2
<
Database < =
3 Site 1 Data1base

< = < =
Site 4 Site 5

Figure 15-2 Distributed database in client-server

Communication
Network

In the DBMaker distributed database environment, you can write application
programs using the DBMaker ODBC 3.0 compatible API or perform ad-hoc SQL
queries that access data from different parts of the distributed database. DBMaker will
transparently integrate the data and return the results, just as if they all came from a

local database.

In this chapter, we will briefly describe the system architecture and basic functions of
distributed database management using DBMaker. This includes configuring the
distributed environment, managing remote data links and distributed transactions,
and performing distributed queries. Whether you are a database administrator or an
application developer, this chapter will provide you with a thorough overview of the

simplicity and power of the DBMaker distributed architecture.

Distributed Database Structure

The DBMaker distributed database environment builds on the traditional client/server
architecture, effectively linking multiple client applications and multiple database
servers. Client applications process user requests and display the results, and the
database servers handle data management. Each client has a direct connection to a

single database server, which is known as the Coordinator Database to that client.

©Copyright 1995-2012 CASEMaker Inc. 15-3

O\ Database Administrator’s Guide

Through the Coordinator Database, the client can connect to other remote databases,

which are known as Participant Databases.

DBMaker uses a hierarchical distribution structure to connect to remote databases.
This allows DBMaker to access data from a remote database with no direct connection
to the Coordinator Database by routing through one of the Participant Databases.
When this happens, the Participant Database becomes a Local Coordinator Database,

and acts as coordinator for any child databases accessed through it.

Client AF
4
Wew York Coordinator database
'
London Hong Kong { ﬁi?é’éﬂa“ﬁiéﬁiﬁm i
v
Taka Taipei Child participant database

Figure 15-3 DBMatker distribution structure

In Figure 15-3, the client application program connects to the database server in New
York, which makes the database in New York the Coordinator Database. If you use
the database in New York to access data from London and Hong Kong, then both the
London and Hong Kong databases are Participant Databases.

Some of the data you are looking for in Hong Kong might actually be in the databases
in Tokyo or Taipei, so the databases in Tokyo and Taipei are Child Participant
Databases. This makes the database in Hong Kong a Coordinator Database for the
databases in Tokyo and Taipei, so the database in Hong Kong is not only a

Participant Database, but also acts as a Local Coordinator Database.

15-4 ©Copyright 1995-2012 CASEMaker Inc.

Distributed Databases 15

15.3

Distributed Database
Environment

Setting up a distributed database environment using DBMaker is as simple as adding
some keywords to the dmconfig.ini file to set the distributed database configuration
options. Optionally, set these parameters using the JConfiguration Tool. For more

information, refer to the /Configuration Tool User’s Guide.

You must provide values for the following keywords when setting up a distributed
database environment in DBMaker. Keywords with the prefix DB_ are for the
client/server connection between the client and the Coordinator Database, and
keywords with the prefix DD_ are for the distributed database connections between
the Coordinator Database and the Participant Databases.

¢ DB_SvAdr=<ip_address/host name> —IP address or host name of the

Coordinator Database.

¢ DB_PtNum=<port number> —port number that the client application and the

Coordinator Database should use to communicate.

¢ DD _DDBMd=<0/1> — enables distributed database mode for the Coordinator
Database. The default value is 0, which means that distributed database mode is

disabled.

¢ DD_CTimO=<number of seconds> —time in seconds that the Coordinator
Database should wait when trying to establish a connection to a Participant

Database. The default value is 5 seconds.

¢ DD_LTimO=<number of seconds> —time in seconds that the Coordinator
Database should wait when trying to establish a lock on the requested data in a

Participant Database. The default value is 5 seconds.

¢ DD_GTSVR=<0/1> — enables the global transaction recovery daemon
(GTRECO). The default value is 1, which means the global transaction recovery

daemon is enabled.

©Copyright 1995-2012 CASEMaker Inc. 15-5

O\ Database Administrator’s Guide

15-6

¢ DD_GTItv=<YYYY/MM/DD hh:mm:ss> — specifies the time interval that the
global transaction recovery daemon (GTRECO) should wait when processing

pending global transactions.

DBMaker supports an automatic recovery mechanism for distributed transactions that
have failed due to network problems or errors on the Participant Database. The
automatic recovery mechanism is handled by the GTRECO daemon, which will
check whether a distributed database server has any problems with pending global
transactions. If any problems are detected, the GTRECO daemon will attempt to
recover the pending global transactions. The GTRECO daemon is enabled using the
DD_GTSVR keyword in the dmconfig.ini file.

To better understand how DBMaker manages distributed databases, refer to the

following example.

Example

ABC Bank has two branch offices; One in Los Angeles and the other in Seattle. Each
branch maintains its own customer and